
Revisiting Oblivious Top-k
Selection with Applications to
Secure k-NN Classification

Kelong Cong1,2, Robin Geelen1, Jiayi Kang1, and Jeongeun Park1

1COSIC, KU Leuven, and 2Zama
Seminar at University of Luxembourg, March 14, 2024



Outline

1 Oblivious Algorithms for Secure Computation

2 Oblivious Top-k Selection

3 Application: Secure k-NN Classification

4 Summary and Conclusion

1 Oblivious Top-k Selection and Secure k-NN Classification



FHE supports secure computation outsourcing
Client

Dec

 Enc

 Eval

Cloud

▶ Promising future: imagine asking ChatGPT encrypted questions!

2 Oblivious Top-k Selection and Secure k-NN Classification



FHE supports secure computation outsourcing
Client

Dec

 Enc

 Eval

Cloud

▶ Promising future: imagine asking ChatGPT encrypted questions!

2 Oblivious Top-k Selection and Secure k-NN Classification



Program expansion in homomorphic branching

▶ Converting input-dependent plaintext programs into ciphertext programs
leads to program expansion

▶ Example of program expansion:

X < a?

Y = y1 Y = y2

1 Homomorphically compute branch
b = 1(X < a)

2 Homomorphically evaluate
Y = (1 − b) · y1 + b · y2

▶ Both child nodes need to be visited

3 Oblivious Top-k Selection and Secure k-NN Classification



Program expansion in homomorphic branching

▶ Converting input-dependent plaintext programs into ciphertext programs
leads to program expansion

▶ Example of program expansion:

X < a?

Y = y1 Y = y2

1 Homomorphically compute branch
b = 1(X < a)

2 Homomorphically evaluate
Y = (1 − b) · y1 + b · y2

▶ Both child nodes need to be visited

3 Oblivious Top-k Selection and Secure k-NN Classification



Program expansion in homomorphic branching

▶ Converting input-dependent plaintext programs into ciphertext programs
leads to program expansion

▶ Example of program expansion:

X < a?

Y = y1 Y = y2

1 Homomorphically compute branch
b = 1(X < a)

2 Homomorphically evaluate
Y = (1 − b) · y1 + b · y2

▶ Both child nodes need to be visited

3 Oblivious Top-k Selection and Secure k-NN Classification



Program expansion in homomorphic branching

▶ Converting input-dependent plaintext programs into ciphertext programs
leads to program expansion

▶ Example of program expansion:

X < a?

Y = y1 Y = y2

1 Homomorphically compute branch
b = 1(X < a)

2 Homomorphically evaluate
Y = (1 − b) · y1 + b · y2

▶ Both child nodes need to be visited

3 Oblivious Top-k Selection and Secure k-NN Classification



Oblivious programs and their network realization

Definition
(Data-)oblivious programs are programs whose sequence of operations and
memory accesses are independent of inputs.

▶ Consider comparator-based sortings for d elements
• Quicksort has complexity O(d log d), but it is non-oblivious
• Practical oblivious sorting method has complexity O(d log2 d)

▶ Oblivious programs can be visualized as networks
m0
m1

min(m0,m1)
max(m0,m1)

Figure: Comparator Figure: Sort 4 elements obliviously

4 Oblivious Top-k Selection and Secure k-NN Classification



Oblivious programs and their network realization

Definition
(Data-)oblivious programs are programs whose sequence of operations and
memory accesses are independent of inputs.

▶ Consider comparator-based sortings for d elements
• Quicksort has complexity O(d log d), but it is non-oblivious
• Practical oblivious sorting method has complexity O(d log2 d)

▶ Oblivious programs can be visualized as networks
m0
m1

min(m0,m1)
max(m0,m1)

Figure: Comparator Figure: Sort 4 elements obliviously

4 Oblivious Top-k Selection and Secure k-NN Classification



Oblivious programs and their network realization

Definition
(Data-)oblivious programs are programs whose sequence of operations and
memory accesses are independent of inputs.

▶ Consider comparator-based sortings for d elements
• Quicksort has complexity O(d log d), but it is non-oblivious
• Practical oblivious sorting method has complexity O(d log2 d)

▶ Oblivious programs can be visualized as networks
m0
m1

min(m0,m1)
max(m0,m1)

Figure: Comparator Figure: Sort 4 elements obliviously

4 Oblivious Top-k Selection and Secure k-NN Classification



Example: Batcher’s odd-even sorting network

▶ Batcher’s odd-even sorting network for d input elements has complexity
S(d) = O(d log2 d) and depth O(log2 d)

5 Oblivious Top-k Selection and Secure k-NN Classification



Example: the tournament network for Min/Max

▶ The tournament network for d input elements has complexity d − 1 and
depth ⌈log d⌉

m7
m6
m5
m4
m3
m2
m1
m0 min{mi}

6 Oblivious Top-k Selection and Secure k-NN Classification



Outline

1 Oblivious Algorithms for Secure Computation

2 Oblivious Top-k Selection

3 Application: Secure k-NN Classification

4 Summary and Conclusion

7 Oblivious Top-k Selection and Secure k-NN Classification



Motivation for Top-k selection problem

Definition
Given a set of d elements, a Top-k algorithm selects its k smallest (or largest)
elements.

▶ In the huge information space (consisting of d records), only k most
important records are of interest:

1 define a proper scoring function
2 compute score of all d records
3 return the k records with the highest scores

▶ Example applications include
• k-nearest neighbors classification
• recommender systems
• genetic algorithms

8 Oblivious Top-k Selection and Secure k-NN Classification



Motivation for Top-k selection problem

Definition
Given a set of d elements, a Top-k algorithm selects its k smallest (or largest)
elements.
▶ In the huge information space (consisting of d records), only k most

important records are of interest:
1 define a proper scoring function
2 compute score of all d records
3 return the k records with the highest scores

▶ Example applications include
• k-nearest neighbors classification
• recommender systems
• genetic algorithms

8 Oblivious Top-k Selection and Secure k-NN Classification



Motivation for Top-k selection problem

Definition
Given a set of d elements, a Top-k algorithm selects its k smallest (or largest)
elements.
▶ In the huge information space (consisting of d records), only k most

important records are of interest:
1 define a proper scoring function
2 compute score of all d records
3 return the k records with the highest scores

▶ Example applications include
• k-nearest neighbors classification
• recommender systems
• genetic algorithms

8 Oblivious Top-k Selection and Secure k-NN Classification



Popular oblivious Top-k methods
▶ The first category uses an oblivious sorting algorithm and then discards

the d − k irrelevant elements:

• Batcher’s odd-even merge sort with complexity O(d log2 d) and depth O(log2 d)
• Comparison matrix method with complexity O(d2) and constant depth

▶ The second category obliviously computes the minimum k times
• Complexity O(kd) and depth O(k log d)

1 21 41 61 81 101 121 141 161 181 201 221
k

0

20000

40000

60000

80000

100000

Nu
m

be
r o

f c
om

pa
ris

on
s

Batcher's sort
Matrix sort
Tournament
Desired

9 Oblivious Top-k Selection and Secure k-NN Classification



Popular oblivious Top-k methods
▶ The first category uses an oblivious sorting algorithm and then discards

the d − k irrelevant elements:
• Batcher’s odd-even merge sort with complexity O(d log2 d) and depth O(log2 d)

• Comparison matrix method with complexity O(d2) and constant depth
▶ The second category obliviously computes the minimum k times

• Complexity O(kd) and depth O(k log d)

1 21 41 61 81 101 121 141 161 181 201 221
k

0

20000

40000

60000

80000

100000

Nu
m

be
r o

f c
om

pa
ris

on
s

Batcher's sort
Matrix sort
Tournament
Desired

9 Oblivious Top-k Selection and Secure k-NN Classification



Popular oblivious Top-k methods
▶ The first category uses an oblivious sorting algorithm and then discards

the d − k irrelevant elements:
• Batcher’s odd-even merge sort with complexity O(d log2 d) and depth O(log2 d)
• Comparison matrix method with complexity O(d2) and constant depth

▶ The second category obliviously computes the minimum k times
• Complexity O(kd) and depth O(k log d)

1 21 41 61 81 101 121 141 161 181 201 221
k

0

20000

40000

60000

80000

100000

Nu
m

be
r o

f c
om

pa
ris

on
s

Batcher's sort
Matrix sort
Tournament
Desired

9 Oblivious Top-k Selection and Secure k-NN Classification



Popular oblivious Top-k methods
▶ The first category uses an oblivious sorting algorithm and then discards

the d − k irrelevant elements:
• Batcher’s odd-even merge sort with complexity O(d log2 d) and depth O(log2 d)
• Comparison matrix method with complexity O(d2) and constant depth

▶ The second category obliviously computes the minimum k times
• Complexity O(kd) and depth O(k log d)

1 21 41 61 81 101 121 141 161 181 201 221
k

0

20000

40000

60000

80000

100000

Nu
m

be
r o

f c
om

pa
ris

on
s

Batcher's sort
Matrix sort
Tournament
Desired

9 Oblivious Top-k Selection and Secure k-NN Classification



Popular oblivious Top-k methods
▶ The first category uses an oblivious sorting algorithm and then discards

the d − k irrelevant elements:
• Batcher’s odd-even merge sort with complexity O(d log2 d) and depth O(log2 d)
• Comparison matrix method with complexity O(d2) and constant depth

▶ The second category obliviously computes the minimum k times
• Complexity O(kd) and depth O(k log d)

1 21 41 61 81 101 121 141 161 181 201 221
k

0

20000

40000

60000

80000

100000

Nu
m

be
r o

f c
om

pa
ris

on
s

Batcher's sort
Matrix sort
Tournament
Desired

9 Oblivious Top-k Selection and Secure k-NN Classification



Alekseev’s oblivious Top-k for 2k elements
▶ Realization using two building blocks:

• Sorting network of size k
• Pairwise comparison: returns the Top-k elements

sorting

sorting

Figure: Example for k = 3

▶ Can be generalized to Top-k out of d elements in tournament manner

10 Oblivious Top-k Selection and Secure k-NN Classification



Alekseev’s oblivious Top-k for 2k elements
▶ Realization using two building blocks:

• Sorting network of size k
• Pairwise comparison: returns the Top-k elements

sorting

sorting

Figure: Example for k = 3

▶ Can be generalized to Top-k out of d elements in tournament manner

10 Oblivious Top-k Selection and Secure k-NN Classification



Alekseev’s oblivious Top-k for d elements

▶ Alekseev’s procedure realizes k-merge as
pairwise comparison followed by sorting

▶ Complexity of k-merge is k + S(k) comparators
▶ Alekseev’s Top-k for d elements has complexity

O(d log2 k),

assuming practical S(k) = O(k log2 k)

11 Oblivious Top-k Selection and Secure k-NN Classification



Alekseev’s oblivious Top-k for d elements

▶ Alekseev’s procedure realizes k-merge as
pairwise comparison followed by sorting

▶ Complexity of k-merge is k + S(k) comparators

▶ Alekseev’s Top-k for d elements has complexity

O(d log2 k),

assuming practical S(k) = O(k log2 k)

11 Oblivious Top-k Selection and Secure k-NN Classification



Alekseev’s oblivious Top-k for d elements

▶ Alekseev’s procedure realizes k-merge as
pairwise comparison followed by sorting

▶ Complexity of k-merge is k + S(k) comparators
▶ Alekseev’s Top-k for d elements has complexity

O(d log2 k),

assuming practical S(k) = O(k log2 k)

11 Oblivious Top-k Selection and Secure k-NN Classification



Improvement I: order-preserving merge
▶ Batcher’s odd-even sorting network uses an alternative merging approach

• We realize k-merge by removing redundant comparators in Batcher’s merge
• This reduces the complexity from O(k log2 k) in Alekseev’s k-merge to O(k log k)

(a) Alekseev’s 3-merge (b) Our 3-merge

12 Oblivious Top-k Selection and Secure k-NN Classification



Improvement I: oblivious Top-k from truncation

Figure: Our truncated sorting network for finding the 3 smallest values out of 16

13 Oblivious Top-k Selection and Secure k-NN Classification



Improvement I: comparison

▶ Our Top-k method for d elements has the same asymptotic complexity as
Alekseev’s: O(d log2 k) comparators

▶ Our solution contains fewer comparators in practice

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

50

100

150

200

250

300

350

400
Nu

m
be

r o
f c

om
pa

ris
on

s
Alekseev's
Ours

14 Oblivious Top-k Selection and Secure k-NN Classification



Revisiting Yao’s oblivious Top-k

▶ Andrew Yao improved Alekseev’s Top-k using an unbalanced recursion

Top-2 of 4

Top-4 of 7

Figure: Selecting Top-4 of 9 elements using Yao’s method

▶ For k ≪
√

d, Yao’s Top-k method has complexity O(d log k)
▶ For k ≫

√
d, the complexity of Yao’s Top-k method is asymptotically

higher than O(d log2 k)

15 Oblivious Top-k Selection and Secure k-NN Classification



Revisiting Yao’s oblivious Top-k

▶ Andrew Yao improved Alekseev’s Top-k using an unbalanced recursion

Top-2 of 4

Top-4 of 7

Figure: Selecting Top-4 of 9 elements using Yao’s method

▶ For k ≪
√

d, Yao’s Top-k method has complexity O(d log k)

▶ For k ≫
√

d, the complexity of Yao’s Top-k method is asymptotically
higher than O(d log2 k)

15 Oblivious Top-k Selection and Secure k-NN Classification



Revisiting Yao’s oblivious Top-k

▶ Andrew Yao improved Alekseev’s Top-k using an unbalanced recursion

Top-2 of 4

Top-4 of 7

Figure: Selecting Top-4 of 9 elements using Yao’s method

▶ For k ≪
√

d, Yao’s Top-k method has complexity O(d log k)
▶ For k ≫

√
d, the complexity of Yao’s Top-k method is asymptotically

higher than O(d log2 k)

15 Oblivious Top-k Selection and Secure k-NN Classification



Improvement II: combining our method with Yao’s

▶ The combined network recursively calls our truncation method or Yao’s
method, depending on which one uses fewer comparators

(a) d = 457 (b) d = 1000

16 Oblivious Top-k Selection and Secure k-NN Classification



Outline

1 Oblivious Algorithms for Secure Computation

2 Oblivious Top-k Selection

3 Application: Secure k-NN Classification

4 Summary and Conclusion

17 Oblivious Top-k Selection and Secure k-NN Classification



Introduction to k-Nearest Neighbors (k-NN)

▶ Simple machine learning algorithm with broad applications
• Web and image search, plagiarism detection, sports player recruitment, ...

18 Oblivious Top-k Selection and Secure k-NN Classification



Introduction to k-Nearest Neighbors (k-NN)

▶ Three-step method:
1 Compute distance between target

vector and d database vectors
2 Find k closest database vectors

and corresponding labels
3 Class assignment is majority vote

of these k labels

?

19 Oblivious Top-k Selection and Secure k-NN Classification



Secure k-NN threat model
▶ Client sends encrypted k-NN query to server
▶ Server returns encrypted classification result

Encrypted target vector

Encrypted class label

User Cleartext database

20 Oblivious Top-k Selection and Secure k-NN Classification



Homomorphic realization of k-NN

1 Compute distance between target vector and d database vectors
• Relatively cheap

2 Find k closest database vectors and corresponding labels
• Top-k network built from comparators
• Each comparator is realized with two bootstrappings

- One bootstrapping for the minimum and maximum
- One bootstrapping for the corresponding class labels

(dist0, label0)
(dist1, label1)

(disti, labeli)
(dist1−i, label1−i)

• Where i = arg min(dist0, dist1)
3 Class assignment is majority vote of these k labels

21 Oblivious Top-k Selection and Secure k-NN Classification



Performance for MNIST dataset
▶ Implementation in tfhe-rs

Comparators Duration (s)
k d [ZS21] Ours [ZS21] Ours Speedup

3 40 780 93 30 17.5 1.7×
457 104196 1136 4248 202.3 21×
1000 499500 2493 20837 441.1 47.2×

⌊
√

d⌋ 40 780 143 33 28.1 1.2×
457 104196 3412 4402 530.2 8.3×
1000 499500 9121 21410 1252 17.1×

22 Oblivious Top-k Selection and Secure k-NN Classification



Outline

1 Oblivious Algorithms for Secure Computation

2 Oblivious Top-k Selection

3 Application: Secure k-NN Classification

4 Summary and Conclusion

23 Oblivious Top-k Selection and Secure k-NN Classification



Conclusion
▶ An oblivious Top-k algorithm that has complexity

• O(d log2 k) in general
• O(d log k) for small k ≪

√
d

▶ Top-k is an important submodule for various applications
• For secure k-NN, the Top-k network leads to 47× speedup compared to [ZS21]

24 Oblivious Top-k Selection and Secure k-NN Classification



Thank you for your attention!

ia.cr/2023/852

jiayi.kang@esat.kuleuven.be


	Oblivious Algorithms for Secure Computation
	Oblivious Top-k Selection
	Application: Secure k-NN Classification
	Summary and Conclusion

