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omAbstra
t. A 
ommon pra
ti
e to en
rypt with RSA is to �rst apply a padding s
hemeto the message and then to exponentiate the result with the publi
 exponent; an exampleof this is OAEP. Similarly, the usual way of signing with RSA is to apply some paddings
heme and then to exponentiate the result with the private exponent, as for examplein PSS. Usually, the RSA modulus used for en
rypting is di�erent from the one usedfor signing. The goal of this paper is to simplify this 
ommon setting. First, we showthat PSS 
an also be used for en
ryption, and gives an en
ryption s
heme semanti
allyse
ure against adaptive 
hosen-
iphertext atta
ks, in the random ora
le model. As aresult, PSS 
an be used indi�erently for en
ryption or signature. Moreover, we showthat PSS allows to safely use the same RSA key-pairs for both en
ryption and signature,in a 
on
urrent manner. More generally, we show that using PSS the same set of keys
an be used for both en
ryption and signature for any trapdoor partial-domain one-way permutation. The pra
ti
al 
onsequen
es of our result are important: PKIs andpubli
-key implementations 
an be signi�
antly simpli�ed.Key-words: Probabilisti
 Signature S
heme, Provable Se
urity.1 Introdu
tionA very 
ommon pra
ti
e for en
rypting a message m with RSA is to �rst apply apadding s
heme �, then raise �(m) to the publi
 exponent e. The 
iphertext 
 is then:
 = �(m)e mod NSimilarly, for signing a message m, the 
ommon pra
ti
e 
onsists again in �rstapplying a padding s
heme �0 then raising �0(m) to the private exponent d. Thesignature s is then: s = �0(m)d mod NFor various reasons, it would be desirable to use the same padding s
heme �(m)for en
ryption and for signature: in this 
ase, only one padding s
heme needs to beimplemented. Of 
ourse, the resulting padding s
heme �(m) should be provably se
urefor en
ryption and for signing. We say that a padding s
heme is universal if it satis�esthis property.The strongest publi
-key en
ryption se
urity notion was de�ned in [16℄ as indis-tinguishability under an adaptive 
hosen 
iphertext atta
k. An adversary should notbe able to distinguish between the en
ryption of two plaintexts, even if he 
an obtainthe de
ryption of 
iphertexts of his 
hoi
e. For digital signature s
hemes, the strongestse
urity notion was de�ned by Goldwasser, Mi
ali and Rivest in [11℄, as existentialunforgeability under an adaptive 
hosen message atta
k. This notion 
aptures the



2property that an adversary 
annot produ
e a valid signature, even after obtaining thesignature of (polynomially many) messages of his 
hoi
e.In this paper, we show that the padding s
heme PSS [4℄, whi
h is originally a prov-ably se
ure padding s
heme for produ
ing signatures, 
an also be used as a provablyse
ure en
ryption s
heme. More pre
isely, we show that PSS o�ers indistinguishabil-ity under an adaptive 
hosen 
iphertext atta
k, in the random ora
le model, underthe partial-domain one-wayness of the underlying permutation. Partial-domain one-wayness, introdu
ed in [10℄, is a formally stronger assumption than one-wayness. How-ever, for RSA, partial-domain one-wayness is equivalent to (full domain) one-waynessand therefore RSA-PSS en
ryption is provably se
ure under the sole assumption thatRSA is one-way.Generally, in a given appli
ation, the RSA modulus used for en
rypting is di�erentfrom the RSA modulus used for signing; our setting (and real-world PKIs) wouldbe further simpli�ed if one 
ould use the same set of keys for both en
ryption andsignature (see [12℄). In this paper, we show that using PSS, the same keys 
an besafely used for en
ryption and for signature.2 Publi
-Key En
ryptionA publi
-key en
ryption s
heme is a triple of algorithms (K; E ;D) where:- K is a probabilisti
 key generation algorithm whi
h returns random pairs of publi
and se
ret keys (pk ; sk) depending on some se
urity parameter k,- E is a probabilisti
 en
ryption algorithm whi
h takes as input a publi
 key pkand a plaintext M 2M, runs on a random tape r 2 R and returns a 
iphertext 
.Mand R stand for spa
es in whi
h messages and random strings are 
hosen respe
tively,- D is a deterministi
 de
ryption algorithm whi
h, given as input a se
ret key skand a 
iphertext 
, returns the 
orresponding plaintext M , or Reje
t.The strongest se
urity notion for publi
-key en
ryption is the aforementioned no-tion of indistinguishability under an adaptive 
hosen 
iphertext atta
k. An adversaryshould not be able to distinguish between the en
ryption of two plaintexts, even ifhe 
an obtain the de
ryption of 
iphertexts of his 
hoi
e. The atta
k s
enario is thefollowing:1. The adversary A re
eives the publi
 key pk with (pk ; sk) K(1�).2. A makes de
ryption queries for 
iphertexts y of his 
hoi
e.3. A 
hooses two messagesM0 andM1 of identi
al length, and re
eives the en
ryption
 of Mb for a random unknown bit b.4. A 
ontinues to make de
ryption queries. The only restri
tion is that the adversary
annot request the de
ryption of 
.5. A outputs a bit b0, representing its \guess" on b.The adversary's advantage is then de�ned as:Adv(A) = j2 � Pr[b0 = b℄� 1jAn en
ryption s
heme is said to be se
ure against adaptive 
hosen 
iphertext atta
k(and denoted IND-CCA2) if the advantage of any polynomial-time bounded adversaryis a negligible fun
tion of the se
urity parameter. Usually, s
hemes are proven to be



3IND-CCA2 se
ure by exhibiting a polynomial redu
tion: if some adversary 
an break theIND-CCA2 se
urity of the system, then the same adversary 
an be invoked (polynomiallymany times) to solve a related hard problem.The random ora
le model, introdu
ed by Bellare and Rogaway in [2℄, is a theoreti-
al framework in whi
h any hash fun
tion is seen as an ora
le whi
h outputs a randomvalue for ea
h new query. A
tually, a se
urity proof in the random ora
le model doesnot ne
essarily imply that a s
heme is se
ure in the real world (see [7℄). Nevertheless,it seems to be a good engineering prin
iple to design a s
heme so that it is provably se-
ure in the random ora
le model. Many en
ryption and signature s
hemes were provento be se
ure in the random ora
le model.3 En
rypting with PSS-RIn this se
tion we prove that given any trapdoor partially one-way permutation f ,the en
ryption s
heme de�ned by �rst applying PSS with message re
overy (denotedPSS-R) and en
rypting the result with f a
hieves the strongest se
urity level for anen
ryption s
heme, in the random ora
le model.3.1 The PSS-R Padding S
hemePSS-R, de�ned in [4℄, is parameterized by the integers k, k0 and k1 and uses two hashfun
tions: H : f0; 1gk�k1 ! f0; 1gk1 and G : f0; 1gk1 ! f0; 1gk�k1PSS-R takes as input a (k � k0 � k1)-bit message M and a k0-bit random integer r.As illustrated in �gure 1, PSS-R outputs:�(M; r) = !jjswhere k stands for 
on
atenation, ! = H(M jjr) and s = G(!)� (Mkr). A
tually, in[4℄, Mkr is used as the argument to H and rkM is used as the mask to xor with G(!).Here for simpli
ity we use Mkr in both pla
es, but the same results apply either way.MkrH G! sFig. 1. The PSS-R padding s
heme



43.2 The PSS-E En
ryption S
hemeThe new en
ryption s
heme (K; E ;D), that we denote PSS-E, is based on � and ak-bit trapdoor permutation f .- K generates the publi
 key f and the se
ret key f�1.- E(M; r): given a message M 2 f0; 1gk�k0�k1 and a random r 2 f0; 1gk0 , theen
ryption algorithm outputs the 
iphertext:
 = f(�(M; r))-D(
): the de
ryption algorithm re
overs (!; s) = f�1(
) and thenMkr = G(!)�s.If ! = H(M jjr), the algorithm returns M , otherwise it returns Reje
t.3.3 The Underlying ProblemThe se
urity of PSS-E is based on the diÆ
ulty of inverting f without knowing f�1.As in [10℄, we use two additional related problems: the partial-domain one-waynessand the set partial-domain one-wayness of f :- (�; ")-one-wayness of f , means that for any adversary A who wishes to re-
over the full pre-image (!; s) of f(!; s) in time less than � , A's su

ess probabilitySu

ow(A) is upper-bounded by ":Su

ow(A) = Pr!;s[A(f(!; s)) = (!; s)℄ < "- (�; ")-partial-domain one-wayness of f , means that for any adversary A whowishes to re
over the partial pre-image ! of f(!; s) in time less than � , A's su

essprobability Su

pd�ow(A) is upper-bounded by ":Su

pd�ow(A) = Pr!;s[A(f(!; s)) = !℄ < "- (`; �; ")-set partial-domain one-wayness of f , means that for any adversaryA who wishes to output a set of ` elements whi
h 
ontains the partial pre-image ! off(!; s), in time less than � , A's su

ess probability Su

s�pd�ow(A) is upper-boundedby ": Su

s�pd�ow(A) = Pr!;s[! 2 A(f(!; s))℄ < "As in [10℄, we denote by Su

ow(�), (resp. Su

pd�ow(�) and Su

s�pd�ow(`; �)) themaximal probability Su

ow(A), (resp. Su

pd�ow(A) and Su

s�pd�ow(A)), over alladversaries whose running times are less than � . For any � and ` � 1, we have:Su

s�pd�ow(`; �) � Su

pd�ow(�) � Su

ow(�)Moreover, by randomly sele
ting any element in the set returned by the adversaryagainst the set partial-domain one-wayness, one 
an break the partial-domain one-wayness with probability 1=`, whi
h gives:Su

pd�ow(�) � Su

s�pd�ow(`; �)=` (1)We will see in Se
tion 5 that for RSA, the three problems are polynomially equivalent.



53.4 Se
urity of PSS-EThe following theorem shows that PSS-E is semanti
ally se
ure under adaptive 
ho-sen 
iphertext atta
ks, in the random ora
le model, assuming that the underlyingpermutation is partially one-way.Theorem 1. Let A be a CCA2-adversary against the semanti
 se
urity of PSS-E(K; E ;D), with advantage " and running time t, making qD, qH and qG queries to thede
ryption ora
le and the hash fun
tions H and G, respe
tively. Then:Su

pd�ow(t0) � 1qH + qG � �"� qH2�k0 � qD2�k1�where t0 � t+ qH � Tf , and Tf denotes the time 
omplexity of f .The theorem follows from inequality (1) and the following lemma:Lemma 1. Using the notations introdu
ed in theorem 1, we have:Su

s�pd�ow(qH + qG; t0) � "� qH � 2�k0 � qD � 2�k1 (2)Proof. We des
ribe a redu
tion B whi
h using A, 
onstru
ts an adversary againstthe set partial-domain one-wayness of f . We start with a top-level des
ription of theredu
tion and then show how to simulate the random ora
les G, H and the de
ryptionora
le D. Eventually we 
ompute the su

ess probability of B.Top-level des
ription of the redu
tion B:1. B is given a fun
tion f and 
� = f(!�; s�), for a random !� and s�. B's goal isto output a list whi
h 
ontains the partial pre-image !� of 
�.2. B runs A with f and gets fM0;M1g. It 
hooses a random bit b and gives 
� as a
iphertext for Mb. B simulates the de
ryption ora
le H, D and G as des
ribed below.3. B re
eives from A the answer b0 and outputs the list of queries asked to G.Simulation of the random ora
les G, H and D.The simulation of G and H is very simple: a random answer is returned for ea
hnew query of G and H. Moreover, when ! is the answer of a query to H, we simulatea query for ! to G, so that G(!) is de�ned.On query 
 to the de
ryption ora
le, the redu
tion B looks at ea
h query M 0jjr0to H and 
omputes: !0 = H(M 0jjr0) and s0 = G(!0)� (M 0kr0)Then if 
 = f(!0; s0) the redu
tion B returns M 0. Otherwise, the redu
tion outputsReje
t.Analysis:Sin
e 
� = f(!�; s�) is the 
iphertext 
orresponding to Mb, we have the following
onstraint for the random ora
les G and H:H(Mbkr�) = !� and G(!�) = s� � (Mbkr�) (3)We denote by AskG the event: \!� has been asked to G" and by AskH the event:\there exists M 0 su
h that M 0jjr� has been queried to H".



6 If !� was never queried to G, then G(!�) is unde�ned and r� is then a uniformlydistributed random variable. Therefore the probability that there exists M 0 su
h that(M 0; r�) has been asked to H is at most qH � 2�k0 . This gives:Pr[AskHj:AskG℄ � qH � 2�k0 (4)Our simulation of D 
an only fail by reje
ting a valid 
iphertext. We denote byDBad this event. Letting 
 = f(!; s) be the 
iphertext queried to D andMkr = G(!)� swe reje
t a valid 
iphertext if H(M jjr) = ! while M jjr was never queried to H.However, if Mkr was never queried to H, then H(Mkr) is randomly de�ned. Namelyif the de
ryption query o

ured before 
� was sent to the adversary, then 
onstraint (3)does not apply and H(Mkr) is randomly de�ned. Otherwise, if the de
ryption queryo

ured after 
� was sent to the adversary, then 
 6= 
� implies (M; r) 6= (Mb; r�) andH(Mkr) is still randomly de�ned. In both 
ases the probability that H(M; r) = ! isthen 2�k1 , whi
h gives: Pr[DBad℄ � qD � 2�k1 (5)Let us denote by Bad the event: \!� has been queried to G or (M 0; r�) has beenqueried to H for some M 0 or the simulation of D has failed". Formally:Bad = AskG _ AskH _ DBad (6)Let us denote by S the event: \the adversary outputs the 
orre
t value for b, i.e.,b = b0". Conditioned on :Bad, our simulations of G;H and D are independent of b,and therefore A's view is independent of b as well. This gives:Pr[Sj:Bad℄ = 12 (7)Moreover, 
onditioned on :Bad, the adversary's view is the same as when intera
tingwith (perfe
t) random and de
ryption ora
les, whi
h gives:Pr[S ^ :Bad℄ � 12 + "2 � Pr[Bad℄ (8)From (7) we obtainPr[S ^ :Bad℄ = Pr[Sj:Bad℄ � Pr[:Bad℄ = 12(1� Pr[Bad℄)whi
h gives using (8): Pr[Bad℄ � " (9)From (6) we have:Pr[Bad℄ � Pr[AskG _ AskH℄ + Pr[DBad℄� Pr[AskG℄ + Pr[AskH ^ :AskG℄ + Pr[DBad℄� Pr[AskG℄ + Pr[AskHj:AskG℄ + Pr[DBad℄whi
h yields using (4), (5) and (9):Pr[AskG℄ � "� qH � 2�k0 � qD � 2�k1and hen
e (2) holds. This terminates the proof of lemma 1. ut



74 Signing and En
rypting with the same Publi
-KeyIn this se
tion we show that when using PSS, the same publi
 key 
an be used foren
ryption and signature in a 
on
urrent manner. For RSA, this means that the samepair (N; e) 
an be used for both operations. In other words, when Ali
e sends a messageto Bob, she en
rypts it using Bob's publi
 key (N; e); Bob de
rypts it using the
orresponding private key (N; d). To sign a message M , Bob will use the same privatekey (N; d). As usual, anybody 
an verify Bob's signature using his publi
 pair (N; e).Although provably se
ure (as we will see hereafter), this is 
ontrary to the folklorere
ommendation that signature and en
ryption keys should be distin
t. This re
om-mendation may prove useful is some 
ases; this is parti
ularly true when a 
aw hasbeen found in the en
ryption s
heme or in the signature s
heme. In our 
ase, we willprove that when using the PSS-R padding s
heme, a de
ryption ora
le does not helpthe atta
ker in forging signatures, and a signing ora
le does not help the atta
ker ingaining information about the plaintext 
orresponding to a 
iphertext.Nevertheless, we advise to be very 
areful when implementing systems using thesame keys for en
rypting and signing. For example, if there are some implementationerrors in a de
ryption server (see for example [14℄), then an atta
ker 
ould use thisserver to 
reate forgeries.4.1 Signature S
hemes and their Se
urityDe�nition 1 (signature s
heme). A signature s
heme (Gen; Sign; Verify) is de-�ned as follows:- The key generation algorithm Gen is a probabilisti
 algorithm whi
h given 1k,outputs a pair of mat
hing publi
 and private keys, (pk; sk).- The signing algorithm Sign takes the message M to be signed, the publi
 key pkand the private key sk, and returns a signature x = Signsk(M). The signing algorithmmay be probabilisti
.- The veri�
ation algorithm Verify takes a message M , a 
andidate signature x0and pk. It returns a bit Verifypk(M;x0), equal to one if the signature is a

epted, andzero otherwise. We require that if x Signsk(M), then Verifypk(M;x) = 1.In the existential unforgeability under an adaptive 
hosen message atta
k s
enario,the forger 
an dynami
ally obtain signatures of messages of his 
hoi
e and attemptsto output a valid forgery. A valid forgery is a message/signature pair (M;x) su
h thatVerifypk(M;x) = 1 whereas the signature of M was never requested by the forger.4.2 The PSS-ES En
ryption and Signature S
hemeThe PSS-ES en
ryption and signature s
heme (K; E ;D;S;V) is based on PSS-R anda k-bit trapdoor permutation f . As for the PSS-R signature s
heme, the signatures
heme in PSS-ES is with message re
overy: this means that the message is re
overedwhen verifying the signature. In this 
ase, only messages of �xed length k�k0�k1 
anbe signed. To sign messages M of arbitrary length, it suÆ
es to apply a 
ollision-freehash fun
tion to M prior to signing.- K generates the publi
 key f and the se
ret key f�1.



8 - E(M; r): given a message M 2 f0; 1gk�k0�k1 and a random value r 2 f0; 1gk0 ,the en
ryption algorithm 
omputes the 
iphertext:
 = f(�(M; r))- D(
): the en
ryption algorithm re
overs (!; s) = f�1(
) and 
omputesMkr = G(!)� sIf ! = H(M jjr), the algorithm returns M , otherwise it returns Reje
t.- S(M; r): given a message M 2 f0; 1gk�k0�k1 and a random value r 2 f0; 1gk0 ,the signing algorithm 
omputes the signature:� = f�1(�(M; r))- V(�): given the signature �, the veri�
ation algorithm re
overs (!; s) = f(�) and
omputes: Mkr = G(!)� sIf ! = H(Mkr), the algorithm a

epts the signature and returns M . Otherwise, thealgorithm returns Reje
t.4.3 Semanti
 Se
urityWe must ensure that an adversary is still unable to distinguish between the en
ryptionof two messages, even if he 
an obtain the de
ryption of 
iphertexts of his 
hoi
e, andthe signature of messages of his 
hoi
e. The atta
k s
enario is 
onsequently the sameas previously, ex
ept that the adversary 
an also obtain the signature of messages hewants.The following theorem, whose proof is given in Appendix A, shows that PSS-ESis semanti
ally se
ure under adaptive 
hosen 
iphertext atta
ks, in the random ora
lemodel, assuming that the underlying permutation is partial domain one-way.Theorem 2. Let A be an adversary against the semanti
 se
urity of PSS-ES, withsu

ess probability " and running time t, making qD, qsig, qH and qG queries to thede
ryption ora
le, the signing ora
le, and the hash fun
tions H and G, respe
tively.Then, Su

pd�ow(t0) is greater than:1qH + qG + qsig �"� (qH + qsig) � 2�k0 � qD2�k1 � (qH + qsig)2 � 2�k1�where t0 � t+ (qH + qsig) � Tf , and Tf denotes the time 
omplexity of f .4.4 UnforgeabilityFor signature s
hemes, the strongest se
urity notion is the previously introdu
ed ex-istential unforgeability under an adaptive 
hosen message atta
k. An atta
ker 
annotprodu
e a valid signature, even after obtaining the signature of (polynomially many)messages of his 
hoi
e. Here the adversary 
an also also obtain the de
ryption of 
i-phertexts of his 
hoi
e under the same publi
-key. Consequently, the atta
k s
enariois the following:



91. The adversary A re
eives the publi
 key pk with (pk ; sk) K(1�).2. A makes signature queries for messages M of his 
hoi
e. Additionally, he makesde
ryption queries for 
iphertexts y of his 
hoi
e.3. A outputs the signature of a message M 0 whi
h was not queried for signaturebefore.An en
ryption-signature s
heme is said to be se
ure against 
hosen-message atta
ksif for any polynomial-time bounded adversary, the probability to output a forgery isnegligible.The following theorem shows that PSS-ES is se
ure against an adaptive 
hosenmessage atta
k. The proof is similar to the se
urity proof of PSS [4℄ and is given inAppendix B.Theorem 3. Let A be an adversary against the unforgeability of PSS-ES, with su

essprobability " and running time t, making qD, qsig, qH and qG queries to the de
ryptionora
le, the signing ora
le, and the hash ora
les H and G, respe
tively. Then Su

ow(t0)is greater than: 1qH �"� ((qH + qsig)2 + qD + 1) � 2�k1� (10)where t0 � t+ (qH + qsig) � Tf , and Tf denotes the time 
omplexity of f .5 Appli
ation to RSA5.1 The RSA 
ryptosystemThe RSA 
ryptosystem, invented by Rivest, Shamir and Adleman [17℄, is the mostwidely used 
ryptosystem today. In this se
tion, we show that by virtue of RSA'shomomorphi
 properties, the partial-domain one-wayness of RSA is equivalent to theone-wayness of RSA. This enables to prove that the en
ryption s
heme RSA-PSS-Eand the en
ryption and signature s
heme RSA-PSS-ES are semanti
ally se
ure against
hosen 
iphertext atta
ks, in the random ora
le model, assuming that inverting RSAis hard.De�nition 2 (The RSA Primitive). The RSA primitive is a family of trapdoorpermutations, spe
i�ed by:- The RSA generator RSA, whi
h on input 1k, randomly sele
ts two distin
t k=2-bit primes p and q and 
omputes the modulus N = p � q. It randomly pi
ks an en
ryp-tion exponent e 2 Z��(N), 
omputes the 
orresponding de
ryption exponent d = e�1mod �(N) and returns (N; e; d).- The en
ryption fun
tion f : Z�N ! Z�N de�ned by f(x) = xe mod N .- The de
ryption fun
tion f�1 : Z�N ! Z�N de�ned by f�1(y) = yd mod N .In the following, we state our result in terms of the RSA primitive with a randomly
hosen publi
 exponent. The same results apply to the 
ommon pra
ti
e of 
hoosinga small publi
 exponent. A
tually, using Coppersmith's algorithm [8℄ as in [18℄ forOAEP [3℄, it would be possible to obtain tigther bounds for a small publi
 exponent.



105.2 Partial-domain One-Wayness of RSAThe following lemma shows that the partial-domain one-wayness of RSA is equivalentto the one-wayness of RSA. This is a generalization of the result that appears in [10℄for OAEP and in [5℄ for SAEP+, wherein the size of the partial pre-image is alwaysgreater than half the size of the modulus. [10℄ relies upon latti
e redu
tion te
hniquesfor latti
es of dimension 2. Here the partial pre-image 
an be smaller than half the sizeof the modulus (e.g a 160-bit pre-image for a 1024-bit modulus), so we must 
onsiderlatti
es of higher dimension. The extension was announ
ed in [10℄ and [5℄, even if theproper estimates were not worked out.The te
hnique goes as follows. Given y = xe mod N , we must �nd x. We obtainthe most signi�
ant bits of x ��i mod N for random integers �i 2 ZN, by querying forthe partial pre-image of yi = y �(�i)e mod N . Finding x from the most signi�
ant bitsof the x � �i mod N is a Hidden Number Problem modulo N . We use an algorithmsimilar to [6℄ to eÆ
iently re
over x.Lemma 2. Let A be an algorithm that on input y, outputs a q-set 
ontaining thek1 most signi�
ant bits of yd mod N , within time bound t, with probability ", where2k�1 � N < 2k, k1 � 64 and k=(k1)2 � 2�6. Then there exists an algorithm B thatsolves the RSA problem with su

ess probability "0 within time bound t0, where:"0 � " � ("n�1 � 2�k=8) (11)t0 � n � t+ qn � poly(k)n = � 5k4k1�Proof. Algorithm B re
eives y as input and must output yd mod N . It generates theintegers �i 2 ZN at random for 1 � i � n � 1, where n is an integer whi
h will bedetermined later.Let y0 = y and yi = y � (�i)e mod N for 1 � i � n�1. We write for 0 � i � n�1:(yi)d = !i � 2k�k1 + si mod Nwhere 0 � si < 2k�k1 . Letting k2 = k � k1, we obtain for 1 � i � n� 1:�i � (!0 � 2k2 + s0) = !i � 2k2 + si mod NTherefore letting 
i = 2k2 � (�i � !0 � !i) mod N , we obtain the following system ofn� 1 equations in the n unknown si:S : si � �i � s0 = 
i mod N for 1 � i � n� 1 (12)The following lemma, whose proof is given in appendix C, shows that given the 
iand �i, the si 
an be re
overed in time polynomial in k. We denote by:kxk1 = max jxijthe in�nite norm of ve
tor x.



11Lemma 3. If the previous set S of equations has a solution s = (s0; : : : ; sn�1) su
hthat ksk1 < 2k2 , then for all values of �, ex
ept a fra
tion:2n�(k2+n+2)Nn�1 (13)of them, this solution is unique and 
an be 
omputed in time polynomial in n and inthe size of N .Consequently, algorithm B runs n times algorithm A with input yi. It obtains nsets of q integers, ea
h set 
ontaining !i. Then it applies qn times the algorithm oflemma 3, one exe
ution of the algorithm enabling to re
over the si, with probability:"0 � " � "n�1 � 2n�(k2+n+2)Nn�1 !In appendix D we show that taking n = d5k=(4k1)e we obtain:2n�(k2+n+2)Nn�1 � 2�k=8 (14)whi
h gives (11). ut5.3 RSA-PSS-E and RSA-PSS-ESThe RSA-PSS-E en
ryption s
heme (K; E ;D) based on the PSS-R padding � withparameters k, k0, and k1 is de�ned as follows:- K generates a k + 1-bit RSA modulus and exponents e and d. The publi
 key is(N; e) and the private key is (N; d).- E(M; r): given a message M 2 f0; 1gk�k0�k1 and a random r 2 f0; 1gk0 , theen
ryption algorithm outputs the 
iphertext:
 = (�(M; r))e mod N- D(
): the de
ryption algorithm re
overs x = 
d mod N . It returns Reje
t if themost signi�
ant bit of x is not zero. It writes x as 0k!ks where ! is a k1-bit stringand s is a k� k1 bit string. It writes Mkr = G(!)� s. If ! = H(M jjr), the algorithmreturns M , otherwise it returns Reje
t.The RSA-PSS-ES en
ryption and signature s
heme (K; E ;D;S;V) is de�ned asfollows:- K, E(M; r) and D(
) are identi
al to RSA-PSS-E.- S(M; r): given a message M 2 f0; 1gk�k0�k1 and a random value r 2 f0; 1gk0 ,the signing algorithm 
omputes the signature:� = �(M; r)d mod N- V(�): given the signature �, the veri�
ation algorithm re
overs x = �e mod N .It returns Reje
t if the most signi�
ant bit of x is not zero. It writes x as 0k!ks where !is a k1-bit string and s is a k�k1 bit string. It writesMkr = G(!)�s. If ! = H(M jjr),the algorithm a

epts the signature and returns M , otherwise it returns Reje
t.



125.4 Se
urity of RSA-PSS-E and RSA-PSS-ESCombining lemma 1 and lemma 2, we obtain the following theorem whi
h shows thatthe en
ryption s
heme RSA-PSS-E is provably se
ure in the random ora
le model,assuming that inverting RSA is hard.Theorem 4. Let A be a CCA2-adversary against the semanti
 se
urity of the RSA-PSS-E s
heme (K; E ;D), with advantage " and running time t, making qD, qH andqG queries to the de
ryption ora
le and the hash fun
tion H and G, respe
tively. Weassume that k1 � 64 and k=(k1)2 � 2�6. Then we 
an invert RSA with probability "0greater than: "0 � �"� qH � 2�k0 � qD2�k1�n � 2�k=8within time bound t0 � n�t+(qH+qG)n �poly(k)+n�qH �O(k3), where n = d5k=(4k1)e.We obtain a similar theorem for the semanti
 se
urity of the RSA-PSS-ES en
ryp-tion and signature s
heme (from Lemma 2 and Lemma 4 in appendix A).Theorem 5. Let A be a CCA2-adversary against the semanti
 se
urity of the RSA-PSS-ES s
heme (K; E ;D;S;V), with advantage " and running time t, making qD, qsig,qH and qG queries to the de
ryption ora
le, the signing ora
le and the hash fun
tionH and G, respe
tively. Provided that k1 � 64 and k=(k1)2 � 2�6, RSA 
an be invertedwith probability "0 greater than:"0 � �"� (qH + qsig) � 2�k0 � (qD + (qH + qsig)2) � 2�k1�n � 2�k=8within time bound t0 � n � t+ (qH + qG + qsig)n � poly(k), where n = d5k=(4k1)e.For the unforgeability of the RSA-PSS-ES en
ryption and signature s
heme, weobtain a better se
urity bound than the general result of Theorem 3, by relying uponthe homomorphi
 properties of RSA. The proof of the following theorem is similar tothe se
urity proof of PSS in [4℄ and is given in appendix E.Theorem 6. Let A be an adversary against the unforgeability of the PSS-ES s
heme(K; E ;D;S;V), with su

ess probability " and running time t, making qD, qsig, qH andqG queries to the de
ryption ora
le, the signing ora
le, and the hash fun
tions H andG, respe
tively. Then RSA 
an be inverted with probability "0 greater than:"0 � "� �(qH + qsig)2 + qD + 1� � (2�k0 + 2�k1) (15)within time bound t0 � t+ (qH + qsig) � O(k3).Note that as for OAEP [10℄, the se
urity proof for en
rypting with PSS is far frombeing tight. This means that it does not provide a meaningful se
urity result for amoderate size modulus (e.g., 1024 bits). For the se
urity proof to be meaningful inpra
ti
e, we re
ommend to take k1 � k=2 and to use a larger modulus (e.g., 2048bits).



136 Con
lusionIn all existing PKIs di�erent padding formats are used for en
rypting and signing;moreover, it is re
ommended to use di�erent keys for en
rypting and signing. In thispaper we have proved that the PSS padding s
heme used in PKCS#1 v.2.1 [15℄ andIEEE P1363 [13℄ 
an be safely used for en
ryption as well. We have also provedthat the same key pair 
an be safely used for both signature and en
ryption. Thepra
ti
al 
onsequen
es of this are signi�
ant: besides halving the number of keys inse
urity systems and simplifying their ar
hite
ture, our observation allows resour
e-
onstrained devi
es su
h as smart 
ards to use the same 
ode for implementing bothsignature and en
ryption.A
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14A Proof of Theorem 2The theorem follows from inequality (1) and the following lemma.Lemma 4. Let A be an adversary against the semanti
 se
urity of PSS-ES, withsu

ess probability " and running time t, making qD, qsig, qH and qG queries to thede
ryption ora
le, the signing ora
le, and the hash fun
tions H and G, respe
tively.Then, the su

ess probability Su

s�pd�ow(qG; t0) is greater than:"� (qH + qsig) � 2�k0 � qD2�k1 � (qH + qsig)2 � 2�k1where t0 � t+ (qH + qsig) � Tf , and Tf denotes the time 
omplexity of f .Proof. The proof is very similar to the proof of lemma 1. The top-level des
ription ofthe redu
tion B is the same and the simulation of the de
ryption ora
le is the same.However, ora
les H and G are simulated di�erently. Instead of simulating H and Gso that �(M; r) = y is a random integer, we simulate H and G so that �(M; r) = f(x)for a known random x, whi
h allows to answer the signature query for M .Simulation of ora
les G and H and signing ora
le:When re
eiving the query Mkr to H, we generate a random x 2 f0; 1gk and
ompute y = f(x). We denote y = !ks. If ! never appeared before, we let G(!) =s� (Mkr) and return !, otherwise we abort.When re
eiving a query ! for G, if G(!) has already been de�ned, we return G(!),otherwise we return a random (k � k1)-bit integer.When we re
eive a signature query for M , we generate a random k0-bit integer r.If Mkr was queried to H before, we know !; s; y and x su
h that:H(Mkr) = ! and G(!) = s� (Mkr) and y = f(x) = !ksso we return the 
orresponding signature x. If Mkr was never queried before, wesimulate anH-query forMkr as previously: we pi
k a random x 2 f0; 1gk and 
omputey = f(x). We denote y = !ks. If ! never appeared before, we let H(Mkr) = !,G(!) = s� (Mkr) and return the signature x, otherwise we abort.AnalysisAs in lemma 1, we denote by AskG the event: \!� has been asked to G" and byAskH the event: \there exists M 0 su
h that M 0jjr� has been queried to H"; we denoteby DBad the event: \a valid 
iphertext has been reje
ted by our simulation of thede
ryption ora
le D". Moreover, we denote by SBad the event: \the redu
tion abortswhen answering a H-ora
le query or a signature query". As previously, we have:Pr[AskHj:AskG℄ � (qH + qsig) � 2�k0and Pr[DBad℄ � qD � 2�k1When answering an H-ora
le query or a signature query, the integer ! whi
h is gener-ated is uniformly distributed be
ause f is a permutation. Moreover, at most qH + qsig



15values of ! 
an appear during the redu
tion. Therefore the probability that the re-du
tion aborts when answering an H-ora
le query or a signature query is at most(qH + qsig) � 2�k1 , whi
h gives:Pr[SBad℄ � (qH + qsig)2 � 2�k1We denote by Bad the event:Bad = AskG _ AskH _ DBad _ SBadLet S denote the event: \the adversary outputs the 
orre
t value for b, i.e. b = b0".Conditioned on :Bad, our simulation of ora
les G;H, D and of the signing ora
le areindependent of b, and therefore the adversary's view is independent of b. This gives:Pr[Sj:Bad℄ = 12 (16)Moreover, 
onditioned on :Bad, the adversary's view is the same as when intera
tingwith (perfe
t) random ora
les, de
ryption ora
le and signing ora
le, whi
h gives:Pr[S ^ :Bad℄ � 12 + "2 � Pr[Bad℄ (17)whi
h yields as in Lemma 1: Pr[Bad℄ � " (18)and eventually:Pr[AskG℄ � "� (qH + qsig) � 2�k0 � qD � 2�k1 � (qH + qsig)2 � 2�k1B Proof of Theorem 3From A we 
onstru
t an algorithm B, whi
h re
eives as input 
 and outputs � su
hthat 
 = f(�).Top-level des
ription of the redu
tion B:1. B is given a fun
tion f and 
 = f(�), for a random integer �.2. B sele
ts uniformly at random an integer j 2 [1; qH ℄.3. B runs A with f . It simulates the de
ryption ora
le, the signing ora
le andrandom ora
les H and G as des
ribed below. B maintains a 
ounter i for the i-thquery Mikri to H. The ora
les H and G are simulated in su
h a way that if i = jthen �(Mikri) = 
.4. B re
eives from A a forgery �. Letting M and r be the 
orresponding messageand random, if (M; r) = (Mj ; rj) then f(�) = �(Mjkrj) = 
 and B outputs �.Simulation of the ora
les G, H, D and signing ora
le:When re
eiving the i-th query Mikri to H, we distinguish two 
ases: if i 6= j, wegenerate a random xi 2 f0; 1gk and 
ompute yi = f(xi). If i = j, we let yi = 
. In both
ases we denote yi = !iksi. If !i never appeared before, we let G(!i) = si � (Mikri)and return !i, otherwise we abort.When re
eiving a query ! for G, if G(!) has already been de�ned, we return G(!),otherwise we return a random (k � k1)-bit integer.



16 When we re
eive a signature query for M , we generate a random k0-bit integer r.If Mkr was queried to H before, we have Mkr =Mikri for some i. If i 6= j, we have:H(Mikri) = !i; G(!i) = si � (Mikri) and yi = !iksi = f(xi)so we return the 
orresponding signature xi, otherwise we abort. If Mkr was neverqueried before, we simulate an H-query for Mkr as previously: we generate a randomx 2 f0; 1gk and 
ompute y = f(x). We denote y = !ks. If ! never appeared before,we let H(Mkr) = ! and G(!) = s� (Mkr) and return the signature x, otherwise weabort.The simulation of the de
ryption ora
le is identi
al to that of Lemma 1.Analysis:Let � be the forgery sent by the adversary. If ! was not queried to G, we simulatea query to G as previously. Let !ks = f(�) and Mkr = G(!)� s. If Mkr was neverqueried to H, then H(Mkr) is unde�ned be
ause there was no signature query for M ;the probability that H(Mkr) = ! is then 2�k1 . Otherwise, let (M; r) = (Mi; ri) bethe 
orresponding query to H. If i = j, then �(Mj ; rj) = 
 = f(�) and B su

eeds ininverting f .Conditioned on i = j, our simulation of H and the signing ora
le are perfe
t, unlesssome ! appears twi
e, whi
h happens with probability less than (qH + qsig)2 �2�k1 . Asin lemma 1, our simulation ofD fails with probability less than qD �2�k1 . Consequently,the redu
tion B su

eeds with probability greater than:1qH � �"� 2�k1 � (qH + qsig)2 � 2�k1 � qD � 2�k1�whi
h gives (10).C Proof of Lemma 3Let b1; : : : ; bd 2 Zn be linearly independent ve
tors. A latti
e L spanned by the ve
tors(b1; : : : ; bd) is the set of all integer linear 
ombinations of b1; : : : ; bd. The integer dis 
alled the rank of the latti
e. We say that the latti
e is of full rank if n = d. Wedenote by kLk1 the in�nite norm of the shortest non-zero ve
tor of L.Given � = (�1; : : : ; �n�1) 2 (ZN)n�1, 
onsider the set:L(�) = fs = (s0; : : : ; sn�1) 2 Znjsi � �i � s0 = 0 mod N for all 1 � i � n� 1gThe set L is a full rank latti
e spanned by the n ve
tors:(1; �1; : : : ; �n�1); (0; N; 0; : : : ; 0); � � � ; (0; : : : ; 0; N) (19)The proof of lemma 3 is based on the following three lemmas:Lemma 5. The probability over � 2 Zn�1N that kL(�)k1 < C is less than(3C)nNn�1



17Proof. To ea
h L(�) su
h that kL(�)k1 < C we 
an asso
iate a shortest ve
tor b(�)su
h that kb(�)k1 < C. There are at most (2C + 1)n su
h ve
tors.Let b0 be the �rst 
omponent of b(�). If b0 = 0 mod N , then all the 
omponentsof b(�) are equal to 0 modulo N . This gives kb(�)k1 � N , and the �rst ve
tor in(19) is shorter for kk1 than b(�). Therefore b0 6= 0 mod N .If b0 is invertible modulo N , this uniquely determines �. Otherwise, let p and qbe the prime fa
tors of N . If b0 = 0 mod p, then b0 6= 0 mod q and this uniquelydetermines � modulo q, so there are at most pn�1 possible values for �. Moreover, allthe 
omponents of b(�) are equal to 0 modulo p, and for any C the number of su
hve
tors b(�) is at most: �2 � �Cp �+ 1�n � 1 � �3Cp �nwhi
h 
orresponds to at most:�3Cp �n � pn�1 = (3C)nppossible values for �. The same holds if b0 = 0 mod q. Therefore there are at most:(2C + 1)n + (3C)n � �1p + 1q� � (3C)nve
tors � su
h that kL(�)k1 < C. utLemma 6. If kL(�)k1 � 2 �B, then the solution s of the system S with ksk1 < B isunique and is equal to T �P , where T = (0; 
1; : : : ; 
n�1) and P is the 
losest ve
torto T for kk1.Proof. Let s0 be another solution of S with ks0k1 < B. Then s � s0 2 L(�) andks� s0k1 < 2 �B whi
h gives s = s0 sin
e kL(�)k1 � 2 � BLet s0 = T � P where P 2 L(�) is a 
losest ve
tor to T for kk1. Sin
e T � s isa ve
tor of L(�), we have:ks0k1 = kT � P k1 � kT � (T � s)k1 = ksk1ks0 � sk1 � ks0k1 + ksk1 � 2ksk1 < 2 �Band so s0 = s. utLemma 7. Let (b1; : : : ; bn) be a basis of a latti
e L � Zn su
h that kLk1 � B � (1 +pn � 2n=2) and T a ve
tor whi
h distan
e to L for kk1 is stri
tly less than B. Thereexists a polynomial-time algorithm taking as input (b1; : : : ; bn) and T and outputtinga 
losest ve
tor P 2 L to T for kk1.Proof. The proof is based on the following theorem:



18Theorem 7 (Babai [1℄). There exists a polynomial time algorithm whi
h, given abasis (b1; : : : ; bn) of a latti
e L � Zn, approximates the 
losest ve
tor problem for theEu
lidean norm to a fa
tor 2n=2.Let P 0 be the ve
tor obtained by running Babai's algorithm on (b1; : : : ; bn) andT . Let P a 
losest ve
tor to T for kk1. We show that P 0 = P .Letting P 00 be a 
losest ve
tor to T for the Eu
lidean norm, we have:kT � P 0k � 2n=2kT � P 00kMoreover, sin
e P 00 is a 
losest ve
tor to T for kk, we have:kT � P 00k � kT � P kThe distan
e of T to L for kk1 is stri
tly less than B, therefore:kT � P k1 < BThis gives:kT � P 0k1 � kT � P 0k � 2n=2kT � P k � pn � 2n=2kT � P k1 < Bpn � 2n=2and eventuallykP � P 0k1 � kP � T k1 + kT � P 0k1 < B(1 +pn � 2n=2)and so P = P 0. utResuming the proof of lemma 3, we take B = 2k2 and C = 2k2(1 +pn � 2n=2). We
onsider the latti
es L(�) su
h that kL(�)k1 � C. From lemma 5, and using:3C � 2k2+n+2the proportion of latti
es L(�) su
h that kL(�)k1 < C is smaller than:2n�(k2+n+2)Nn�1From lemma 6 the solution s of the system S with ksk1 < 2k2 is unique and equalto T �P , where T = (0; 
1; : : : ; 
n�1) and P is the 
losest ve
tor to T for kk1. Fromlemma 7, and using the basis (19) for L(�), we 
an 
ompute P in time polynomial inn and in the size of N .D Proof of Inequality (14)We assume that: k1 � 64 and k � 2�6 � (k1)2 (20)We have: 2n�(k2+n+2)Nn�1 � 2n�(k�k1+n+2)�(n�1)�(k�1)� 2n�(�k1+n+3)+k�1



19Letting f(x) = x � (�k1 + x + 3) + k � 1, we have f 0(x) = �k1 + 2 � x + 3. For0 � x � 5k=(4k1) + 1 and using (20), we obtain f 0(x) � 0. We take:n = � 5k4k1�f is then a de
reasing fun
tion for 0 � x � n, therefore:f � 5k4k1� � f(n)whi
h yields using (20): f(n) � �k=8from whi
h we obtain inequality (14).E Proof of Theorem 6The proof is similar to the se
urity proof of PSS in [4℄. The only di�eren
e is thatwe simulate a de
ryption ora
le as in theorem 3. This adds an error probability ofqD � 2�k1 .


