
Cryptanalysis of a Zero-Knowledge Identification

Protocol of Eurocrypt ’95

Jean-Sébastien Coron and David Naccache

Gemplus Card International

34 rue Guynemer, 92447 Issy-les-Moulineaux, France

{jean-sebastien.coron, david.naccache}@gemplus.com

Abstract. We present a cryptanalysis of a zero-knowledge identification

protocol introduced by Naccache et al. at Eurocrypt ’95. Our cryptanaly-

sis enables a polynomial-time attacker to pass the identification protocol

with probability one, without knowing the private key.

Key Words: Zero-knowledge, Fiat-Shamir Identification Protocol.

1 Introduction

An identification protocol enables a verifier to check that a prover knows
the private key corresponding to a public key associated to its identity. A
protocol is zero-knowledge when the only additional information obtained
by the verifier is that the prover knows the corresponding private key [2].
A famous zero-knowledge identification protocol is Fiat-Shamir’s protocol
[1], which is provably secure assuming that factoring is hard. The protocol
requires performing multiplications modulo an RSA modulus.

A space-efficient variant of the Fiat-Shamir identification protocol was
introduced by Naccache [3] and by Shamir [5] at Eurocrypt’ 94. This
variant requires only a few bytes of RAM, even for an RSA modulus of
several thousands bits, and is provably as secure as the original Fiat-
Shamir protocol. This variant is particularly interesting when the prover
is implemented in a smart-card, in which the amount of RAM is very
limited.

However, the time complexity of the previous variant is still quadratic
in the modulus size, and its implementation on a low-cost smart-card
is likely to be inefficient. At Eurocrypt ’95, Naccache et al. introduced
another Fiat-Shamir variant [4]. It uses the same idea for reducing the
space-complexity, but the prover’s time complexity is now quasi-linear in
the modulus size (instead of being quadratic). As shown in [4], the new



identification protocol can be executed on a low-cost smart-card in less
than a second.

In this paper, we describe a cryptanalysis of one of [4]’s time-efficient
variants. Our cryptanalysis enables a polynomial-time attacker to pass the
identification protocol with probability one, without knowing the private
key. We would like to stress that the basic quasi-linear time protocol
introduced by [4] remains secure, since it is in fact equivalent to standard
Fiat-Shamir and hence to factoring.

2 The Fiat-Shamir Protocol

We briefly recall Fiat-Shamir’s identification protocol [1]. The objective
of the prover is to identify itself to any verifier, by proving knowledge of
a secret s corresponding to a public value v, which is associated to its
identity. The protocol is zero-knowledge in that it does not reveal any
additional information about s to the verifier. The security relies on the
hardness of factoring an RSA modulus.

Key generation: The authority generates a k-bit RSA modulus n = p·q,
and an integer v which is a function of the identity of the prover. Using
the factorization of n, it computes a square root s of v modulo n, i.e.

v = s2 mod n. The authority publishes (n, v) and sends s to the prover.

Identification protocol:

1. The prover generates a random x← Zn, and sends z = x2 mod n to
the verifier.

2. The verifier sends a random bit b to the prover.
3. If b = 0, the prover sends y = x to the verifier, otherwise it sends

y = x · s mod n.
4. The verifier checks that y2 = z · vb mod n.
5. Steps 1-4 are repeated several time to reduce the cheating probability.

3 The Space-Efficient Variant of Fiat-Shamir’s Protocol

Fiat-Shamir’s protocol requires to perform multiplications modulo an
RSA modulus n. It has a quadratic time and linear space complexity.
Therefore, the original protocol could not be implemented on low-cost
smart-cards, which in 1994 contained about 40 bytes of random access
memory (RAM). Naccache [3] and Shamir [5] introduced a space-efficient
variant which requires only a few bytes of RAM, even for an RSA modulus



of several thousands bits, and which is provably as secure as the original
Fiat-Shamir protocol.

The idea is the following: assume that the prover is required to com-
pute z = x · y mod n, where x and y are two large numbers which are
already stored in the smart-card (e.g., in its EEPROM1), or whose bytes
can be generated on the fly. Then instead of computing z = x · y mod n,
the prover computes

z′ = x · y + r · n

for a random r uniformly distributed in [0, B], for a fixed bound B. The
verifier can recover x ·y mod n by reducing z′ modulo n. Moreover, when
computing z′, the prover does not need to store the intermediate result
in RAM. Instead, the successive bytes of z′ can be sent out of the card
as soon as they are generated. Therefore, a smart-card implementation of
the prover needs only a few bytes of RAM (see [5] or [3] for more details).

As shown in [5], if B is sufficiently large, there is no loss of security
in sending z′ instead of z. Namely, from z one can generate z′′ = z + u ·n
where u is a random integer in [0, B]. Letting z = x · y − ω · n, we have:

z′′ = x · y + (u− ω) · n

Then, the statistical distance between the distributions induced by z′ and
z′′ is equal to the statistical distance between the uniform distribution in
[0, B] and the uniform distribution in [−ω,B−ω], which is equal to ω/B.
Then, assuming that x and y are both in [0, n], this gives ω ∈ [0, n], and
the previous statistical distance is lesser than n/B. Therefore, by taking
a B much larger than n (for example, B = 2k+80, where k is the bit-size
of n), the two distributions are statistically indistinguishable, and any
attack against the protocol using z′ would be as successful against the
protocol using z.

The identification protocol is then modified as follows:

Space-efficient Fiat-Shamir identification protocol:

1. The prover generates a random x← Zn and a random r ∈ [0, B], and
sends z = x2 + r · n to the verifier.

2. The verifier sends a random bit b to the prover.
3. If b = 0, the prover sends y = x to the verifier, otherwise it sends

y = x · s + t · n for a random t ∈ [0, B].

1 The smart-card EEPROM is a re-writable memory, but the operation of writing is

about one thousand time slower than writing into RAM, and can not be used to

store fast-changing intermediate data during the execution of an algorithm.



4. The verifier checks that y2 = z · vb mod n.
5. Steps 1-4 are repeated several time to reduce the cheating probability.

4 The Time-Efficient Variant of Fiat-Shamir’s protocol

The time complexity of the previous variant is still quadratic in the mod-
ulus size, and its implementation on a low-cost smart-card is likely to be
inefficient. At Eurocrypt ’95, Naccache et al. introduced yet another Fiat-
Shamir variant [4]. It uses the same idea as Shamir’s variant for reducing
the space-complexity, but the prover’s time complexity is now quasi-linear
in the modulus size (instead of being quadratic). As shown in [4], the iden-
tification protocol can then be executed on a low-cost smart-card in less
than a second.

The technique consists in representing the integers modulo a set of ℓ
small primes pi (usually, one takes the first ℓ primes). This is called the
Residue Number System (RNS) representation. Letting Π =

∏ℓ
i=1

pi, by
virtue of the Chinese Remainder Theorem, any integer 0 ≤ x < Π is
uniquely represented by the vector:

(x mod p1, . . . , x mod pℓ)

The advantage of this representation is that multiplication is of quasi-
linear complexity (instead of quadratic complexity): if x and y are rep-
resented by the vectors (x1, . . . , xℓ) and (y1, . . . , yℓ), then the product
z = x · y is represented by:

(x1 · y1 mod p1, . . . , xℓ · yℓ mod pℓ)

The size ℓ of the RNS representation is determined so that all integers
used in the protocol are strictly smaller than Π; the bijection between
an integer and its modular representation is then guaranteed by the Chi-
nese Remainder Theorem. The time-efficient variant of the Fiat-Shamir
protocol is the following:

Time-efficient variant of the Fiat-Shamir protocol:

1. The prover generates a random x ∈ [0, n] and a random r ∈ [0, B],
and sends z = x2 + r · n to the verifier. The integers x, r and z are
represented in RNS.

2. The verifier sends a random bit b to the prover.
3. If b = 0, the prover sends y = x to the verifier, otherwise it sends

y = x · s + t · n for a random t ∈ [0, B]. The integers x, s and t are
represented in RNS.



4. The verifier checks that y2 = z · vb mod n.
5. Steps 1-4 are repeated several time to reduce the cheating probability.

The only difference between this time-efficient variant and Shamir’s
space-efficient variant is that integers are represented in RNS. Therefore,
from a security standpoint, those variants are strictly equivalent.

However, another time-efficient variant is introduced in [4], whose goal
is to increase the efficiency of the verifier. The goal of this second variant
is to enable the verifier to check the prover’s answer in linear time when
b = 0. In this variant, when b = 0, the prover also reveals r, which enables
the verifier to check that z = x2 + r · n by performing the computation
in the RNS representation (the equality z = x2 + r · n is checked modulo
each of the primes pi), which takes quasi-linear time instead of quadratic
time. More precisely, this variant is the following:

Second Time-efficient Variant of the Fiat-Shamir Protocol:

1. The prover generates a random x ∈ [0, n] and a random r ∈ [0, B],
and sends z = x2 + r · n to the verifier. The integers x, r and z are
represented in RNS.

2. The verifier sends a random bit b to the prover.
3. If b = 0, the prover sends x and r to the verifier, in RNS representa-

tion. If b = 1, the prover sends y = x · s + t ·n for a random t ∈ [0, B],
where y is represented in RNS.

4. If b = 0, the verifier checks that z = x2 + r · n. The test is performed
in the RNS representation. If b = 1, the verifier checks that y2 = z · v
mod n.

5. Steps 1-4 are repeated several time to reduce the cheating probability.

This second time-efficient variant is more efficient for the verifier, be-
cause when b = 0, the check at step 3 is performed in RNS representation,
which is of quasi-linear complexity instead of quadratic complexity. There-
fore, the time-complexity of this second time-efficient variant is expected
to be divided by a factor of approximately two.

5 Cryptanalysis of the Second Time-Efficient Variant of

Eurocrypt ’95

We show that the second time-efficient variant is insecure. We describe an
attacker A that passes the identification protocol with probability one,
without knowing the private key s.



The key observation is the following: since for b = 0, the verifier checks
that z = x2 + r ·n in the RNS representation, the equality checked by the
verifier is actually:

z = x2 + r · n mod Π (1)

Since the attacker can choose x, r ∈ [0,Π] instead of x ∈ [0, n] and
r ∈ [0, B], we may have x2 + r · n > Π, and therefore equation (1)
does not necessarily imply that z = x2 + r · n holds over the integers
(or equivalently, that x is a square root of z modulo n). Therefore the
zero-knowledge security proof does not apply anymore, which leads to the
following attack:

Since Π is the product of small primes, it is easy to compute square
roots modulo Π, as opposed to computing square roots modulo n. There-
fore, the attacker can generate an integer z at step 1 so that he is guar-
anteed to succeed if b = 1. Then if b = 0, the attacker will also succeed
by computing a square root modulo Π, which is easy.

More precisely, at step 1, the attacker generates a random u ∈ Zn and
a random r′ ∈ [0, B], and sends z = (u2/v mod n) + r′ · n to the verifier.
Then at step 3, if b = 0, the attacker generates a random r ∈ [0,Π], and
solves:

x2 = z − r · n mod Π

Since Π is the product of small primes, it suffices to take a square root
of z− r · n modulo each of the small primes pi. If z − r · n is not a square
modulo a given prime pj, it suffices to modify the value of r mod pj

without changing r mod pi for i 6= j. This is possible since from the
protocol, r is not required to belong to [0, B]. Eventually the attacker
sends x and r to the verifier in RNS representation, and the attacker is
successful with probability one.

Otherwise, if b = 1, then the attacker sends y = u+ t ·n for a random
t ∈ [0, B], and the verifier can check that y2 = z ·v mod n since u2 = z ·v
mod n.

Therefore, in both cases, the attacker passes the identification protocol
with probability one, without knowing the private key.

6 Conclusion

We have shown that one of the time-efficient Fiat-Shamir variants in-
troduced at Eurocrypt’ 95 by Naccache et al. is insecure. Namely, a
polynomial-time attacker can pass the identification protocol with prob-
ability one, without knowing the private key. Consequently, for practical



implementations, we recommend to use [4]’s first time-efficient variant
rather than [4]’s second time-efficient variant, which should be avoided.
We believe that our attack illustrates the importance of careful security
analysis of even apparently harmless variations of known secure protocols

References

1. A. Fiat and A. Shamir, How to prove yourself: Practical solutions to identification

and signature problems, Proceedings of Crypto’ 86, LNCS vol. 263, 1986.

2. S. Goldwasser, S. Micali and C. Rackoff, The knowledge complexity of interactive

proof-systems, Proceedings of the 17th Annual ACM Symposium on Theory of

Computing, 291-304, 1985.

3. D. Naccache, Method, sender apparatus and receiver apparatus for modulo oper-

ation, European patent application no. 91402958.2, November 5, 1991.

4. D. Naccache, D. MRaihi, W. Wolfowicz and A. di Porto, Are Crypto-Accelrators

really inevitable ? 20 bit zero-knowledge in less than a second on simple 8-bit mi-

crocontrollers, Proceedings of Eurocrypt ’95, Lecture Notes in Computer Science,

Springer-Verlag.

5. A. Shamir, Memory efficient variants of public-key schems for smart-card applica-

tions, Proceedings of Eurocrypt ’94, Lecture Notes in Computer Science, Springer-

Verlag.


