
A New Algorithm for Switching from Arithmetic

to Boolean Masking

Jean-Sébastien Coron and Alexei Tchulkine

Gemplus Card International
34 rue Guynemer, 92447 Issy-les-Moulineaux, France

{jean-sebastien.coron, alexei.tchulkine}@gemplus.com

Abstract. To protect a cryptographic algorithm against Differential
Power Analysis, a general method consists in masking all intermediate
data with a random value. When a cryptographic algorithm combines
boolean operations with arithmetic operations, it is then necessary to
perform conversions between boolean masking and arithmetic masking.
A very efficient method was proposed by Louis Goubin in [6] to convert
from boolean masking to arithmetic masking. However, the method in
[6] for converting from arithmetic to boolean masking is less efficient. In
some implementations, this conversion can be a bottleneck. In this paper,
we propose an improved algorithm to convert from arithmetic masking
to boolean masking. Our method can be applied to encryption schemes
such as IDEA and RC6, and hashing algorithms such as SHA-1.

1 Introduction

The concept of Differential Power Analysis was introduced by Paul Kocher
and al. in 1998 [7, 8]. It consists in extracting information about the secret
key of a cryptographic algorithm, by studying the power consumption of
the electronic device during the execution of the algorithm. The attack
was first described on the DES encryption scheme, then extended to other
symmetrical cryptosystems such as the AES candidates [2], and also to
public-key cryptosystems [5, 11].

Subsequently, some countermeasures have been developed. In [3], Cha-
ri and al. proposed an approach which consists in splitting all the inter-
mediate variables into a given number of shares, so that the power leakage
of an individual share does not reveal any information to the attacker.
They show that the number of power curves needed to mount an attack
grows exponentially with the number of shares. A similar approach was
also proposed by Goubin and al. in [5]. The drawback of this approach is
that it greatly increases the computation time and the memory needed.
This is a crucial issue for constrained environments such as smart-cards.

Actually, when only two shares are used, this approach consists in
masking all intermediary data with a random. This technique was eval-
uated by Messerges in [10] for the five remaining AES candidates. For
algorithms that combine boolean and arithmetic operations, two different
kinds of masking must be used: boolean masking and arithmetic masking.
This is typically the case for encryption schemes such as IDEA [9] and
RC6 [12], and hashing algorithms such as SHA-1 [13]. It is therefore nec-
essary to perform conversions between boolean masking and arithmetic
masking. The conversion itself must also be resistant against Differential
Power Analysis. Messerges proposed in [10] an algorithm for converting
between boolean masking to arithmetic masking and conversely. How-
ever, it was shown in [4] that both conversions were vulnerable to a more
sophisticated Differential Power Analysis.

A new conversion algorithm was proposed by Goubin in [6]. In both
directions, the conversion algorithm is such that all intermediary variable
is randomly distributed; therefore, the conversion is provably resistant
to first order DPA, in which no attempt is made to correlate the power
consumption at different execution times. Moreover, the conversion from
boolean masking to arithmetic masking is very efficient. However, the
conversion from arithmetic masking to boolean masking is less efficient,
as it requires a number of operations linear in the bit-size of the data to
be masked. This conversion can be a bottleneck in some implementations.
In this paper, we propose a secure and efficient method to convert from
arithmetic masking to boolean masking.

2 Definitions

2.1 Boolean Masking and Arithmetic Masking

In this section we recall some basic definitions. We assume that the size
of all intermediate variables is k bits. A typical value for k is 32 bits, as
for SHA-1 and MD-5. The masking technique introduced in [3] consists
in splitting each intermediate data that appears in the cryptographic
algorithm. Then, an attacker must analyze multiple point distributions,
which requires a number of power curves exponential in the number of
shares. As in [10], we apply this technique with two shares. For algorithms
that combine boolean and arithmetic functions, two different kinds of
masking have to be used :

Definition 1. We say that a data x has a boolean masking when x is

written as x = x′ ⊕ r where r is uniformly distributed.

For example, assume that given x1, x2, we must compute x3 = x1⊕x2

in a secure way. Then from the masked values x′

1 and x′

2, such that x1 =
x′

1 ⊕ r1 and x2 = x′

2 ⊕ r2, we compute the two shares x′

3 = x′

1 ⊕ x′

2 and
r3 = r1 ⊕ r2, so that x3 = x′

3 ⊕ r3. Each intermediary variable is then
uniformly distributed, and the procedure is resistant against first order
DPA.

Definition 2. We say that a data x has an arithmetic masking when x

is written as x = A + r mod 2k where k is the size of the register and r

is uniformly distributed.

For example, assume that given x1, x2, we must compute x3 = x1+x2

in a secure way. Then from the masked values x′

1 and x′

2, such that x1 =
x′

1 + r1 and x2 = x′

2 + r2, we compute the two shares x′

3 = x′

1 + x′

2 and
r3 = r1 + r2, so that x3 = x′

3 + r3.

For algorithms that combine boolean operations and arithmetic oper-
ations, it is therefore necessary to provide a secure conversion algorithms
in both directions.

2.2 From Boolean Masking to Arithmetic Masking

A very efficient method for converting from boolean masking to arithmetic
masking is given in [6]. It requires a number of elementary operations
which is independent from the k, the data bit-size. The method is based
on the fact that for all x′ the function

fx′(r) = (x′ ⊕ r)− r

is affine in r, which means that for all x′, r1, r2,

fx′(r1 ⊕ r2) = fx′(r1)⊕ fx′(r2)⊕ x′

Therefore, given x′, r such that x = x′ ⊕ r, we generate a random k-bit
integer r1, and we can compute A = x− r mod 2k as:

A = fx′(r) = fx′((r1 ⊕ r)⊕ r1) = fx′(r1 ⊕ r)⊕ (fx′(r1)⊕ x′)

Since r1 and r1⊕ r have the uniform distribution, the conversion is resis-
tant against DPA. We refer to [6] for the proof that f is affine and for a
detailed description of the algorithm.

2.3 From Arithmetic to Boolean Masking

Louis Goubin proposed in [6] a method for converting from arithmetic
to boolean masking, but the method is less efficient than from boolean
to arithmetic. In particular, it requires a number of operations linear in
the size of the registers; namely for a k-bit register, the number of k-bit
operations is 5k + 5.

3 Our Conversion Algorithm

We propose a new conversion algorithm from arithmetic to boolean mask-
ing which is generally more efficient than Goubin’s method. Our method
is based on pre-computed tables. First, we describe our method for small
register size k (typically, k = 4).

3.1 Conversion with Small Register Size

The algorithm uses a pre-computed table G of 2k variables of k bits.

Algorithm 1: table G generation.
Output: a table G and a random r.

1. Generate a random k-bit r.
2. For A = 0 to 2k − 1 do

G[A]← (A + r)⊕ r

3. Output G and r.

Using this table, it is easy to convert from arithmetic to boolean mask-
ing:

Algorithm 2: conversion from arithmetic to boolean masking.
Input: (A, r), such that x = A + r.
Output: (x′, r), such that x = x′ ⊕ r.

1. Return x′ = G[A].

It is clear that the algorithm is resistant to first-order DPA, as all in-
termediary variables have the uniform distribution. In the following table,
we compare our algorithm with Goubin’s algorithm. The pre-computation
time and conversion time is measured in number of k-bit operations.

Algorithm 2 Goubin’s method

Pre-computation time 2k+1 0

Conversion time 1 5k + 5

Table size 2k 0

The pre-computation time and memory required is the main limitation
for algorithm 2, which is only feasible for conversion with small sizes, such
as for example k = 4 or k = 8 bits. However, the table has to be computed
only once for each new execution of the cryptographic algorithm; any
subsequent conversion will require only one operation, instead of 5k+5 for
Goubin’s method. Therefore, algorithm 2 will be more efficient when the
number n of conversion during the execution of a cryptographic algorithm
is greater than:

n >
2k+1

5k + 4

In this case, our method will be faster with a factor:

n · (5k + 5)

2k+1 + n

For example, with k = 8 bits variable size, and n = 24 conversions,
algorithm 2 is roughly two times faster than Goubin’s method.

3.2 Conversion for ℓ · k-bit Variables using two k-bit Tables

In this section, we show how to extend the previous algorithm in order
to perform conversions for larger sizes. We consider variables of size ℓ · k
bits, and we use 2 tables with 2k variables each. For example, for 32 bit
conversions, we can take ℓ = 8 and k = 4.

The idea of the algorithm is the following. We receive as input two
ℓ · k-bit variables A and R, such that x = A + R mod 2ℓ·k. Our goal is
to obtain x′ such that x = x′ ⊕R, in such a way that every intermediary
variable has the uniform distribution. Let split R into R1‖R2, with R1

of size (ℓ− 1) · k bits, and R2 of size k bits. Then, given a random k-bit
integer r, we let

A← (A− r) + R2 mod 2ℓk

Splitting A into A1‖A2, where A1 is of size (ℓ− 1) · k bits, we now have:

x = (A1‖A2) + (R1‖r) mod 2ℓk

Then, if A2 + r ≥ 2k, we let A1 ← A1 +1 mod 2(ℓ−1)k. This is equivalent
to computing the carry from the addition A2 + r and then adding this
carry to A1. Then, splitting x into x1‖x2, where x1 is of size (ℓ − 1) · k
bits, we have:

x1 = A1 + R1 mod 2(ℓ−1)k and x2 = A2 + r mod 2k

Then we can use the table G generated by algorithm 2 to convert x2 from
arithmetic masking to boolean masking. More precisely, we let x′

2 ←
G[A2], which gives:

x2 = x′

2 ⊕ r

Then we let x′

2 ← (x′

2 ⊕R2)⊕ r so that:

x2 = x′

2 ⊕R2

Then we apply the same method recursively to (A1, R1) in order to obtain
x′

1 such that x1 = x′

1 ⊕R1, so that letting x′ = x′

1‖x
′

2, we have:

x = x′ ⊕R

as required.

Actually, we can not compute the carry from A2 + r directly, because
this would leak some information about x. Instead, we use a randomized
carry table C, computed in the following way:

Algorithm 3: carry table C generation.
Input: a random r of k bits.
Output: a table C and a random γ of k bits.

1. Generate a random k-bit γ.
2. For A = 0 to 2k − 1 do

C[A]←

{

γ, if A + r < 2k

γ + 1 mod 2k, if A + r ≥ 2k

3. Output C and γ.

Then, instead of testing if A2 + r ≥ 2k, we let:

A1 ← A1 + C[A2]− γ mod 2(ℓ−1)k

This gives the following conversion algorithm, based on the pre-computed
tables G and C of algorithms 1 and 3:

Algorithm 4: Conversion with ℓ · k bit variable:
Input: (A,R), such that x = A + R, and r, γ generated from algorithms
1 and 3.
Output: x′, such that x = x′ ⊕R.

1. A← A− r mod 2ℓk.

2. Let denote R = R1‖R2, where R1 is of size (ℓ− 1)k bits.

3. Let A← A + R2 mod 2ℓk

4. If ℓ = 1, then let x′ ← G[A] ⊕R2, then x′ ← x′ ⊕ r and return x′.

5. Otherwise, let A = A1‖A2

6. Let A1 ← A1 + C[A2] mod 2(ℓ−1)k

7. Let A1 ← A1 − γ mod 2(ℓ−1)k

8. Let x′

2 ← G[A2]⊕R2.

9. Let x′

2 ← x′

2 ⊕ r.

10. Apply algorithm 4 recursively with (A1, R1) to obtain x′

1.

11. Return x′ = x′

1‖x
′

2

As previously, this conversion method is resistant to first-order DPA,
because all intermediary variables have the uniform distribution. We want
to compare the efficiency of our method with Goubin’s method. The draw-
back of our method is that we need to pre-compute two tables of 2k values.
The advantage of our method is that some computation is done on small
k-bits variables, whereas Goubin’s method always works with full ℓ ·k bits
variables. Therefore, we must take into account the register size of the
micro-processor. Our method is likely to be more advantageous on a 8-
bit microprocessor, which is now the most common smart-card platform,
than on a 32-bit microprocessor.

To make a practical comparison, we take k = 4, and we distinguish
two kinds of microprocessor: 8-bit and 32-bit, and two variable sizes: 8-
bits and 32-bits. We take k = 4 because the method is easier to implement
for for this value of k, but a better trade-off may be possible. We assume
that an elementary operation on a 32 bit variables requires 4 elementary
operations on a 8 bit microprocessor. For example, Goubin’s method on
32-bit variables on a 8 bit microprocessor will require 4 · (5 ·32+5) = 660
operations. More generally, we denote by Ti,j (resp. Gi,j) our method
(resp. Goubin’s method) for i-bit variables with a j-bit microprocessor.
The following table summarizes the number of steps in all possible cases:

T8,8 T8,32 T32,8 T32,32 G8,8 G8,32 G32,8 G32,32

Pre-computation time 64 64 64 64 0 0 0 0

Conversion time 10 10 76 40 45 45 660 165

Table size 32 32 32 32 0 0 0 0

As previously, the efficiency improvement depends on how frequently
we re-compute the randomized tables. If we compute the randomized ta-
bles only once at the beginning of the cryptographic algorithm, then our
method will always be more efficient if there are at least two subsequent
conversions. But if we choose to re-compute the tables before each conver-
sion, then Goubin’s method is more efficient for 8-bit variables, whereas
our method is more efficient for 32-bit variables. Our method is particu-
larly advantageous for 32-bit conversions on a 8-bit microprocessor: our
method (64+76 operations) is then 4.7 times faster than Goubin’s method
(660 operations).

4 Application to SHA-1

4.1 Overview of SHA-1

SHA-1 is a hash function introduced by the American National Institute
for Standards and Technology [13] in 1995. The description of SHA-1
consists of a general iteration procedure based on a compression function

F : {0, 1}512 × {0, 1}160 → {0, 1}160

In the following we give a very general overview of the algorithm (see [13]
for details).

General iteration procedure:

1. Pad the message, so that its length is a multiple of the size of the
compression function, that is 512 bits.

2. Initialize the five 32-bit chaining variables A,B,C,D,E with a given
IV value.

3. For each message block M of 512 bits, let

(A,B,C,D,E) ← F (M, (A,B,C,D,E)) + (A,B,C,D,E)

where F is the compression function.
4. Output the hash value A‖B‖C‖D‖E.

Compression function F :

1. Expand the 512-bit message block M into 80 words Mi of 32 bits.

2. For i = 0 to 79 do:

(A,B,C,D,E)← (Mi + rot5(A) + fi(B,C,D) + E + Ki,

A, rot30(B), C,D)

where rotj denotes left rotation by j bits, Ki are constants and:

fi(X,Y,Z) = (X&Y)|(¬X&Z), 0 ≤ i ≤ 19
fi(X,Y,Z) = X ⊕ Y ⊕ Z, 20 ≤ i ≤ 39, 60 ≤ i ≤ 79
fi(X,Y,Z) = (X&Y)|(X&Z)|(Y &Z), 40 ≤ i ≤ 59

We see that SHA-1 combines boolean operations with arithmetic op-
erations.

4.2 Motivation

The SHA-1 hash function can be used for MAC algorithms, for example:

MACK(x) = SHA-1(K1‖x‖K2)

or for the HMAC [1] nested construction:

HMACK(x) = SHA-1(K2‖SHA-1(x‖K1))

where K = K1‖K2 is a secret-key. In this case, the implementation of
SHA-1 has to be made resistant against DPA, otherwise a straightforward
DPA attack would recover the secret-key K.

4.3 Implementation Result

In the following, we estimate the number of elementary operations which
are required to have an implementation of SHA-1 resistant against DPA.
Without DPA countermeasure, each of the 80 steps in the compression
function requires roughly 15 elementary 32-bit operations. The DPA coun-
termeasure requires to split each variable into 2 shares; this leads to 30
elementary operations. Moreover, assuming that A,B,C,D and E have
initially a boolean masking, we need to convert fi(B,C,D), rot5(A) and E

into arithmetic masking, then the sum Mi+rot5(A)+fi(B,C,D)+E+Ki

back to boolean masking. This gives 3 boolean to arithmetic conversions,

each requiring 7 operations using [6], and one arithmetic to boolean con-
version. Therefore, each step requires 51 elementary operations on 32-bit
variables (or 204 operations on 8-bit variables)1, together with one arith-
metic to boolean conversion.

In the following table, we compare the efficiency of an implementation
of SHA-1 resistant against DPA, using our arithmetic to boolean conver-
sion method, and using Goubin’s method, for 8-bit and 32-bit micro-
processor. The time is measured in number of elementary operations for
each of the 80 steps of the compression function. For our arithmetic to
boolean conversion, we re-compute the randomized tables before each
new conversion. This means that using our method, a 32-bit arithmetic
to boolean conversion takes 140 elementary operations on a 8-bit micro-
processor, and 104 operations on a 32-bit microprocessor.

8-bit micro 32-bit micro

Our method 344 155

Goubin’s method 864 216

5 Conclusion

We have described a new conversion algorithm from arithmetic to boolean
masking, which is generally more efficient than Goubin’s algorithm. Our
new algorithm is particularly interesting for 32-bit conversions on a 8-
bit microprocessor. For example, for SHA-1 hash function, the previous
table shows that an implementation secure against DPA will be roughly
2.7 times faster using our method than using Goubin’s method.

References

1. M. Bellare, R. Canetti, and H. Krawczyk, Keying hash functions for message au-
thentication, Advances in Cryptology - Crypto 96 Proceedings, Lecture Notes in
Computer Science Vol. 1109, N. Koblitz ed, Springer-Verlag, 1996.

2. Suresh Chari, Charantjit S. Jutla, Josyula R. Rao and Pankaj Rohatgi, A Cautio-
nary Note Regarding Evaluation of AES Candidates on Smart-Cards, in Procee-
dings of the Second Advanced Encryption Standard (AES) Candidate Conference,
http://csrc.nist.gov/encryption/aes/round1/Conf2/aes2conf.htm, March 1999.

3. Suresh Chari, Charantjit S. Jutla, Josyula R. Rao and Pankaj Rohatgi, Towards
Sound Approaches to Counteract Power-Analysis Attacks, in Proceedings of Ad-
vances in Cryptology – CRYPTO’99, Springer-Verlag, 1999, pp. 398-412.

1 As previously, we assume that a 32-bit operation on a 8-bit micro-processor requires
4 elementary operations.

4. Jean-Sebastien Coron and Louis Goubin, On Boolean and Arithmetic Masking
against Differential Power Analysis, Proceedings of CHES 2000, LNCS 1965, pp.
231-237, Springer.

5. Louis Goubin and Jacques Patarin, DES and Differential Power Analysis – The
Duplication Method, in Proceedings of CHES 99, Springer-Verlag, August 1999, pp.
158-172.

6. Louis Goubin, A Sound Method for Switching between Boolean and Arithmetic
Masking, proceedings of CHES 2001, LNCS 2162,pp. 3-15, Springer.

7. Paul Kocher, Joshua Jaffe and Benjamin Jun, Introduction to Differential Power
Analysis and Related Attacks, available at www.cryptography.com/dpa/technical,
1998.

8. Paul Kocher, Joshua Jaffe and Benjamin Jun, Differential Power Analysis, in Pro-
ceedings of Advances in Cryptology – CRYPTO’99, Springer-Verlag, 1999, pp. 388-
397.

9. X. Lai and J. Massey, A Proposal for a New Block Encryption Standard, in Advances
in Cryptology - EUROCRYPT ’90 Proceedings, Springer-Verlag, 1991, pp. 389-404.

10. Thomas S. Messerges, Securing the AES Finalists Against Power Analysis Attacks,
in Proceedings of FSE 2000, Springer-Verlag, April 2000.

11. Thomas S. Messerges, Ezzy A. Dabbish and Robert H. Sloan, “Power Analysis
Attacks of Modular Exponentiation in Smartcards”, in Proceedings of Workshop on
Cryptographic Hardware and Embedded Systems, Springer-Verlag, August 1999, pp.
144-157.

12. R.L. Rivest, M.J.B. Robshaw, R. Sidney and Y.L. Yin, The RC6 Block Cipher,
v1.1, August 20, 1998.

13. FIPS PUB 180-1, Secure Hash Standard, U.S. department of commerce/National
Institute of Standards and Technology

