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Abstract. A common practice to encrypt with RSA is to first apply a padding scheme
to the message and then to exponentiate the result with the public exponent; an example
of this is OAEP. Similarly, the usual way of signing with RSA is to apply some padding
scheme and then to exponentiate the result with the private exponent, as for example
in PSS. Usually, the RSA modulus used for encrypting is different from the one used
for signing. The goal of this paper is to simplify this common setting. First, we show
that PSS can also be used for encryption, and gives an encryption scheme semantically
secure against adaptive chosen-ciphertext attacks, in the random oracle model. As a
result, PSS can be used indifferently for encryption or signature. Moreover, we show
that PSS allows to safely use the same RSA key-pairs for both encryption and signature,
in a concurrent manner. More generally, we show that using PSS the same set of keys
can be used for both encryption and signature for any trapdoor partial-domain one-
way permutation. The practical consequences of our result are important: PKIs and
public-key implementations can be significantly simplified.

Key-words: Probabilistic Signature Scheme, Provable Security.

1 Introduction

A very common practice for encrypting a message m with RSA is to first apply a
padding scheme g, then raise u(m) to the public exponent e. The ciphertext ¢ is then:

c¢c=pu(m)® mod N

Similarly, for signing a message m, the common practice consists again in first
applying a padding scheme p' then raising p'(m) to the private exponent d. The
signature s is then:

s=p'(m)? mod N

For various reasons, it would be desirable to use the same padding scheme pu(m)
for encryption and for signature: in this case, only one padding scheme needs to be
implemented. Of course, the resulting padding scheme p(m) should be provably secure
for encryption and for signing. We say that a padding scheme is universal if it satisfies
this property.

The strongest public-key encryption security notion was defined in [16] as indis-
tinguishability under an adaptive chosen ciphertext attack. An adversary should not
be able to distinguish between the encryption of two plaintexts, even if he can obtain
the decryption of ciphertexts of his choice. For digital signature schemes, the strongest
security notion was defined by Goldwasser, Micali and Rivest in [11], as existential
unforgeability under an adaptive chosen message attack. This notion captures the



property that an adversary cannot produce a valid signature, even after obtaining the
signature of (polynomially many) messages of his choice.

In this paper, we show that the padding scheme PSS [4], which is originally a prov-
ably secure padding scheme for producing signatures, can also be used as a provably
secure encryption scheme. More precisely, we show that PSS offers indistinguishabil-
ity under an adaptive chosen ciphertext attack, in the random oracle model, under
the partial-domain one-wayness of the underlying permutation. Partial-domain one-
wayness, introduced in [10], is a formally stronger assumption than one-wayness. How-
ever, for RSA, partial-domain one-wayness is equivalent to (full domain) one-wayness
and therefore RSA-PSS encryption is provably secure under the sole assumption that
RSA is one-way.

Generally, in a given application, the RSA modulus used for encrypting is different
from the RSA modulus used for signing; our setting (and real-world PKIs) would
be further simplified if one could use the same set of keys for both encryption and
signature (see [12]). In this paper, we show that using PSS, the same keys can be
safely used for encryption and for signature.

2 Public-Key Encryption

A public-key encryption scheme is a triple of algorithms (K, £, D) where:

- K is a probabilistic key generation algorithm which returns random pairs of public
and secret keys (pk, sk) depending on some security parameter k,

- £ is a probabilistic encryption algorithm which takes as input a public key pk
and a plaintext M € M, runs on a random tape r € R and returns a ciphertext c. M
and R stand for spaces in which messages and random strings are chosen respectively,

- D is a deterministic decryption algorithm which, given as input a secret key sk
and a ciphertext c, returns the corresponding plaintext M, or Reject.

The strongest security notion for public-key encryption is the aforementioned no-
tion of indistinguishability under an adaptive chosen ciphertext attack. An adversary
should not be able to distinguish between the encryption of two plaintexts, even if
he can obtain the decryption of ciphertexts of his choice. The attack scenario is the
following:

1. The adversary A receives the public key pk with (pk, sk) < IC(1%).

2. A makes decryption queries for ciphertexts y of his choice.

3. A chooses two messages My and M of identical length, and receives the encryption
c of My for a random unknown bit b.

4. A continues to make decryption queries. The only restriction is that the adversary
cannot request the decryption of c.

5. A outputs a bit b, representing its “guess” on b.

The adversary’s advantage is then defined as:
Adv(A) =2 - Pr[t) = b] — 1]

An encryption scheme is said to be secure against adaptive chosen ciphertext attack
(and denoted IND-CCA?2) if the advantage of any polynomial-time bounded adversary
is a negligible function of the security parameter. Usually, schemes are proven to be



IND-CCA?2 secure by exhibiting a polynomial reduction: if some adversary can break the
IND-CCA2 security of the system, then the same adversary can be invoked (polynomially
many times) to solve a related hard problem.

The random oracle model, introduced by Bellare and Rogaway in [2], is a theoreti-
cal framework in which any hash function is seen as an oracle which outputs a random
value for each new query. Actually, a security proof in the random oracle model does
not necessarily imply that a scheme is secure in the real world (see [7]). Nevertheless,
it seems to be a good engineering principle to design a scheme so that it is provably se-
cure in the random oracle model. Many encryption and signature schemes were proven
to be secure in the random oracle model.

3 Encrypting with PSS-R

In this section we prove that given any trapdoor partially one-way permutation f,
the encryption scheme defined by first applying PSS with message recovery (denoted
PSS-R) and encrypting the result with f achieves the strongest security level for an
encryption scheme, in the random oracle model.

3.1 The PSS-R Padding Scheme

PSS-R, defined in [4], is parameterized by the integers k, ko and k; and uses two hash
functions:

H:{0,1}* % 5 {0,1}* and G:{0,1}* — {0,1}F "
PSS-R takes as input a (k — kg — k1)-bit message M and a kg-bit random integer r.
As illustrated in figure 1, PSS-R outputs:
p(M,r) = wl|s

where | stands for concatenation, w = H(M||r) and s = G(w) & (M||r). Actually, in
[4], M||r is used as the argument to H and r| M is used as the mask to xor with G(w).
Here for simplicity we use M||r in both places, but the same results apply either way.

Ml|r
H
G q
w s

Fig. 1. The PSS-R padding scheme



3.2 The PSS-E Encryption Scheme

The new encryption scheme (K,&,D), that we denote PSS-E, is based on p and a
k-bit trapdoor permutation f.

- K generates the public key f and the secret key f~!.
- E&(M,r): given a message M € {0,1}*~%o=k1 and a random r € {0,1}%, the
encryption algorithm outputs the ciphertext:

¢ = f(u(M,r))

- D(c): the decryption algorithm recovers (w, s) = f~!(c) and then M||r = G(w)®s.
If w= H(M||r), the algorithm returns M, otherwise it returns Reject.

3.3 The Underlying Problem

The security of PSS-E is based on the difficulty of inverting f without knowing f .
As in [10], we use two additional related problems: the partial-domain one-wayness
and the set partial-domain one-wayness of f:

- (7,¢)-one-wayness of f, means that for any adversary A who wishes to re-
cover the full pre-image (w,s) of f(w,s) in time less than 7, A’s success probability
Succ®(A) is upper-bounded by &:

Succ™(A) = PrlA(f(w, s)) = (w,s)] < e

- (7, ¢)-partial-domain one-wayness of f, means that for any adversary A who
wishes to recover the partial pre-image w of f(w,s) in time less than 7, A’s success
probability SuccP? % (A) is upper-bounded by e:

SuccPd " (A) = Eg[A(f(w, s)) =w|]<e

- (¢, 7,¢)-set partial-domain one-wayness of f, means that for any adversary
A who wishes to output a set of £ elements which contains the partial pre-image w of
f(w, s), in time less than 7, A’s success probability Succ® P4=°"(A) is upper-bounded
by e:
Succ® PdOW(A) = Prlw € A(f(w,5))] < ¢

As in [10], we denote by Succ®(7), (resp. SuccP? °(7) and Succ® P4 "°"(/,7)) the
maximal probability Succ® (A), (resp. SuccPd°Y(A) and Succ® P47°"(A)), over all
adversaries whose running times are less than 7. For any 7 and £ > 1, we have:

Succ® P4To(¢, 7) > SuccPd (1) > Succ®™ (1)

Moreover, by randomly selecting any element in the set returned by the adversary
against the set partial-domain one-wayness, one can break the partial-domain one-
wayness with probability 1/¢, which gives:

SuccPd=O(7) > SuccsPI=O% (£, ) /¢ (1)

We will see in Section 5 that for RSA, the three problems are polynomially equivalent.



3.4 Security of PSS-E

The following theorem shows that PSS-E is semantically secure under adaptive cho-
sen ciphertext attacks, in the random oracle model, assuming that the underlying
permutation is partially one-way.

Theorem 1. Let A be a CCAZ-adversary against the semantic security of PSS-E
(K,E,D), with advantage € and running time t, making qp, qu and qg queries to the
decryption oracle and the hash functions H and G, respectively. Then:

1
Succpd*°""(t’) >

> — (6 —qu2 " — q;ﬂ"“)
qH +4qa

where t' <t + qy - T, and Ty denotes the time complezity of f.
The theorem follows from inequality (1) and the following lemma:
Lemma 1. Using the notations introduced in theorem 1, we have:
Succ® PN (g + gg, 1) > e —qu 27" —qp-27H (2)

Proof. We describe a reduction B which using A, constructs an adversary against
the set partial-domain one-wayness of f. We start with a top-level description of the
reduction and then show how to simulate the random oracles G, H and the decryption
oracle D. Eventually we compute the success probability of 5.

Top-level description of the reduction B:

1. B is given a function f and ¢* = f(w*,s*), for a random w* and s*. B’s goal is
to output a list which contains the partial pre-image w* of ¢*.

2. B runs A with f and gets { My, M, }. It chooses a random bit b and gives ¢* as a
ciphertext for M. B simulates the decryption oracle H, D and G as described below.

3. B receives from A the answer ' and outputs the list of queries asked to G.

Simulation of the random oracles G, H and D.

The simulation of G and H is very simple: a random answer is returned for each
new query of G and H. Moreover, when w is the answer of a query to H, we simulate
a query for w to G, so that G(w) is defined.

On query ¢ to the decryption oracle, the reduction B looks at each query M'||r’
to H and computes:

W' = H(M'||r') and s’ = G(w') ® (M'||r")
Then if ¢ = f(w',s") the reduction B returns M'. Otherwise, the reduction outputs
Reject.

Analysis:
Since ¢* = f(w*, s*) is the ciphertext corresponding to M}, we have the following
constraint for the random oracles G and H:

H(M[|r*) = w" and G(w") = s" & (Mp]r") (3)

We denote by AskG the event: “w* has been asked to G” and by AskH the event:
“there exists M’ such that M'||r* has been queried to H”.



If w* was never queried to G, then G(w*) is undefined and r* is then a uniformly
distributed random variable. Therefore the probability that there exists M’ such that
(M',r*) has been asked to H is at most gz - 270, This gives:

Pr[AskH|=AskG] < qp - 20 (4)

Our simulation of D can only fail by rejecting a valid ciphertext. We denote by
DBad this event. Letting ¢ = f(w, s) be the ciphertext queried to D and

M|r=Gw)®s

we reject a valid ciphertext if H(M||r) = w while M||r was never queried to H.
However, if M||r was never queried to H, then H(M]||r) is randomly defined. Namely
if the decryption query occured before ¢* was sent to the adversary, then constraint (3)
does not apply and H(M]||r) is randomly defined. Otherwise, if the decryption query
occured after ¢* was sent to the adversary, then ¢ # ¢* implies (M, r) # (M,,r*) and
H(M||r) is still randomly defined. In both cases the probability that H(M,r) = w is
then 27%1 which gives:

Pr[DBad] < ¢gp - 2% (5)

Let us denote by Bad the event: “w* has been queried to G or (M',r*) has been
queried to H for some M’ or the simulation of D has failed”. Formally:

Bad = AskG V AskH Vv DBad (6)

Let us denote by S the event: “the adversary outputs the correct value for b, i.e.,
b = b'”. Conditioned on —Bad, our simulations of G, H and D are independent of b,
and therefore A’s view is independent of b as well. This gives:

Pr[S|~Bad] = % (")

Moreover, conditioned on —Bad, the adversary’s view is the same as when interacting
with (perfect) random and decryption oracles, which gives:

Pr[S A —Bad] > % + % ~ Pr[Bad] (8)
From (7) we obtain
Pr[S A =Bad] = Pr[S|-Bad] - Pr[-Bad] = %(1 _ Pr[Bad))

which gives using (8):
Pr[Bad] > ¢ (9)

From (6) we have:

Pr[Bad] < Pr[AskG V AskH] + Pr[DBad]
< Pr[AskG] + Pr[AskH A —=AskG| + Pr[DBad|
< Pr[AskG] + Pr[AskH|—AskG] + Pr[DBad]

which yields using (4), (5) and (9):
Pr[AskG] > ¢ — qp - 2 ko _gp .27k

and hence (2) holds. This terminates the proof of lemma 1. O



4 Signing and Encrypting with the same Public-Key

In this section we show that when using PSS, the same public key can be used for
encryption and signature in a concurrent manner. For RSA, this means that the same
pair (N, e) can be used for both operations. In other words, when Alice sends a message
to Bob, she encrypts it using Bob’s public key (N,e); Bob decrypts it using the
corresponding private key (IV,d). To sign a message M, Bob will use the same private
key (N, d). As usual, anybody can verify Bob’s signature using his public pair (N, e).

Although provably secure (as we will see hereafter), this is contrary to the folklore
recommendation that signature and encryption keys should be distinct. This recom-
mendation may prove useful is some cases; this is particularly true when a flaw has
been found in the encryption scheme or in the signature scheme. In our case, we will
prove that when using the PSS-R padding scheme, a decryption oracle does not help
the attacker in forging signatures, and a signing oracle does not help the attacker in
gaining information about the plaintext corresponding to a ciphertext.

Nevertheless, we advise to be very careful when implementing systems using the
same keys for encrypting and signing. For example, if there are some implementation
errors in a decryption server (see for example [14]), then an attacker could use this
server to create forgeries.

4.1 Signature Schemes and their Security

Definition 1 (signature scheme). A signature scheme (Gen,Sign, Verify) is de-
fined as follows:

- The key generation algorithm Gen is a probabilistic algorithm which given 1%,
outputs a pair of matching public and private keys, (pk, sk).

- The signing algorithm Sign takes the message M to be signed, the public key pk
and the private key sk, and returns a signature x = Sign (M). The signing algorithm
may be probabilistic.

- The verification algorithm Verify takes a message M, a candidate signature x’
and pk. It returns a bit Verifypk(M, x'), equal to one if the signature is accepted, and
zero otherwise. We require that if x < Signg (M), then Verify,, (M,z) = 1.

In the existential unforgeability under an adaptive chosen message attack scenario,
the forger can dynamically obtain signatures of messages of his choice and attempts
to output a valid forgery. A valid forgery is a message/signature pair (M, z) such that
Verify, (M, z) =1 whereas the signature of M was never requested by the forger.

4.2 The PSS-ES Encryption and Signature Scheme

The PSS-ES encryption and signature scheme (K,&,D,S,V) is based on PSS-R and
a k-bit trapdoor permutation f. As for the PSS-R signature scheme, the signature
scheme in PSS-ES is with message recovery: this means that the message is recovered
when verifying the signature. In this case, only messages of fixed length k—ky —k; can
be signed. To sign messages M of arbitrary length, it suffices to apply a collision-free
hash function to M prior to signing.

- K generates the public key f and the secret key f~!.



- £(M,r): given a message M € {0,1}*=%0—F1 and a random value r € {0,1}%0,
the encryption algorithm computes the ciphertext:

¢ = f(u(M,r))

- D(c): the encryption algorithm recovers (w,s) = f~!(c) and computes
Mlr=Gw)®s

If w= H(M||r), the algorithm returns M, otherwise it returns Reject.
- S(M,r): given a message M € {0,1}f=%0=F1 and a random value r € {0, 1}%0,
the signing algorithm computes the signature:

o= f"H(u(M,r))

- V(o): given the signature o, the verification algorithm recovers (w, s) = f(o) and
computes:

M|r=Gw)®s

If w= H(M]||r), the algorithm accepts the signature and returns M. Otherwise, the
algorithm returns Reject.

4.3 Semantic Security

We must ensure that an adversary is still unable to distinguish between the encryption
of two messages, even if he can obtain the decryption of ciphertexts of his choice, and
the signature of messages of his choice. The attack scenario is consequently the same
as previously, except that the adversary can also obtain the signature of messages he
wants.

The following theorem, whose proof is given in Appendix A, shows that PSS-ES
is semantically secure under adaptive chosen ciphertext attacks, in the random oracle
model, assuming that the underlying permutation is partial domain one-way.

Theorem 2. Let A be an adversary against the semantic security of PSS-ES, with
success probability € and running time t, making qp, qsig, qu and qg queries to the
decryption oracle, the signing oracle, and the hash functions H and G, respectively.
Then, SuccPd~°Y(¢') is greater than:

1

—k —k 2 —k
—— e — (g7 + Gsig) - 27"° —qp27 "' — (qu + qsig)” - 2 1)
e o (- e+ (a1 + i)

where t' <t + (qu + Gsig) - T, and Ty denotes the time complezity of f.

4.4 Unforgeability

For signature schemes, the strongest security notion is the previously introduced ex-
istential unforgeability under an adaptive chosen message attack. An attacker cannot
produce a valid signature, even after obtaining the signature of (polynomially many)
messages of his choice. Here the adversary can also also obtain the decryption of ci-
phertexts of his choice under the same public-key. Consequently, the attack scenario
is the following:



1. The adversary A receives the public key pk with (pk, sk) «+ K(1%).

2. A makes signature queries for messages M of his choice. Additionally, he makes
decryption queries for ciphertexts y of his choice.

3. A outputs the signature of a message M’ which was not queried for signature
before.

An encryption-signature scheme is said to be secure against chosen-message attacks
if for any polynomial-time bounded adversary, the probability to output a forgery is
negligible.

The following theorem shows that PSS-ES is secure against an adaptive chosen
message attack. The proof is similar to the security proof of PSS [4] and is given in
Appendix B.

Theorem 3. Let A be an adversary against the unforgeability of PSS-ES, with success
probability € and running time t, making qp, qsig, qu and g queries to the decryption
oracle, the signing oracle, and the hash oracles H and G, respectively. Then Succ®™ (t')

1s greater than:

i (67 ((QH+qsig)2+QD+1) '27]“) (10)
qH

where t' <t + (qu + qsig) - T, and Ty denotes the time complexity of f.

5 Application to RSA

5.1 The RSA cryptosystem

The RSA cryptosystem, invented by Rivest, Shamir and Adleman [17], is the most
widely used cryptosystem today. In this section, we show that by virtue of RSA’s
homomorphic properties, the partial-domain one-wayness of RSA is equivalent to the
one-wayness of RSA. This enables to prove that the encryption scheme RSA-PSS-E
and the encryption and signature scheme RSA-PSS-ES are semantically secure against
chosen ciphertext attacks, in the random oracle model, assuming that inverting RSA
is hard.

Definition 2 (The RSA Primitive). The RSA primitive is a family of trapdoor
permutations, specified by:

- The RSA generator RSA, which on input 1¥, randomly selects two distinct k/2-
bit primes p and q and computes the modulus N = p-q. It randomly picks an encryp-
tion exponent e € ZZ(N)’ computes the corresponding decryption exponent d = e~
mod ¢(N) and returns (N, e, d).

- The encryption function f : Z% — Z% defined by f(z) = z° mod N.

- The decryption function f~': Z% — Z% defined by f~'(y) = y? mod N.

In the following, we state our result in terms of the RSA primitive with a randomly
chosen public exponent. The same results apply to the common practice of choosing
a small public exponent. Actually, using Coppersmith’s algorithm [8] as in [18] for
OAEP [3], it would be possible to obtain tigther bounds for a small public exponent.
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5.2 Partial-domain One-Wayness of RSA

The following lemma shows that the partial-domain one-wayness of RSA is equivalent
to the one-wayness of RSA. This is a generalization of the result that appears in [10]
for OAEP and in [5] for SAEP™, wherein the size of the partial pre-image is always
greater than half the size of the modulus. [10] relies upon lattice reduction techniques
for lattices of dimension 2. Here the partial pre-image can be smaller than half the size
of the modulus (e.g a 160-bit pre-image for a 1024-bit modulus), so we must consider
lattices of higher dimension. The extension was announced in [10] and [5], even if the
proper estimates were not worked out.

The technique goes as follows. Given y = z° mod N, we must find . We obtain
the most significant bits of z-«; mod N for random integers «; € Zy, by querying for
the partial pre-image of y; = y-(;)¢ mod N. Finding z from the most significant bits
of the x - @; mod N is a Hidden Number Problem modulo N. We use an algorithm
similar to [6] to efficiently recover z.

Lemma 2. Let A be an algorithm that on input y, outputs a q-set containing the
ki most significant bits of y¢ mod N, within time bound t, with probability e, where
k=1 < N < 2% ky > 64 and k/(k1)? < 275. Then there exists an algorithm B that
solves the RSA problem with success probability €' within time bound t', where:

e >e-(e" — 27k (11)

Proof. Algorithm B receives y as input and must output ¥y mod N. It generates the
integers «; € Zy at random for 1 < i < n — 1, where n is an integer which will be
determined later.

Let yo =y and y; =y ()¢ mod N for 1 <i <n-—1. We write for 0 <i <n—1:
(yi)d —w;-28M 45, mod N
where 0 < s; < 2k~ k1, Letting ko = k — k1, we obtain for 1 <7 <n — 1:
a; - (wg - ok2 4 80) = w; 2F2 4 g mod N

Therefore letting ¢; = 2¥2 - (q; - wy — w;) mod N, we obtain the following system of
n — 1 equations in the n unknown s;:

S: si—a;-s9=¢; mod N forl1<i<n-—1 (12)

The following lemma, whose proof is given in appendix C, shows that given the ¢;
and «y, the s; can be recovered in time polynomial in k. We denote by:

|00 = max |z;|

the infinite norm of vector .
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Lemma 3. If the previous set S of equations has a solution s = (sg,...,8p_1) such

that ||s|ls < 2%2, then for all values of ., except a fraction:
gn-(k2+n+2)
T (13)

of them, this solution is unique and can be computed in time polynomial in n and in
the size of N.

Consequently, algorithm B runs n times algorithm A with input y;. It obtains n
sets of ¢ integers, each set containing w;. Then it applies ¢" times the algorithm of
lemma 3, one execution of the algorithm enabling to recover the s;, with probability:

on-(k2+n+2)
l n—1
g€ (5 T TN

In appendix D we show that taking n = [5k/(4k1)] we obtain:

2n~(k2+n+2)

<2 (14)

which gives (11). 0

5.3 RSA-PSS-E and RSA-PSS-ES

The RSA-PSS-E encryption scheme (K, &, D) based on the PSS-R padding p with
parameters k, kg, and k7 is defined as follows:

- K generates a k 4+ 1-bit RSA modulus and exponents e and d. The public key is
(N,e) and the private key is (N, d).

- E(M,r): given a message M € {0,1}*~%o=k1 and a random r € {0,1}%, the
encryption algorithm outputs the ciphertext:

c=(u(M,r)) mod N

- D(c): the decryption algorithm recovers = ¢ mod N. It returns Reject if the
most significant bit of x is not zero. It writes = as 0||w||s where w is a k;-bit string
and s is a k — k; bit string. It writes M||r = G(w) & s. If w = H(M||r), the algorithm
returns M, otherwise it returns Reject.

The RSA-PSS-ES encryption and signature scheme (KC,€,D,S,V) is defined as
follows:

- K, £&(M,r) and D(c) are identical to RSA-PSS-E.

- S(M,r): given a message M € {0,1}f=%0=%1 and a random value r € {0, 1}%0,
the signing algorithm computes the signature:

o=pu(M,r)? mod N

- V(0): given the signature o, the verification algorithm recovers x = 0¢ mod N.
It returns Reject if the most significant bit of x is not zero. It writes z as 0||w||s where w
is a k1-bit string and s is a k—kp bit string. It writes M||r = G(w)®s. If w = H(M]||r),
the algorithm accepts the signature and returns M, otherwise it returns Reject.
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5.4 Security of RSA-PSS-E and RSA-PSS-ES

Combining lemma 1 and lemma 2, we obtain the following theorem which shows that
the encryption scheme RSA-PSS-E is provably secure in the random oracle model,
assuming that inverting RSA is hard.

Theorem 4. Let A be a CCA2-adversary against the semantic security of the RSA-
PSS-E scheme (K,E,D), with advantage € and running time t, making qp, qm and
g queries to the decryption oracle and the hash function H and G, respectively. We
assume that k1 > 64 and k/(k1)? < 27%. Then we can invert RSA with probability ¢’
greater than:

&> (6 —qn - 9—ko _ qDT;ﬁ)n _ o—k/8
within time bound t' < n-t+(qu +qa)" -poly(k)+n-qy -O(k?), where n = [5k/(4k;)].

We obtain a similar theorem for the semantic security of the RSA-PSS-ES encryp-
tion and signature scheme (from Lemma 2 and Lemma 4 in appendix A).

Theorem 5. Let A be a CCA2-adversary against the semantic security of the RSA-
PSS-ES scheme (K,&,D,S,V), with advantage € and running time t, making qp, qsig,
qur and qg queries to the decryption oracle, the signing oracle and the hash function
H and G, respectively. Provided that k1 > 64 and k/(k1)? < 275, RSA can be inverted
with probability €' greater than:

g > (5 - (QH + QSig) 270 (QD + (QH + QSig)Q) : 27]61) - 27]6/8
within time bound t' < n -t + (¢u + g¢ + gsig)" - poly(k), where n = [5k/(4k1)].

For the unforgeability of the RSA-PSS-ES encryption and signature scheme, we
obtain a better security bound than the general result of Theorem 3, by relying upon
the homomorphic properties of RSA. The proof of the following theorem is similar to
the security proof of PSS in [4] and is given in appendix E.

Theorem 6. Let A be an adversary against the unforgeability of the PSS-ES scheme
(K,E,D,S,V), with success probability € and running time t, making qp, qsig, qu and
qc queries to the decryption oracle, the signing oracle, and the hash functions H and
G, respectively. Then RSA can be inverted with probability €' greater than:

e' > e~ ((am + asig)* +ap +1) - (277 +277) (15)
within time bound t' <t + (qm + qsig) - O(K?).

Note that as for OAEP [10], the security proof for encrypting with PSS is far from
being tight. This means that it does not provide a meaningful security result for a
moderate size modulus (e.g., 1024 bits). For the security proof to be meaningful in
practice, we recommend to take k; > k/2 and to use a larger modulus (e.g., 2048

bits).
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6 Conclusion

In all existing PKIs different padding formats are used for encrypting and signing;
moreover, it is recommended to use different keys for encrypting and signing. In this
paper we have proved that the PSS padding scheme used in PKCS#1 v.2.1 [15] and
IEEE P1363 [13] can be safely used for encryption as well. We have also proved
that the same key pair can be safely used for both signature and encryption. The
practical consequences of this are significant: besides halving the number of keys in
security systems and simplifying their architecture, our observation allows resource-
constrained devices such as smart cards to use the same code for implementing both
signature and encryption.
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A Proof of Theorem 2

The theorem follows from inequality (1) and the following lemma.

Lemma 4. Let A be an adversary against the semantic security of PSS-ES, with
success probability € and running time t, making qp, qsig, qu and qg queries to the
decryption oracle, the signing oracle, and the hash functions H and G, respectively.
Then, the success probability Succ®> P4~ (g, t') is greater than:

e~ (qm + gsig) - 277 — qp27" — (qu + gsig)? - 27H

where t' <t + (qu + qsig) - T, and Ty denotes the time complexity of f.

Proof. The proof is very similar to the proof of lemma 1. The top-level description of
the reduction B is the same and the simulation of the decryption oracle is the same.
However, oracles H and G are simulated differently. Instead of simulating H and G
so that u(M,r) = y is a random integer, we simulate H and G so that u(M,r) = f(x)
for a known random z, which allows to answer the signature query for M.

Simulation of oracles G and H and signing oracle:

When receiving the query M|jr to H, we generate a random z € {0,1}¥ and
compute y = f(z). We denote y = wl|s. If w never appeared before, we let G(w) =
s @ (M||r) and return w, otherwise we abort.

When receiving a query w for G, if G(w) has already been defined, we return G(w),
otherwise we return a random (k — kq)-bit integer.

When we receive a signature query for M, we generate a random kg-bit integer r.
If M||r was queried to H before, we know w, s,y and z such that:

H(M|r) =w and G(w)=s® (M|r) and y = f(z) = w|s

so we return the corresponding signature x. If M||r was never queried before, we
simulate an H-query for M ||r as previously: we pick a random 2 € {0, 1}* and compute
y = f(x). We denote y = w||s. If w never appeared before, we let H(M]|r) = w,
G(w) = s ® (M]|r) and return the signature z, otherwise we abort.

Analysis

As in lemma 1, we denote by AskG the event: “w* has been asked to G” and by
AskH the event: “there exists M’ such that M'||r* has been queried to H”; we denote
by DBad the event: “a valid ciphertext has been rejected by our simulation of the
decryption oracle D”. Moreover, we denote by SBad the event: “the reduction aborts
when answering a H-oracle query or a signature query”. As previously, we have:

Pr[AskH|=AskG] < (qu + gsig) - 27

and
Pr[DBad] < ¢p-2°%

When answering an H-oracle query or a signature query, the integer w which is gener-
ated is uniformly distributed because f is a permutation. Moreover, at most gy + ¢sig
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values of w can appear during the reduction. Therefore the probability that the re-
duction aborts when answering an H-oracle query or a signature query is at most
(9m + 4sig) - 27k1 which gives:

Pr[SBad] < (qm + qsig)? - 270
We denote by Bad the event:
Bad = AskG Vv AskH v DBad v SBad

Let S denote the event: “the adversary outputs the correct value for b, i.e. b = b'”.
Conditioned on —Bad, our simulation of oracles G, H, D and of the signing oracle are
independent of b, and therefore the adversary’s view is independent of b. This gives:

Pr[S|-Bad] = % (16)

Moreover, conditioned on —Bad, the adversary’s view is the same as when interacting
with (perfect) random oracles, decryption oracle and signing oracle, which gives:
Pr[S A —Bad] >

+ = — Pr[Bad] (17)

N ™

1
2
which yields as in Lemma 1:

Pr[Bad] > ¢ (18)

and eventually:

Pr[AskG] > € — (qu + qsig) - 27" —an - 27 — (i + qsig)* - 27"

B Proof of Theorem 3

From A we construct an algorithm B, which receives as input ¢ and outputs 1 such
that ¢ = f(n).

Top-level description of the reduction B:

1. B is given a function f and ¢ = f(n), for a random integer 7.

2. B selects uniformly at random an integer j € [1, ¢p].

3. B runs A with f. It simulates the decryption oracle, the signing oracle and
random oracles H and G as described below. B maintains a counter i for the ¢-th
query M;||r; to H. The oracles H and G are simulated in such a way that if i = j
then u(M;||r;) = c.

4. B receives from A a forgery o. Letting M and r be the corresponding message
and random, if (M,r) = (Mj,r;) then f(0) = u(M;|r;) = c and B outputs o.

Simulation of the oracles G, H, D and signing oracle:

When receiving the i-th query M;||r; to H, we distinguish two cases: if i # j, we
generate a random z; € {0, 1}* and compute y; = f(z;). If i = j, we let y; = c. In both
cases we denote y; = w;||s;. If w; never appeared before, we let G(w;) = s; & (M;]|r;)
and return w;, otherwise we abort.

When receiving a query w for G, if G(w) has already been defined, we return G(w),
otherwise we return a random (k — k7)-bit integer.
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When we receive a signature query for M, we generate a random kg-bit integer r.
If M||r was queried to H before, we have M||r = M;||r; for some i. If i # j, we have:

H(M;|lr;) = w;, G(w;) = s; @ (M;]lr;) and y; = wills; = f(z;)

so we return the corresponding signature x;, otherwise we abort. If M||r was never
queried before, we simulate an H-query for M||r as previously: we generate a random
z € {0,1}* and compute y = f(z). We denote y = wl|s. If w never appeared before,
we let H(M||r) = w and G(w) = s ® (M||r) and return the signature x, otherwise we
abort.

The simulation of the decryption oracle is identical to that of Lemma 1.
Analysis:

Let o be the forgery sent by the adversary. If w was not queried to G, we simulate
a query to (G as previously. Let w|ls = f(0) and M||r = G(w) & s. If M||r was never
queried to H, then H(M]||r) is undefined because there was no signature query for M;
the probability that H(M||r) = w is then 27%1. Otherwise, let (M,r) = (M;,r;) be
the corresponding query to H. If i = j, then u(Mj,r;) = ¢ = f(o) and B succeeds in
inverting f.

Conditioned on ¢ = j, our simulation of H and the signing oracle are perfect, unless
some w appears twice, which happens with probability less than (g + qSig)2 .27k As
in lemma 1, our simulation of D fails with probability less than ¢p-27%1. Consequently,
the reduction B succeeds with probability greater than:

1 _ _ _
—'<€—2 kl_(QH+Qsig)2'2 kl—QD'2 kl)
qH

which gives (10).

C Proof of Lemma 3

Let by,...,bg € Z™ be linearly independent vectors. A lattice L spanned by the vectors
(b1,...,bq) is the set of all integer linear combinations of by, ...,bq. The integer d
is called the rank of the lattice. We say that the lattice is of full rank if n = d. We
denote by || L]/« the infinite norm of the shortest non-zero vector of L.

Given a = (a1, ...,a,_1) € (Zn)" !, consider the set:
Lla)={s=(s0,---+80-1) €Z"|s;i —a;-so0=0 mod N foralll1 <i<n -1}
The set L is a full rank lattice spanned by the n vectors:
(L,aq,...,ap-1),(0,N,0,...,0),---,(0,...,0,N) (19)
The proof of lemma 3 is based on the following three lemmas:
Lemma 5. The probability over o € Z'% ' that ||L(e)||sc < C is less than

(3C)"
anl
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Proof. To each L(a) such that ||L(a)||s < C we can associate a shortest vector ()
such that |b(a)||s < C. There are at most (2C + 1)" such vectors.

Let by be the first component of b(a). If jp =0 mod N, then all the components
of b(ex) are equal to 0 modulo N. This gives ||b(a)||sc > N, and the first vector in

(19) is shorter for |||/ than b(a). Therefore by # 0 mod N.

If by is invertible modulo N, this uniquely determines a. Otherwise, let p and ¢
be the prime factors of N. If by = 0 mod p, then by # 0 mod ¢ and this uniquely
determines a modulo ¢, so there are at most p”~! possible values for a. Moreover, all
the components of b(a) are equal to 0 modulo p, and for any C' the number of such

\/e(,lOI"S b(a) iS at mOS‘:
p p

which corresponds to at most:

=) p -
p p
possible values for a. The same holds if jp = 0 mod g. Therefore there are at most:

(2C +1)" + (3C)" - G) + é) < (30)"

vectors a such that ||L(a)|, < C. O

Lemma 6. If |L(a)||s > 2- B, then the solution s of the system S with |||, < B is
unique and is equal to T — P, where T = (0,¢1,...,¢,-1) and P is the closest vector
to T for ||||oc-

Proof. Let s’ be another solution of S with ||s’||oc < B. Then s — s’ € L(a) and
|s — 8'|lo < 2+ B which gives s = 8’ since | L(a)||s > 2 B

Let ' =T — P where P € L(a) is a closest vector to T for ||| Since T — s is
a vector of L(a), we have:

18" [loc = 1T = Plloc < [|T = (T = 8)lloc = lI8llo0

18" = slloc < [18"lloc + II8lloc < 2[8]lcc < 2- B

and so 8’ = s. O

Lemma 7. Let (by,...,by) be a basis of a lattice L C 7™ such that | L]l > B - (1 +
V- 2%?) and T a vector which distance to L for ||||o is strictly less than B. There
exists a polynomial-time algorithm taking as input (b1, ..., by) and T and outputting
a closest vector P € L to T for ||||co-

Proof. The proof is based on the following theorem:
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Theorem 7 (Babai [1]). There exists a polynomial time algorithm which, given a
basis (b1,...,by) of a lattice L C Z", approzimates the closest vector problem for the
Euclidean norm to a factor 2"/2.

Let P’ be the vector obtained by running Babai’s algorithm on (by,...,b,) and
T. Let P a closest vector to T for ||||o. We show that P’ = P.

Letting P" be a closest vector to T for the Euclidean norm, we have:
T — P'|| < 2*%||T — P"|
Moreover, since P is a closest vector to T for ||||, we have:
IT - P"| <|T - P|
The distance of T' to L for |||« is strictly less than B, therefore:
|T — Plloo < B

This gives:

IT = Pl|o < |IT = P'|| <2"/*|T = P| < V- 2*/*|T — P||os < By/n-2"?
and eventually

|P— P'llog < |P— Tlloo + |T — P'llac < B(1+ v/ 2°?)

and so P = P’. 0

Resuming the proof of lemma 3, we take B = 25> and C' = 2%(1 + /n - 2"/2). We
consider the lattices L(ea) such that ||L(ea)||c > C. From lemma 5, and using:

30 < gkatnt2

the proportion of lattices L(a) such that |L(a)||s < C is smaller than:
gn-(ka+n+2)
Nn—1
From lemma 6 the solution s of the system S with ||s||s < 2*2 is unique and equal
to T — P, where T = (0,¢y,...,cn—1) and P is the closest vector to T for |||/~. From

lemma 7, and using the basis (19) for L(a), we can compute P in time polynomial in
n and in the size of N.

D Proof of Inequality (14)
We assume that:
k1 >64 and k<275 (k)3 (20)
We have:
2n~(k2+n+2)

< gn:(k—ki+n+2)—(n—1)-(k—1)
anl —

< gn(—=ki+n+3)+k—1



Letting f(z) = = - (—k1 + 2+ 3) + k — 1, we have f'(z
0 <2 <5k/(4k1) + 1 and using (20), we obtain f'(z) <

n— %
| 4k

f is then a decreasing function for 0 < z < n, therefore:
ok
— >
()20

f(n) < —k/8

from which we obtain inequality (14).

which yields using (20):

E Proof of Theorem 6

19

) = —ki+2-2+ 3. For
0. We take:

The proof is similar to the security proof of PSS in [4]. The only difference is that
we simulate a decryption oracle as in theorem 3. This adds an error probability of

qp - 27k1.



