
Universal Padding Shemes for RSAJean-S�ebastien Coron, Mar Joye, David Naahe, and Pasal PaillierGemplus Card International34 rue Guynemer, 92447 Issy-les-Moulineaux, Franefjean-sebastien.oron, mar.joye, david.naahe, pasal.paillierg�gemplus.omAbstrat. A ommon pratie to enrypt with RSA is to �rst apply a padding shemeto the message and then to exponentiate the result with the publi exponent; an exampleof this is OAEP. Similarly, the usual way of signing with RSA is to apply some paddingsheme and then to exponentiate the result with the private exponent, as for examplein PSS. Usually, the RSA modulus used for enrypting is di�erent from the one usedfor signing. The goal of this paper is to simplify this ommon setting. First, we showthat PSS an also be used for enryption, and gives an enryption sheme semantiallyseure against adaptive hosen-iphertext attaks, in the random orale model. As aresult, PSS an be used indi�erently for enryption or signature. Moreover, we showthat PSS allows to safely use the same RSA key-pairs for both enryption and signature,in a onurrent manner. More generally, we show that using PSS the same set of keysan be used for both enryption and signature for any trapdoor partial-domain one-way permutation. The pratial onsequenes of our result are important: PKIs andpubli-key implementations an be signi�antly simpli�ed.Key-words: Probabilisti Signature Sheme, Provable Seurity.1 IntrodutionA very ommon pratie for enrypting a message m with RSA is to �rst apply apadding sheme �, then raise �(m) to the publi exponent e. The iphertext  is then: = �(m)e mod NSimilarly, for signing a message m, the ommon pratie onsists again in �rstapplying a padding sheme �0 then raising �0(m) to the private exponent d. Thesignature s is then: s = �0(m)d mod NFor various reasons, it would be desirable to use the same padding sheme �(m)for enryption and for signature: in this ase, only one padding sheme needs to beimplemented. Of ourse, the resulting padding sheme �(m) should be provably seurefor enryption and for signing. We say that a padding sheme is universal if it satis�esthis property.The strongest publi-key enryption seurity notion was de�ned in [16℄ as indis-tinguishability under an adaptive hosen iphertext attak. An adversary should notbe able to distinguish between the enryption of two plaintexts, even if he an obtainthe deryption of iphertexts of his hoie. For digital signature shemes, the strongestseurity notion was de�ned by Goldwasser, Miali and Rivest in [11℄, as existentialunforgeability under an adaptive hosen message attak. This notion aptures the



2property that an adversary annot produe a valid signature, even after obtaining thesignature of (polynomially many) messages of his hoie.In this paper, we show that the padding sheme PSS [4℄, whih is originally a prov-ably seure padding sheme for produing signatures, an also be used as a provablyseure enryption sheme. More preisely, we show that PSS o�ers indistinguishabil-ity under an adaptive hosen iphertext attak, in the random orale model, underthe partial-domain one-wayness of the underlying permutation. Partial-domain one-wayness, introdued in [10℄, is a formally stronger assumption than one-wayness. How-ever, for RSA, partial-domain one-wayness is equivalent to (full domain) one-waynessand therefore RSA-PSS enryption is provably seure under the sole assumption thatRSA is one-way.Generally, in a given appliation, the RSA modulus used for enrypting is di�erentfrom the RSA modulus used for signing; our setting (and real-world PKIs) wouldbe further simpli�ed if one ould use the same set of keys for both enryption andsignature (see [12℄). In this paper, we show that using PSS, the same keys an besafely used for enryption and for signature.2 Publi-Key EnryptionA publi-key enryption sheme is a triple of algorithms (K; E ;D) where:- K is a probabilisti key generation algorithm whih returns random pairs of publiand seret keys (pk ; sk) depending on some seurity parameter k,- E is a probabilisti enryption algorithm whih takes as input a publi key pkand a plaintext M 2M, runs on a random tape r 2 R and returns a iphertext .Mand R stand for spaes in whih messages and random strings are hosen respetively,- D is a deterministi deryption algorithm whih, given as input a seret key skand a iphertext , returns the orresponding plaintext M , or Rejet.The strongest seurity notion for publi-key enryption is the aforementioned no-tion of indistinguishability under an adaptive hosen iphertext attak. An adversaryshould not be able to distinguish between the enryption of two plaintexts, even ifhe an obtain the deryption of iphertexts of his hoie. The attak senario is thefollowing:1. The adversary A reeives the publi key pk with (pk ; sk) K(1�).2. A makes deryption queries for iphertexts y of his hoie.3. A hooses two messagesM0 andM1 of idential length, and reeives the enryption of Mb for a random unknown bit b.4. A ontinues to make deryption queries. The only restrition is that the adversaryannot request the deryption of .5. A outputs a bit b0, representing its \guess" on b.The adversary's advantage is then de�ned as:Adv(A) = j2 � Pr[b0 = b℄� 1jAn enryption sheme is said to be seure against adaptive hosen iphertext attak(and denoted IND-CCA2) if the advantage of any polynomial-time bounded adversaryis a negligible funtion of the seurity parameter. Usually, shemes are proven to be



3IND-CCA2 seure by exhibiting a polynomial redution: if some adversary an break theIND-CCA2 seurity of the system, then the same adversary an be invoked (polynomiallymany times) to solve a related hard problem.The random orale model, introdued by Bellare and Rogaway in [2℄, is a theoreti-al framework in whih any hash funtion is seen as an orale whih outputs a randomvalue for eah new query. Atually, a seurity proof in the random orale model doesnot neessarily imply that a sheme is seure in the real world (see [7℄). Nevertheless,it seems to be a good engineering priniple to design a sheme so that it is provably se-ure in the random orale model. Many enryption and signature shemes were provento be seure in the random orale model.3 Enrypting with PSS-RIn this setion we prove that given any trapdoor partially one-way permutation f ,the enryption sheme de�ned by �rst applying PSS with message reovery (denotedPSS-R) and enrypting the result with f ahieves the strongest seurity level for anenryption sheme, in the random orale model.3.1 The PSS-R Padding ShemePSS-R, de�ned in [4℄, is parameterized by the integers k, k0 and k1 and uses two hashfuntions: H : f0; 1gk�k1 ! f0; 1gk1 and G : f0; 1gk1 ! f0; 1gk�k1PSS-R takes as input a (k � k0 � k1)-bit message M and a k0-bit random integer r.As illustrated in �gure 1, PSS-R outputs:�(M; r) = !jjswhere k stands for onatenation, ! = H(M jjr) and s = G(!)� (Mkr). Atually, in[4℄, Mkr is used as the argument to H and rkM is used as the mask to xor with G(!).Here for simpliity we use Mkr in both plaes, but the same results apply either way.MkrH G! sFig. 1. The PSS-R padding sheme



43.2 The PSS-E Enryption ShemeThe new enryption sheme (K; E ;D), that we denote PSS-E, is based on � and ak-bit trapdoor permutation f .- K generates the publi key f and the seret key f�1.- E(M; r): given a message M 2 f0; 1gk�k0�k1 and a random r 2 f0; 1gk0 , theenryption algorithm outputs the iphertext: = f(�(M; r))-D(): the deryption algorithm reovers (!; s) = f�1() and thenMkr = G(!)�s.If ! = H(M jjr), the algorithm returns M , otherwise it returns Rejet.3.3 The Underlying ProblemThe seurity of PSS-E is based on the diÆulty of inverting f without knowing f�1.As in [10℄, we use two additional related problems: the partial-domain one-waynessand the set partial-domain one-wayness of f :- (�; ")-one-wayness of f , means that for any adversary A who wishes to re-over the full pre-image (!; s) of f(!; s) in time less than � , A's suess probabilitySuow(A) is upper-bounded by ":Suow(A) = Pr!;s[A(f(!; s)) = (!; s)℄ < "- (�; ")-partial-domain one-wayness of f , means that for any adversary A whowishes to reover the partial pre-image ! of f(!; s) in time less than � , A's suessprobability Supd�ow(A) is upper-bounded by ":Supd�ow(A) = Pr!;s[A(f(!; s)) = !℄ < "- (`; �; ")-set partial-domain one-wayness of f , means that for any adversaryA who wishes to output a set of ` elements whih ontains the partial pre-image ! off(!; s), in time less than � , A's suess probability Sus�pd�ow(A) is upper-boundedby ": Sus�pd�ow(A) = Pr!;s[! 2 A(f(!; s))℄ < "As in [10℄, we denote by Suow(�), (resp. Supd�ow(�) and Sus�pd�ow(`; �)) themaximal probability Suow(A), (resp. Supd�ow(A) and Sus�pd�ow(A)), over alladversaries whose running times are less than � . For any � and ` � 1, we have:Sus�pd�ow(`; �) � Supd�ow(�) � Suow(�)Moreover, by randomly seleting any element in the set returned by the adversaryagainst the set partial-domain one-wayness, one an break the partial-domain one-wayness with probability 1=`, whih gives:Supd�ow(�) � Sus�pd�ow(`; �)=` (1)We will see in Setion 5 that for RSA, the three problems are polynomially equivalent.



53.4 Seurity of PSS-EThe following theorem shows that PSS-E is semantially seure under adaptive ho-sen iphertext attaks, in the random orale model, assuming that the underlyingpermutation is partially one-way.Theorem 1. Let A be a CCA2-adversary against the semanti seurity of PSS-E(K; E ;D), with advantage " and running time t, making qD, qH and qG queries to thederyption orale and the hash funtions H and G, respetively. Then:Supd�ow(t0) � 1qH + qG � �"� qH2�k0 � qD2�k1�where t0 � t+ qH � Tf , and Tf denotes the time omplexity of f .The theorem follows from inequality (1) and the following lemma:Lemma 1. Using the notations introdued in theorem 1, we have:Sus�pd�ow(qH + qG; t0) � "� qH � 2�k0 � qD � 2�k1 (2)Proof. We desribe a redution B whih using A, onstruts an adversary againstthe set partial-domain one-wayness of f . We start with a top-level desription of theredution and then show how to simulate the random orales G, H and the deryptionorale D. Eventually we ompute the suess probability of B.Top-level desription of the redution B:1. B is given a funtion f and � = f(!�; s�), for a random !� and s�. B's goal isto output a list whih ontains the partial pre-image !� of �.2. B runs A with f and gets fM0;M1g. It hooses a random bit b and gives � as aiphertext for Mb. B simulates the deryption orale H, D and G as desribed below.3. B reeives from A the answer b0 and outputs the list of queries asked to G.Simulation of the random orales G, H and D.The simulation of G and H is very simple: a random answer is returned for eahnew query of G and H. Moreover, when ! is the answer of a query to H, we simulatea query for ! to G, so that G(!) is de�ned.On query  to the deryption orale, the redution B looks at eah query M 0jjr0to H and omputes: !0 = H(M 0jjr0) and s0 = G(!0)� (M 0kr0)Then if  = f(!0; s0) the redution B returns M 0. Otherwise, the redution outputsRejet.Analysis:Sine � = f(!�; s�) is the iphertext orresponding to Mb, we have the followingonstraint for the random orales G and H:H(Mbkr�) = !� and G(!�) = s� � (Mbkr�) (3)We denote by AskG the event: \!� has been asked to G" and by AskH the event:\there exists M 0 suh that M 0jjr� has been queried to H".



6 If !� was never queried to G, then G(!�) is unde�ned and r� is then a uniformlydistributed random variable. Therefore the probability that there exists M 0 suh that(M 0; r�) has been asked to H is at most qH � 2�k0 . This gives:Pr[AskHj:AskG℄ � qH � 2�k0 (4)Our simulation of D an only fail by rejeting a valid iphertext. We denote byDBad this event. Letting  = f(!; s) be the iphertext queried to D andMkr = G(!)� swe rejet a valid iphertext if H(M jjr) = ! while M jjr was never queried to H.However, if Mkr was never queried to H, then H(Mkr) is randomly de�ned. Namelyif the deryption query oured before � was sent to the adversary, then onstraint (3)does not apply and H(Mkr) is randomly de�ned. Otherwise, if the deryption queryoured after � was sent to the adversary, then  6= � implies (M; r) 6= (Mb; r�) andH(Mkr) is still randomly de�ned. In both ases the probability that H(M; r) = ! isthen 2�k1 , whih gives: Pr[DBad℄ � qD � 2�k1 (5)Let us denote by Bad the event: \!� has been queried to G or (M 0; r�) has beenqueried to H for some M 0 or the simulation of D has failed". Formally:Bad = AskG _ AskH _ DBad (6)Let us denote by S the event: \the adversary outputs the orret value for b, i.e.,b = b0". Conditioned on :Bad, our simulations of G;H and D are independent of b,and therefore A's view is independent of b as well. This gives:Pr[Sj:Bad℄ = 12 (7)Moreover, onditioned on :Bad, the adversary's view is the same as when interatingwith (perfet) random and deryption orales, whih gives:Pr[S ^ :Bad℄ � 12 + "2 � Pr[Bad℄ (8)From (7) we obtainPr[S ^ :Bad℄ = Pr[Sj:Bad℄ � Pr[:Bad℄ = 12(1� Pr[Bad℄)whih gives using (8): Pr[Bad℄ � " (9)From (6) we have:Pr[Bad℄ � Pr[AskG _ AskH℄ + Pr[DBad℄� Pr[AskG℄ + Pr[AskH ^ :AskG℄ + Pr[DBad℄� Pr[AskG℄ + Pr[AskHj:AskG℄ + Pr[DBad℄whih yields using (4), (5) and (9):Pr[AskG℄ � "� qH � 2�k0 � qD � 2�k1and hene (2) holds. This terminates the proof of lemma 1. ut



74 Signing and Enrypting with the same Publi-KeyIn this setion we show that when using PSS, the same publi key an be used forenryption and signature in a onurrent manner. For RSA, this means that the samepair (N; e) an be used for both operations. In other words, when Alie sends a messageto Bob, she enrypts it using Bob's publi key (N; e); Bob derypts it using theorresponding private key (N; d). To sign a message M , Bob will use the same privatekey (N; d). As usual, anybody an verify Bob's signature using his publi pair (N; e).Although provably seure (as we will see hereafter), this is ontrary to the folklorereommendation that signature and enryption keys should be distint. This reom-mendation may prove useful is some ases; this is partiularly true when a aw hasbeen found in the enryption sheme or in the signature sheme. In our ase, we willprove that when using the PSS-R padding sheme, a deryption orale does not helpthe attaker in forging signatures, and a signing orale does not help the attaker ingaining information about the plaintext orresponding to a iphertext.Nevertheless, we advise to be very areful when implementing systems using thesame keys for enrypting and signing. For example, if there are some implementationerrors in a deryption server (see for example [14℄), then an attaker ould use thisserver to reate forgeries.4.1 Signature Shemes and their SeurityDe�nition 1 (signature sheme). A signature sheme (Gen; Sign; Verify) is de-�ned as follows:- The key generation algorithm Gen is a probabilisti algorithm whih given 1k,outputs a pair of mathing publi and private keys, (pk; sk).- The signing algorithm Sign takes the message M to be signed, the publi key pkand the private key sk, and returns a signature x = Signsk(M). The signing algorithmmay be probabilisti.- The veri�ation algorithm Verify takes a message M , a andidate signature x0and pk. It returns a bit Verifypk(M;x0), equal to one if the signature is aepted, andzero otherwise. We require that if x Signsk(M), then Verifypk(M;x) = 1.In the existential unforgeability under an adaptive hosen message attak senario,the forger an dynamially obtain signatures of messages of his hoie and attemptsto output a valid forgery. A valid forgery is a message/signature pair (M;x) suh thatVerifypk(M;x) = 1 whereas the signature of M was never requested by the forger.4.2 The PSS-ES Enryption and Signature ShemeThe PSS-ES enryption and signature sheme (K; E ;D;S;V) is based on PSS-R anda k-bit trapdoor permutation f . As for the PSS-R signature sheme, the signaturesheme in PSS-ES is with message reovery: this means that the message is reoveredwhen verifying the signature. In this ase, only messages of �xed length k�k0�k1 anbe signed. To sign messages M of arbitrary length, it suÆes to apply a ollision-freehash funtion to M prior to signing.- K generates the publi key f and the seret key f�1.



8 - E(M; r): given a message M 2 f0; 1gk�k0�k1 and a random value r 2 f0; 1gk0 ,the enryption algorithm omputes the iphertext: = f(�(M; r))- D(): the enryption algorithm reovers (!; s) = f�1() and omputesMkr = G(!)� sIf ! = H(M jjr), the algorithm returns M , otherwise it returns Rejet.- S(M; r): given a message M 2 f0; 1gk�k0�k1 and a random value r 2 f0; 1gk0 ,the signing algorithm omputes the signature:� = f�1(�(M; r))- V(�): given the signature �, the veri�ation algorithm reovers (!; s) = f(�) andomputes: Mkr = G(!)� sIf ! = H(Mkr), the algorithm aepts the signature and returns M . Otherwise, thealgorithm returns Rejet.4.3 Semanti SeurityWe must ensure that an adversary is still unable to distinguish between the enryptionof two messages, even if he an obtain the deryption of iphertexts of his hoie, andthe signature of messages of his hoie. The attak senario is onsequently the sameas previously, exept that the adversary an also obtain the signature of messages hewants.The following theorem, whose proof is given in Appendix A, shows that PSS-ESis semantially seure under adaptive hosen iphertext attaks, in the random oralemodel, assuming that the underlying permutation is partial domain one-way.Theorem 2. Let A be an adversary against the semanti seurity of PSS-ES, withsuess probability " and running time t, making qD, qsig, qH and qG queries to thederyption orale, the signing orale, and the hash funtions H and G, respetively.Then, Supd�ow(t0) is greater than:1qH + qG + qsig �"� (qH + qsig) � 2�k0 � qD2�k1 � (qH + qsig)2 � 2�k1�where t0 � t+ (qH + qsig) � Tf , and Tf denotes the time omplexity of f .4.4 UnforgeabilityFor signature shemes, the strongest seurity notion is the previously introdued ex-istential unforgeability under an adaptive hosen message attak. An attaker annotprodue a valid signature, even after obtaining the signature of (polynomially many)messages of his hoie. Here the adversary an also also obtain the deryption of i-phertexts of his hoie under the same publi-key. Consequently, the attak senariois the following:



91. The adversary A reeives the publi key pk with (pk ; sk) K(1�).2. A makes signature queries for messages M of his hoie. Additionally, he makesderyption queries for iphertexts y of his hoie.3. A outputs the signature of a message M 0 whih was not queried for signaturebefore.An enryption-signature sheme is said to be seure against hosen-message attaksif for any polynomial-time bounded adversary, the probability to output a forgery isnegligible.The following theorem shows that PSS-ES is seure against an adaptive hosenmessage attak. The proof is similar to the seurity proof of PSS [4℄ and is given inAppendix B.Theorem 3. Let A be an adversary against the unforgeability of PSS-ES, with suessprobability " and running time t, making qD, qsig, qH and qG queries to the deryptionorale, the signing orale, and the hash orales H and G, respetively. Then Suow(t0)is greater than: 1qH �"� ((qH + qsig)2 + qD + 1) � 2�k1� (10)where t0 � t+ (qH + qsig) � Tf , and Tf denotes the time omplexity of f .5 Appliation to RSA5.1 The RSA ryptosystemThe RSA ryptosystem, invented by Rivest, Shamir and Adleman [17℄, is the mostwidely used ryptosystem today. In this setion, we show that by virtue of RSA'shomomorphi properties, the partial-domain one-wayness of RSA is equivalent to theone-wayness of RSA. This enables to prove that the enryption sheme RSA-PSS-Eand the enryption and signature sheme RSA-PSS-ES are semantially seure againsthosen iphertext attaks, in the random orale model, assuming that inverting RSAis hard.De�nition 2 (The RSA Primitive). The RSA primitive is a family of trapdoorpermutations, spei�ed by:- The RSA generator RSA, whih on input 1k, randomly selets two distint k=2-bit primes p and q and omputes the modulus N = p � q. It randomly piks an enryp-tion exponent e 2 Z��(N), omputes the orresponding deryption exponent d = e�1mod �(N) and returns (N; e; d).- The enryption funtion f : Z�N ! Z�N de�ned by f(x) = xe mod N .- The deryption funtion f�1 : Z�N ! Z�N de�ned by f�1(y) = yd mod N .In the following, we state our result in terms of the RSA primitive with a randomlyhosen publi exponent. The same results apply to the ommon pratie of hoosinga small publi exponent. Atually, using Coppersmith's algorithm [8℄ as in [18℄ forOAEP [3℄, it would be possible to obtain tigther bounds for a small publi exponent.



105.2 Partial-domain One-Wayness of RSAThe following lemma shows that the partial-domain one-wayness of RSA is equivalentto the one-wayness of RSA. This is a generalization of the result that appears in [10℄for OAEP and in [5℄ for SAEP+, wherein the size of the partial pre-image is alwaysgreater than half the size of the modulus. [10℄ relies upon lattie redution tehniquesfor latties of dimension 2. Here the partial pre-image an be smaller than half the sizeof the modulus (e.g a 160-bit pre-image for a 1024-bit modulus), so we must onsiderlatties of higher dimension. The extension was announed in [10℄ and [5℄, even if theproper estimates were not worked out.The tehnique goes as follows. Given y = xe mod N , we must �nd x. We obtainthe most signi�ant bits of x ��i mod N for random integers �i 2 ZN, by querying forthe partial pre-image of yi = y �(�i)e mod N . Finding x from the most signi�ant bitsof the x � �i mod N is a Hidden Number Problem modulo N . We use an algorithmsimilar to [6℄ to eÆiently reover x.Lemma 2. Let A be an algorithm that on input y, outputs a q-set ontaining thek1 most signi�ant bits of yd mod N , within time bound t, with probability ", where2k�1 � N < 2k, k1 � 64 and k=(k1)2 � 2�6. Then there exists an algorithm B thatsolves the RSA problem with suess probability "0 within time bound t0, where:"0 � " � ("n�1 � 2�k=8) (11)t0 � n � t+ qn � poly(k)n = � 5k4k1�Proof. Algorithm B reeives y as input and must output yd mod N . It generates theintegers �i 2 ZN at random for 1 � i � n � 1, where n is an integer whih will bedetermined later.Let y0 = y and yi = y � (�i)e mod N for 1 � i � n�1. We write for 0 � i � n�1:(yi)d = !i � 2k�k1 + si mod Nwhere 0 � si < 2k�k1 . Letting k2 = k � k1, we obtain for 1 � i � n� 1:�i � (!0 � 2k2 + s0) = !i � 2k2 + si mod NTherefore letting i = 2k2 � (�i � !0 � !i) mod N , we obtain the following system ofn� 1 equations in the n unknown si:S : si � �i � s0 = i mod N for 1 � i � n� 1 (12)The following lemma, whose proof is given in appendix C, shows that given the iand �i, the si an be reovered in time polynomial in k. We denote by:kxk1 = max jxijthe in�nite norm of vetor x.



11Lemma 3. If the previous set S of equations has a solution s = (s0; : : : ; sn�1) suhthat ksk1 < 2k2 , then for all values of �, exept a fration:2n�(k2+n+2)Nn�1 (13)of them, this solution is unique and an be omputed in time polynomial in n and inthe size of N .Consequently, algorithm B runs n times algorithm A with input yi. It obtains nsets of q integers, eah set ontaining !i. Then it applies qn times the algorithm oflemma 3, one exeution of the algorithm enabling to reover the si, with probability:"0 � " � "n�1 � 2n�(k2+n+2)Nn�1 !In appendix D we show that taking n = d5k=(4k1)e we obtain:2n�(k2+n+2)Nn�1 � 2�k=8 (14)whih gives (11). ut5.3 RSA-PSS-E and RSA-PSS-ESThe RSA-PSS-E enryption sheme (K; E ;D) based on the PSS-R padding � withparameters k, k0, and k1 is de�ned as follows:- K generates a k + 1-bit RSA modulus and exponents e and d. The publi key is(N; e) and the private key is (N; d).- E(M; r): given a message M 2 f0; 1gk�k0�k1 and a random r 2 f0; 1gk0 , theenryption algorithm outputs the iphertext: = (�(M; r))e mod N- D(): the deryption algorithm reovers x = d mod N . It returns Rejet if themost signi�ant bit of x is not zero. It writes x as 0k!ks where ! is a k1-bit stringand s is a k� k1 bit string. It writes Mkr = G(!)� s. If ! = H(M jjr), the algorithmreturns M , otherwise it returns Rejet.The RSA-PSS-ES enryption and signature sheme (K; E ;D;S;V) is de�ned asfollows:- K, E(M; r) and D() are idential to RSA-PSS-E.- S(M; r): given a message M 2 f0; 1gk�k0�k1 and a random value r 2 f0; 1gk0 ,the signing algorithm omputes the signature:� = �(M; r)d mod N- V(�): given the signature �, the veri�ation algorithm reovers x = �e mod N .It returns Rejet if the most signi�ant bit of x is not zero. It writes x as 0k!ks where !is a k1-bit string and s is a k�k1 bit string. It writesMkr = G(!)�s. If ! = H(M jjr),the algorithm aepts the signature and returns M , otherwise it returns Rejet.



125.4 Seurity of RSA-PSS-E and RSA-PSS-ESCombining lemma 1 and lemma 2, we obtain the following theorem whih shows thatthe enryption sheme RSA-PSS-E is provably seure in the random orale model,assuming that inverting RSA is hard.Theorem 4. Let A be a CCA2-adversary against the semanti seurity of the RSA-PSS-E sheme (K; E ;D), with advantage " and running time t, making qD, qH andqG queries to the deryption orale and the hash funtion H and G, respetively. Weassume that k1 � 64 and k=(k1)2 � 2�6. Then we an invert RSA with probability "0greater than: "0 � �"� qH � 2�k0 � qD2�k1�n � 2�k=8within time bound t0 � n�t+(qH+qG)n �poly(k)+n�qH �O(k3), where n = d5k=(4k1)e.We obtain a similar theorem for the semanti seurity of the RSA-PSS-ES enryp-tion and signature sheme (from Lemma 2 and Lemma 4 in appendix A).Theorem 5. Let A be a CCA2-adversary against the semanti seurity of the RSA-PSS-ES sheme (K; E ;D;S;V), with advantage " and running time t, making qD, qsig,qH and qG queries to the deryption orale, the signing orale and the hash funtionH and G, respetively. Provided that k1 � 64 and k=(k1)2 � 2�6, RSA an be invertedwith probability "0 greater than:"0 � �"� (qH + qsig) � 2�k0 � (qD + (qH + qsig)2) � 2�k1�n � 2�k=8within time bound t0 � n � t+ (qH + qG + qsig)n � poly(k), where n = d5k=(4k1)e.For the unforgeability of the RSA-PSS-ES enryption and signature sheme, weobtain a better seurity bound than the general result of Theorem 3, by relying uponthe homomorphi properties of RSA. The proof of the following theorem is similar tothe seurity proof of PSS in [4℄ and is given in appendix E.Theorem 6. Let A be an adversary against the unforgeability of the PSS-ES sheme(K; E ;D;S;V), with suess probability " and running time t, making qD, qsig, qH andqG queries to the deryption orale, the signing orale, and the hash funtions H andG, respetively. Then RSA an be inverted with probability "0 greater than:"0 � "� �(qH + qsig)2 + qD + 1� � (2�k0 + 2�k1) (15)within time bound t0 � t+ (qH + qsig) � O(k3).Note that as for OAEP [10℄, the seurity proof for enrypting with PSS is far frombeing tight. This means that it does not provide a meaningful seurity result for amoderate size modulus (e.g., 1024 bits). For the seurity proof to be meaningful inpratie, we reommend to take k1 � k=2 and to use a larger modulus (e.g., 2048bits).
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14A Proof of Theorem 2The theorem follows from inequality (1) and the following lemma.Lemma 4. Let A be an adversary against the semanti seurity of PSS-ES, withsuess probability " and running time t, making qD, qsig, qH and qG queries to thederyption orale, the signing orale, and the hash funtions H and G, respetively.Then, the suess probability Sus�pd�ow(qG; t0) is greater than:"� (qH + qsig) � 2�k0 � qD2�k1 � (qH + qsig)2 � 2�k1where t0 � t+ (qH + qsig) � Tf , and Tf denotes the time omplexity of f .Proof. The proof is very similar to the proof of lemma 1. The top-level desription ofthe redution B is the same and the simulation of the deryption orale is the same.However, orales H and G are simulated di�erently. Instead of simulating H and Gso that �(M; r) = y is a random integer, we simulate H and G so that �(M; r) = f(x)for a known random x, whih allows to answer the signature query for M .Simulation of orales G and H and signing orale:When reeiving the query Mkr to H, we generate a random x 2 f0; 1gk andompute y = f(x). We denote y = !ks. If ! never appeared before, we let G(!) =s� (Mkr) and return !, otherwise we abort.When reeiving a query ! for G, if G(!) has already been de�ned, we return G(!),otherwise we return a random (k � k1)-bit integer.When we reeive a signature query for M , we generate a random k0-bit integer r.If Mkr was queried to H before, we know !; s; y and x suh that:H(Mkr) = ! and G(!) = s� (Mkr) and y = f(x) = !ksso we return the orresponding signature x. If Mkr was never queried before, wesimulate anH-query forMkr as previously: we pik a random x 2 f0; 1gk and omputey = f(x). We denote y = !ks. If ! never appeared before, we let H(Mkr) = !,G(!) = s� (Mkr) and return the signature x, otherwise we abort.AnalysisAs in lemma 1, we denote by AskG the event: \!� has been asked to G" and byAskH the event: \there exists M 0 suh that M 0jjr� has been queried to H"; we denoteby DBad the event: \a valid iphertext has been rejeted by our simulation of thederyption orale D". Moreover, we denote by SBad the event: \the redution abortswhen answering a H-orale query or a signature query". As previously, we have:Pr[AskHj:AskG℄ � (qH + qsig) � 2�k0and Pr[DBad℄ � qD � 2�k1When answering an H-orale query or a signature query, the integer ! whih is gener-ated is uniformly distributed beause f is a permutation. Moreover, at most qH + qsig



15values of ! an appear during the redution. Therefore the probability that the re-dution aborts when answering an H-orale query or a signature query is at most(qH + qsig) � 2�k1 , whih gives:Pr[SBad℄ � (qH + qsig)2 � 2�k1We denote by Bad the event:Bad = AskG _ AskH _ DBad _ SBadLet S denote the event: \the adversary outputs the orret value for b, i.e. b = b0".Conditioned on :Bad, our simulation of orales G;H, D and of the signing orale areindependent of b, and therefore the adversary's view is independent of b. This gives:Pr[Sj:Bad℄ = 12 (16)Moreover, onditioned on :Bad, the adversary's view is the same as when interatingwith (perfet) random orales, deryption orale and signing orale, whih gives:Pr[S ^ :Bad℄ � 12 + "2 � Pr[Bad℄ (17)whih yields as in Lemma 1: Pr[Bad℄ � " (18)and eventually:Pr[AskG℄ � "� (qH + qsig) � 2�k0 � qD � 2�k1 � (qH + qsig)2 � 2�k1B Proof of Theorem 3From A we onstrut an algorithm B, whih reeives as input  and outputs � suhthat  = f(�).Top-level desription of the redution B:1. B is given a funtion f and  = f(�), for a random integer �.2. B selets uniformly at random an integer j 2 [1; qH ℄.3. B runs A with f . It simulates the deryption orale, the signing orale andrandom orales H and G as desribed below. B maintains a ounter i for the i-thquery Mikri to H. The orales H and G are simulated in suh a way that if i = jthen �(Mikri) = .4. B reeives from A a forgery �. Letting M and r be the orresponding messageand random, if (M; r) = (Mj ; rj) then f(�) = �(Mjkrj) =  and B outputs �.Simulation of the orales G, H, D and signing orale:When reeiving the i-th query Mikri to H, we distinguish two ases: if i 6= j, wegenerate a random xi 2 f0; 1gk and ompute yi = f(xi). If i = j, we let yi = . In bothases we denote yi = !iksi. If !i never appeared before, we let G(!i) = si � (Mikri)and return !i, otherwise we abort.When reeiving a query ! for G, if G(!) has already been de�ned, we return G(!),otherwise we return a random (k � k1)-bit integer.



16 When we reeive a signature query for M , we generate a random k0-bit integer r.If Mkr was queried to H before, we have Mkr =Mikri for some i. If i 6= j, we have:H(Mikri) = !i; G(!i) = si � (Mikri) and yi = !iksi = f(xi)so we return the orresponding signature xi, otherwise we abort. If Mkr was neverqueried before, we simulate an H-query for Mkr as previously: we generate a randomx 2 f0; 1gk and ompute y = f(x). We denote y = !ks. If ! never appeared before,we let H(Mkr) = ! and G(!) = s� (Mkr) and return the signature x, otherwise weabort.The simulation of the deryption orale is idential to that of Lemma 1.Analysis:Let � be the forgery sent by the adversary. If ! was not queried to G, we simulatea query to G as previously. Let !ks = f(�) and Mkr = G(!)� s. If Mkr was neverqueried to H, then H(Mkr) is unde�ned beause there was no signature query for M ;the probability that H(Mkr) = ! is then 2�k1 . Otherwise, let (M; r) = (Mi; ri) bethe orresponding query to H. If i = j, then �(Mj ; rj) =  = f(�) and B sueeds ininverting f .Conditioned on i = j, our simulation of H and the signing orale are perfet, unlesssome ! appears twie, whih happens with probability less than (qH + qsig)2 �2�k1 . Asin lemma 1, our simulation ofD fails with probability less than qD �2�k1 . Consequently,the redution B sueeds with probability greater than:1qH � �"� 2�k1 � (qH + qsig)2 � 2�k1 � qD � 2�k1�whih gives (10).C Proof of Lemma 3Let b1; : : : ; bd 2 Zn be linearly independent vetors. A lattie L spanned by the vetors(b1; : : : ; bd) is the set of all integer linear ombinations of b1; : : : ; bd. The integer dis alled the rank of the lattie. We say that the lattie is of full rank if n = d. Wedenote by kLk1 the in�nite norm of the shortest non-zero vetor of L.Given � = (�1; : : : ; �n�1) 2 (ZN)n�1, onsider the set:L(�) = fs = (s0; : : : ; sn�1) 2 Znjsi � �i � s0 = 0 mod N for all 1 � i � n� 1gThe set L is a full rank lattie spanned by the n vetors:(1; �1; : : : ; �n�1); (0; N; 0; : : : ; 0); � � � ; (0; : : : ; 0; N) (19)The proof of lemma 3 is based on the following three lemmas:Lemma 5. The probability over � 2 Zn�1N that kL(�)k1 < C is less than(3C)nNn�1



17Proof. To eah L(�) suh that kL(�)k1 < C we an assoiate a shortest vetor b(�)suh that kb(�)k1 < C. There are at most (2C + 1)n suh vetors.Let b0 be the �rst omponent of b(�). If b0 = 0 mod N , then all the omponentsof b(�) are equal to 0 modulo N . This gives kb(�)k1 � N , and the �rst vetor in(19) is shorter for kk1 than b(�). Therefore b0 6= 0 mod N .If b0 is invertible modulo N , this uniquely determines �. Otherwise, let p and qbe the prime fators of N . If b0 = 0 mod p, then b0 6= 0 mod q and this uniquelydetermines � modulo q, so there are at most pn�1 possible values for �. Moreover, allthe omponents of b(�) are equal to 0 modulo p, and for any C the number of suhvetors b(�) is at most: �2 � �Cp �+ 1�n � 1 � �3Cp �nwhih orresponds to at most:�3Cp �n � pn�1 = (3C)nppossible values for �. The same holds if b0 = 0 mod q. Therefore there are at most:(2C + 1)n + (3C)n � �1p + 1q� � (3C)nvetors � suh that kL(�)k1 < C. utLemma 6. If kL(�)k1 � 2 �B, then the solution s of the system S with ksk1 < B isunique and is equal to T �P , where T = (0; 1; : : : ; n�1) and P is the losest vetorto T for kk1.Proof. Let s0 be another solution of S with ks0k1 < B. Then s � s0 2 L(�) andks� s0k1 < 2 �B whih gives s = s0 sine kL(�)k1 � 2 � BLet s0 = T � P where P 2 L(�) is a losest vetor to T for kk1. Sine T � s isa vetor of L(�), we have:ks0k1 = kT � P k1 � kT � (T � s)k1 = ksk1ks0 � sk1 � ks0k1 + ksk1 � 2ksk1 < 2 �Band so s0 = s. utLemma 7. Let (b1; : : : ; bn) be a basis of a lattie L � Zn suh that kLk1 � B � (1 +pn � 2n=2) and T a vetor whih distane to L for kk1 is stritly less than B. Thereexists a polynomial-time algorithm taking as input (b1; : : : ; bn) and T and outputtinga losest vetor P 2 L to T for kk1.Proof. The proof is based on the following theorem:



18Theorem 7 (Babai [1℄). There exists a polynomial time algorithm whih, given abasis (b1; : : : ; bn) of a lattie L � Zn, approximates the losest vetor problem for theEulidean norm to a fator 2n=2.Let P 0 be the vetor obtained by running Babai's algorithm on (b1; : : : ; bn) andT . Let P a losest vetor to T for kk1. We show that P 0 = P .Letting P 00 be a losest vetor to T for the Eulidean norm, we have:kT � P 0k � 2n=2kT � P 00kMoreover, sine P 00 is a losest vetor to T for kk, we have:kT � P 00k � kT � P kThe distane of T to L for kk1 is stritly less than B, therefore:kT � P k1 < BThis gives:kT � P 0k1 � kT � P 0k � 2n=2kT � P k � pn � 2n=2kT � P k1 < Bpn � 2n=2and eventuallykP � P 0k1 � kP � T k1 + kT � P 0k1 < B(1 +pn � 2n=2)and so P = P 0. utResuming the proof of lemma 3, we take B = 2k2 and C = 2k2(1 +pn � 2n=2). Weonsider the latties L(�) suh that kL(�)k1 � C. From lemma 5, and using:3C � 2k2+n+2the proportion of latties L(�) suh that kL(�)k1 < C is smaller than:2n�(k2+n+2)Nn�1From lemma 6 the solution s of the system S with ksk1 < 2k2 is unique and equalto T �P , where T = (0; 1; : : : ; n�1) and P is the losest vetor to T for kk1. Fromlemma 7, and using the basis (19) for L(�), we an ompute P in time polynomial inn and in the size of N .D Proof of Inequality (14)We assume that: k1 � 64 and k � 2�6 � (k1)2 (20)We have: 2n�(k2+n+2)Nn�1 � 2n�(k�k1+n+2)�(n�1)�(k�1)� 2n�(�k1+n+3)+k�1



19Letting f(x) = x � (�k1 + x + 3) + k � 1, we have f 0(x) = �k1 + 2 � x + 3. For0 � x � 5k=(4k1) + 1 and using (20), we obtain f 0(x) � 0. We take:n = � 5k4k1�f is then a dereasing funtion for 0 � x � n, therefore:f � 5k4k1� � f(n)whih yields using (20): f(n) � �k=8from whih we obtain inequality (14).E Proof of Theorem 6The proof is similar to the seurity proof of PSS in [4℄. The only di�erene is thatwe simulate a deryption orale as in theorem 3. This adds an error probability ofqD � 2�k1 .


