KULEUVEN

Revisiting Oblivious Top- k Selection with Applications to Secure k-NN Classification

Kelong Cong ${ }^{1,2}$, Robin Geelen ${ }^{1}$, Jiayi Kang ${ }^{1}$, and Jeongeun Park ${ }^{1}$ ${ }^{1}$ COSIC, KU Leuven, and ${ }^{2}$ Zama
Seminar at University of Luxembourg, March 14, 2024

Outline

(1) Oblivious Algorithms for Secure Computation
(2) Oblivious Top- k Selection
(3) Application: Secure k-NN Classification
(4) Summary and Conclusion

FHE supports secure computation outsourcing

FHE supports secure computation outsourcing

- Promising future: imagine asking ChatGPT encrypted questions!

Program expansion in homomorphic branching

- Converting input-dependent plaintext programs into ciphertext programs leads to program expansion
- Example of program expansion:

Program expansion in homomorphic branching

- Converting input-dependent plaintext programs into ciphertext programs leads to program expansion
- Example of program expansion:

1 Homomorphically compute branch

$$
b=\mathbb{1}(X<a)
$$

Program expansion in homomorphic branching

- Converting input-dependent plaintext programs into ciphertext programs leads to program expansion
- Example of program expansion:

1 Homomorphically compute branch $b=\mathbb{1}(X<a)$
2 Homomorphically evaluate $Y=(1-b) \cdot y_{1}+b \cdot y_{2}$

Program expansion in homomorphic branching

- Converting input-dependent plaintext programs into ciphertext programs leads to program expansion
- Example of program expansion:

1 Homomorphically compute branch $b=\mathbb{1}(X<a)$
2 Homomorphically evaluate $Y=(1-b) \cdot y_{1}+b \cdot y_{2}$

- Both child nodes need to be visited

Oblivious programs and their network realization

Definition

(Data-)oblivious programs are programs whose sequence of operations and memory accesses are independent of inputs.

Oblivious programs and their network realization

Definition

(Data-)oblivious programs are programs whose sequence of operations and memory accesses are independent of inputs.

- Consider comparator-based sortings for d elements
- Quicksort has complexity $\mathcal{O}(d \log d)$, but it is non-oblivious
- Practical oblivious sorting method has complexity $\mathcal{O}\left(d \log ^{2} d\right)$

Oblivious programs and their network realization

Definition

(Data-)oblivious programs are programs whose sequence of operations and memory accesses are independent of inputs.

- Consider comparator-based sortings for d elements
- Quicksort has complexity $\mathcal{O}(d \log d)$, but it is non-oblivious
- Practical oblivious sorting method has complexity $\mathcal{O}\left(d \log ^{2} d\right)$
- Oblivious programs can be visualized as networks

Figure: Comparator

Figure: Sort 4 elements obliviously

Example: Batcher's odd-even sorting network

- Batcher's odd-even sorting network for d input elements has complexity $S(d)=\mathcal{O}\left(d \log ^{2} d\right)$ and depth $\mathcal{O}\left(\log ^{2} d\right)$

Example: the tournament network for Min/Max

- The tournament network for d input elements has complexity $d-1$ and depth $\lceil\log d\rceil$

Outline

(1) Oblivious Algorithms for Secure Computation
(2) Oblivious Top- k Selection
(3) Application: Secure k-NN Classification
(4) Summary and Conclusion

Motivation for Top- k selection problem

Definition

Given a set of d elements, a Top- k algorithm selects its k smallest (or largest) elements.

Motivation for Top- k selection problem

Definition

Given a set of d elements, a Top- k algorithm selects its k smallest (or largest) elements.

- In the huge information space (consisting of d records), only k most important records are of interest:
1 define a proper scoring function
2 compute score of all d records
3 return the k records with the highest scores

Motivation for Top- k selection problem

Definition

Given a set of d elements, a Top- k algorithm selects its k smallest (or largest) elements.

- In the huge information space (consisting of d records), only k most important records are of interest:
1 define a proper scoring function
2 compute score of all d records
3 return the k records with the highest scores
- Example applications include
- k-nearest neighbors classification
- recommender systems
- genetic algorithms

Popular oblivious Top- k methods

- The first category uses an oblivious sorting algorithm and then discards the $d-k$ irrelevant elements:

Popular oblivious Top- k methods

- The first category uses an oblivious sorting algorithm and then discards the $d-k$ irrelevant elements:
- Batcher's odd-even merge sort with complexity $\mathcal{O}\left(d \log ^{2} d\right)$ and depth $\mathcal{O}\left(\log ^{2} d\right)$

Popular oblivious Top- k methods

- The first category uses an oblivious sorting algorithm and then discards the $d-k$ irrelevant elements:
- Batcher's odd-even merge sort with complexity $\mathcal{O}\left(d \log ^{2} d\right)$ and depth $\mathcal{O}\left(\log ^{2} d\right)$
- Comparison matrix method with complexity $\mathcal{O}\left(d^{2}\right)$ and constant depth

Popular oblivious Top- k methods

- The first category uses an oblivious sorting algorithm and then discards the $d-k$ irrelevant elements:
- Batcher's odd-even merge sort with complexity $\mathcal{O}\left(d \log ^{2} d\right)$ and depth $\mathcal{O}\left(\log ^{2} d\right)$
- Comparison matrix method with complexity $\mathcal{O}\left(d^{2}\right)$ and constant depth
- The second category obliviously computes the minimum k times
- Complexity $\mathcal{O}(k d)$ and depth $\mathcal{O}(k \log d)$

Popular oblivious Top- k methods

- The first category uses an oblivious sorting algorithm and then discards the $d-k$ irrelevant elements:
- Batcher's odd-even merge sort with complexity $\mathcal{O}\left(d \log ^{2} d\right)$ and depth $\mathcal{O}\left(\log ^{2} d\right)$
- Comparison matrix method with complexity $\mathcal{O}\left(d^{2}\right)$ and constant depth
- The second category obliviously computes the minimum k times
- Complexity $\mathcal{O}(k d)$ and depth $\mathcal{O}(k \log d)$

Alekseev's oblivious Top- k for $2 k$ elements

- Realization using two building blocks:
- Sorting network of size k
- Pairwise comparison: returns the Top- k elements

Figure: Example for $k=3$

Alekseev's oblivious Top- k for $2 k$ elements

- Realization using two building blocks:
- Sorting network of size k
- Pairwise comparison: returns the Top- k elements

Figure: Example for $k=3$

- Can be generalized to Top- k out of d elements in tournament manner

Alekseev's oblivious Top- k for d elements

- Alekseev's procedure realizes k-merge as pairwise comparison followed by sorting

Alekseev's oblivious Top- k for d elements

- Alekseev's procedure realizes k-merge as pairwise comparison followed by sorting
- Complexity of k-merge is $k+S(k)$ comparators

Alekseev's oblivious Top- k for d elements

- Alekseev's procedure realizes k-merge as pairwise comparison followed by sorting
- Complexity of k-merge is $k+S(k)$ comparators
- Alekseev's Top- k for d elements has complexity

$$
\mathcal{O}\left(d \log ^{2} k\right)
$$

assuming practical $S(k)=\mathcal{O}\left(k \log ^{2} k\right)$

Improvement I: order-preserving merge

- Batcher's odd-even sorting network uses an alternative merging approach
- We realize k-merge by removing redundant comparators in Batcher's merge
- This reduces the complexity from $\mathcal{O}\left(k \log ^{2} k\right)$ in Alekseev's k-merge to $\mathcal{O}(k \log k)$

(a) Alekseev's 3-merge

(b) Our 3-merge

Improvement I: oblivious Top- k from truncation

Figure: Our truncated sorting network for finding the 3 smallest values out of 16

Improvement I: comparison

- Our Top- k method for d elements has the same asymptotic complexity as Alekseev's: $\mathcal{O}\left(d \log ^{2} k\right)$ comparators
- Our solution contains fewer comparators in practice

Revisiting Yao's oblivious Top- k

- Andrew Yao improved Alekseev's Top- k using an unbalanced recursion

Figure: Selecting Top-4 of 9 elements using Yao's method

Revisiting Yao's oblivious Top- k

- Andrew Yao improved Alekseev's Top- k using an unbalanced recursion

Figure: Selecting Top-4 of 9 elements using Yao's method

- For $k \ll \sqrt{d}$, Yao's Top- k method has complexity $\mathcal{O}(d \log k)$

Revisiting Yao's oblivious Top- k

- Andrew Yao improved Alekseev's Top- k using an unbalanced recursion

Figure: Selecting Top-4 of 9 elements using Yao's method

- For $k \ll \sqrt{d}$, Yao's Top- k method has complexity $\mathcal{O}(d \log k)$
- For $k \gg \sqrt{d}$, the complexity of Yao's Top- k method is asymptotically higher than $\mathcal{O}\left(d \log ^{2} k\right)$

Improvement II: combining our method with Yao's

- The combined network recursively calls our truncation method or Yao's method, depending on which one uses fewer comparators

Outline

(1) Oblivious Algorithms for Secure Computation
(2) Oblivious Top- k Selection
(3) Application: Secure k-NN Classification
(4) Summary and Conclusion

Introduction to k-Nearest Neighbors (k-NN)

- Simple machine learning algorithm with broad applications
- Web and image search, plagiarism detection, sports player recruitment, ...

Introduction to k-Nearest Neighbors (k-NN)

- Three-step method:

1 Compute distance between target vector and d database vectors
2 Find k closest database vectors and corresponding labels
3 Class assignment is majority vote of these k labels

Secure k-NN threat model

- Client sends encrypted k-NN query to server
- Server returns encrypted classification result

Encrypted class label

Homomorphic realization of k-NN

1 Compute distance between target vector and database vectors

- Relatively cheap

2 Find k closest database vectors and corresponding labels

- Top- k network built from comparators
- Each comparator is realized with two bootstrappings
- One bootstrapping for the minimum and maximum
- One bootstrapping for the corresponding class labels

- Where $i=\arg \min \left(\right.$ dist $_{0}$, dist $\left._{1}\right)$

3 Class assignment is majority vote of these k labels

Performance for MNIST dataset

- Implementation in tfhe-rs

k	$\mid d$	Comparators		Duration (s)		
		[ZS21]	Ours	[ZS21]	Ours	Speedup
3	40	780	93	30	17.5	$1.7 \times$
	457	104196	1136	4248	202.3	$21 \times$
	1000	499500	2493	20837	441.1	$47.2 \times$
$\lfloor\sqrt{d}\rfloor$	40	780	143	33	28.1	$1.2 \times$
	457	104196	3412	4402	530.2	$8.3 \times$
	1000	499500	9121	21410	1252	$17.1 \times$

Outline

(1) Oblivious Algorithms for Secure Computation
(2) Oblivious Top- k Selection
(3) Application: Secure k-NN Classification
(4) Summary and Conclusion

Conclusion

- An oblivious Top- k algorithm that has complexity
- $\mathcal{O}\left(d \log ^{2} k\right)$ in general
- $\mathcal{O}(d \log k)$ for small $k \ll \sqrt{d}$
- Top- k is an important submodule for various applications
- For secure k-NN, the Top- k network leads to $47 \times$ speedup compared to [ZS21]

Thank you for your attention!

> ia.cr/2023/852
jiayi.kang@esat.kuleuven.be

