

Revisiting Oblivious Top-kSelection with Applications to Secure k-NN Classification

Kelong Cong^{1,2}, Robin Geelen¹, **Jiayi Kang**¹, and Jeongeun Park¹ ¹COSIC, KU Leuven, and ²Zama Seminar at University of Luxembourg, March 14, 2024

Outline

1 Oblivious Algorithms for Secure Computation

Oblivious Top-k Selection

3 Application: Secure *k*-NN Classification

④ Summary and Conclusion

FHE supports secure computation outsourcing

FHE supports secure computation outsourcing

Promising future: imagine asking ChatGPT encrypted questions!

- Converting input-dependent plaintext programs into ciphertext programs leads to program expansion
- Example of program expansion:

- Converting input-dependent plaintext programs into ciphertext programs leads to program expansion
- Example of program expansion:

 $\begin{array}{ll} 1 & \mbox{Homomorphically compute branch} \\ b = \mathbbm{1}(X < a) \end{array}$

- Converting input-dependent plaintext programs into ciphertext programs leads to program expansion
- Example of program expansion:

- Homomorphically compute branch $b = \mathbb{1}(X < a)$
- 2 Homomorphically evaluate $Y = (1 - b) \cdot y_1 + b \cdot y_2$

- Converting input-dependent plaintext programs into ciphertext programs leads to program expansion
- Example of program expansion:

- Homomorphically compute branch $b = \mathbb{1}(X < a)$
- 2 Homomorphically evaluate $Y = (1-b) \cdot y_1 + b \cdot y_2$

Both child nodes need to be visited

Oblivious programs and their network realization

Definition

(*Data-*)oblivious programs are programs whose sequence of operations and memory accesses are independent of inputs.

Oblivious programs and their network realization

Definition

(*Data-*)oblivious programs are programs whose sequence of operations and memory accesses are independent of inputs.

Consider comparator-based sortings for d elements

- Quicksort has complexity $\mathcal{O}(d\log d)$, but it is non-oblivious
- Practical oblivious sorting method has complexity $\mathcal{O}(d\log^2 d)$

Oblivious programs and their network realization

Definition

(*Data-*)oblivious programs are programs whose sequence of operations and memory accesses are independent of inputs.

Consider comparator-based sortings for d elements

- Quicksort has complexity $\mathcal{O}(d\log d)$, but it is non-oblivious
- Practical oblivious sorting method has complexity $\mathcal{O}(d\log^2 d)$
- Oblivious programs can be visualized as networks

Figure: Comparator

Figure: Sort 4 elements obliviously

Example: Batcher's odd-even sorting network

▶ Batcher's odd-even sorting network for *d* input elements has complexity $S(d) = O(d \log^2 d)$ and depth $O(\log^2 d)$

Example: the tournament network for Min/Max

▶ The tournament network for d input elements has complexity d-1 and depth $\lceil \log d \rceil$

Outline

Oblivious Algorithms for Secure Computation

2 Oblivious Top-k Selection

3 Application: Secure *k*-NN Classification

④ Summary and Conclusion

Motivation for Top-k selection problem

Definition

Given a set of d elements, a *Top-k algorithm* selects its k smallest (or largest) elements.

Motivation for Top-k selection problem

Definition

Given a set of d elements, a *Top-k algorithm* selects its k smallest (or largest) elements.

- In the huge information space (consisting of d records), only k most important records are of interest:
 - 1 define a proper scoring function
 - 2 compute score of all d records
 - 3 return the k records with the highest scores

Motivation for Top-k selection problem

Definition

Given a set of d elements, a *Top-k algorithm* selects its k smallest (or largest) elements.

- In the huge information space (consisting of d records), only k most important records are of interest:
 - 1 define a proper scoring function
 - 2 compute score of all d records
 - 3 return the k records with the highest scores
- Example applications include
 - k-nearest neighbors classification
 - recommender systems
 - genetic algorithms

The first category uses an oblivious sorting algorithm and then discards the d - k irrelevant elements:

- The first category uses an oblivious sorting algorithm and then discards the d k irrelevant elements:
 - Batcher's odd-even merge sort with complexity $\mathcal{O}(d\log^2 d)$ and depth $\mathcal{O}(\log^2 d)$

- The first category uses an oblivious sorting algorithm and then discards the d k irrelevant elements:
 - Batcher's odd-even merge sort with complexity $\mathcal{O}(d \log^2 d)$ and depth $\mathcal{O}(\log^2 d)$
 - Comparison matrix method with complexity $\mathcal{O}(d^2)$ and constant depth

- The first category uses an oblivious sorting algorithm and then discards the d k irrelevant elements:
 - Batcher's odd-even merge sort with complexity $\mathcal{O}(d\log^2 d)$ and depth $\mathcal{O}(\log^2 d)$
 - Comparison matrix method with complexity $\mathcal{O}(d^2)$ and constant depth
- \blacktriangleright The second category obliviously computes the minimum k times
 - Complexity $\mathcal{O}(kd)$ and depth $\mathcal{O}(k\log d)$

- The first category uses an oblivious sorting algorithm and then discards the d - k irrelevant elements:
 - Batcher's odd-even merge sort with complexity $\mathcal{O}(d\log^2 d)$ and depth $\mathcal{O}(\log^2 d)$
 - Comparison matrix method with complexity $\mathcal{O}(d^2)$ and constant depth
- \blacktriangleright The second category obliviously computes the minimum k times
 - Complexity $\mathcal{O}(kd)$ and depth $\mathcal{O}(k\log d)$

Alekseev's oblivious Top-k for 2k elements

- Realization using two building blocks:
 - Sorting network of size *k*
 - Pairwise comparison: returns the Top-k elements

Figure: Example for k = 3

Alekseev's oblivious Top-k for 2k elements

- Realization using two building blocks:
 - Sorting network of size *k*
 - Pairwise comparison: returns the Top-k elements

Figure: Example for k = 3

Can be generalized to Top-k out of d elements in tournament manner

Alekseev's oblivious Top-k for d elements

 Alekseev's procedure realizes k-merge as pairwise comparison followed by sorting

Alekseev's oblivious Top-k for d elements

- Alekseev's procedure realizes k-merge as pairwise comparison followed by sorting
 - Complexity of k-merge is k + S(k) comparators

Alekseev's oblivious Top-k for d elements

- Alekseev's procedure realizes k-merge as pairwise comparison followed by sorting
 - Complexity of k-merge is k + S(k) comparators
- ► Alekseev's Top-k for d elements has complexity

 $\mathcal{O}(d\log^2 k),$

assuming practical $S(k) = \mathcal{O}(k \log^2 k)$

Improvement I: order-preserving merge

Batcher's odd-even sorting network uses an alternative merging approach

- We realize k-merge by removing redundant comparators in Batcher's merge
- This reduces the complexity from $\mathcal{O}(k\log^2 k)$ in Alekseev's k-merge to $\mathcal{O}(k\log k)$

(a) Alekseev's 3-merge

(b) Our 3-merge

Improvement I: oblivious Top-k from truncation

Figure: Our truncated sorting network for finding the 3 smallest values out of 16

Improvement I: comparison

- Our Top-k method for d elements has the same asymptotic complexity as Alekseev's: O(d log² k) comparators
- Our solution contains fewer comparators in practice

Revisiting Yao's oblivious Top-k

► Andrew Yao improved Alekseev's Top-*k* using an unbalanced recursion

Figure: Selecting Top-4 of 9 elements using Yao's method

Revisiting Yao's oblivious Top-k

► Andrew Yao improved Alekseev's Top-*k* using an unbalanced recursion

Figure: Selecting Top-4 of 9 elements using Yao's method

For $k \ll \sqrt{d}$, Yao's Top-k method has complexity $\mathcal{O}(d \log k)$

Revisiting Yao's oblivious Top-k

► Andrew Yao improved Alekseev's Top-*k* using an unbalanced recursion

Figure: Selecting Top-4 of 9 elements using Yao's method

- For $k \ll \sqrt{d}$, Yao's Top-k method has complexity $\mathcal{O}(d \log k)$
- ▶ For $k \gg \sqrt{d}$, the complexity of Yao's Top-k method is asymptotically higher than $O(d \log^2 k)$

Improvement II: combining our method with Yao's

The combined network recursively calls our truncation method or Yao's method, depending on which one uses fewer comparators

Outline

Oblivious Algorithms for Secure Computation

Oblivious Top-k Selection

3 Application: Secure *k*-NN Classification

④ Summary and Conclusion

Introduction to *k*-Nearest Neighbors (*k*-NN)

- Simple machine learning algorithm with broad applications
 - Web and image search, plagiarism detection, sports player recruitment, ...

Introduction to *k*-Nearest Neighbors (*k*-NN)

- Three-step method:
 - 1 Compute distance between target vector and d database vectors
 - 2 Find k closest database vectors and corresponding labels
 - 3 Class assignment is majority vote of these k labels

Secure *k*-NN threat model

- Client sends encrypted k-NN query to server
- Server returns encrypted classification result

Homomorphic realization of *k*-NN

- 1 Compute distance between target vector and d database vectors
 - Relatively cheap
- 2 Find k closest database vectors and corresponding labels
 - Top-k network built from comparators
 - Each comparator is realized with two bootstrappings
 - One bootstrapping for the minimum and maximum
 - One bootstrapping for the corresponding class labels

$$\begin{array}{ccc} (\mathsf{dist}_0,\mathsf{label}_0) & & & (\mathsf{dist}_i,\mathsf{label}_i) \\ (\mathsf{dist}_1,\mathsf{label}_1) & & & & (\mathsf{dist}_{1-i},\mathsf{label}_{1-i}) \end{array}$$

- Where $i = \arg\min(\mathsf{dist}_0, \mathsf{dist}_1)$
- 3 Class assignment is majority vote of these k labels

Performance for MNIST dataset

Implementation in tfhe-rs

		Comparators		Duration (s)		
k	d	[ZS21]	Ours	[ZS21]	Ours	Speedup
3	40	780	93	30	17.5	1.7×
	457	104196	1136	4248	202.3	21×
	1000	499500	2493	20837	441.1	47.2×
$\lfloor \sqrt{d} \rfloor$	40	780	143	33	28.1	1.2×
	457	104196	3412	4402	530.2	8.3×
	1000	499500	9121	21410	1252	17.1×

Outline

Oblivious Algorithms for Secure Computation

Oblivious Top-k Selection

3 Application: Secure *k*-NN Classification

4 Summary and Conclusion

Conclusion

- An oblivious Top-k algorithm that has complexity
 - $\mathcal{O}(d \log^2 k)$ in general
 - $\mathcal{O}(d\log k)$ for small $k \ll \sqrt{d}$
- \blacktriangleright Top-k is an important submodule for various applications
 - For secure k-NN, the Top-k network leads to $47 \times$ speedup compared to [ZS21]

Thank you for your attention!

ia.cr/2023/852

jiayi.kang@esat.kuleuven.be