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Abstract. An effective countermeasure against side-channel attacks is
to mask all sensitive intermediate variables with one (or more) random
value(s). When a cryptographic algorithm involves both arithmetic and
Boolean operations, it is necessary to convert from arithmetic masking
to Boolean masking and vice versa. At CHES 2001, Goubin introduced
two algorithms for secure conversion between arithmetic and Boolean
masks, but his approach can only be applied to first-order masking. In
this paper, we present and evaluate new conversion algorithms that are
secure against attacks of any order. To convert masks of a size of k bits
securely against attacks of order n, the proposed algorithms have a time
complexity of O(n2k) in both directions and are proven to be secure in
the Ishai, Sahai, and Wagner (ISW) framework for private circuits. We
evaluate our algorithms using HMAC-SHA-1 as example and report the
execution times we achieved on a 32-bit AVR microcontroller.
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1 Introduction

Side-Channel Attacks. Traditionally, cryptographic algorithms are designed
under the premise that a system can only be attacked in a black-box way, even
though in practice this assumption is not necessarily true. An attacker may be
able to obtain some partial information about the secret key(s) through means
that were originally not anticipated by the system designer. A typical example
are the so-called side-channel attacks, which can be mounted by measuring the
power consumption [14], EM radiations [8], or execution time [13] of a crypto-
system, or by observing its response to fault injection [1]. It is widely accepted
that these attacks are very powerful and can completely break a system.

Masking is a common countermeasure against side-channel attacks. Boolean
masking, firstly suggested in [3, 10], consists in splitting every sensitive variable
x in two shares x′ and r, where x′ = x⊕ r and r is a randomly generated value
[3]. The two shares are manipulated separately according to the cryptographic
algorithm. Such modification is straightforward for linear functions, which can
be computed separately on these two shares. For non-linear functions, such as
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SBOXes, the usual technique consists in pre-computing a randomized SBOX in
RAM for every new execution of the algorithm [3].

First-order Boolean masking is vulnerable to a second-order attack in which
the adversary combines information about the two shares x′ and r; such attacks
are feasible in practice (see [18]). Boolean masking can actually be extended to
any number of shares, e.g. when using n shares, an implementation should be
resistant against t-th order attacks, in which the adversary combines leakage
information from t < n variables. It was shown in [3] that, under a reasonable
power leakage model, the overall number of executions required to recover the
secret key grows exponentially with the number of shares.

At CHES 2010, Rivain and Prouff [20] proposed an algorithm to protect the
AES against t-th order attacks, based on the Ishai-Sahai-Wagner construction
[11]. Their basic idea is to write the AES round transformations as operations
in the field GF(28) and mask additions and multiplications. This approach can
be extended to any SBOX by considering the polynomial representation of the
SBOX, which can be computed using Lagrange polynomial interpolation over a
finite field [2]. Rivain et al introduced in [19] a table re-computation method to
protect any SBOX from second-order attacks. The classical randomized table
countermeasure, secure against first-order attacks, has recently been extended
to work against t-th order attacks [5].

Security Model. We definitely aim for countermeasures against side-channel
attacks that can be proven secure in a reasonable model of side-channel leakage
(i.e. we will not be satisfied with heuristic “ad-hoc” countermeasures). Perhaps
the simplest such model is the probing attack model proposed by Ishai, Sahai
and Wagner (ISW) at CRYPTO 2003 [11] (see Subsection 2.2). They initiated
the theoretical study of securing circuits against an adversary who can probe
its wires. In this model, the attacker is allowed to access at most t wires of the
circuit, but he should not be able to learn anything about the secret key. The
authors show that any circuit C can be transformed into a new circuit of size
O(t2 · |C|) that is resistant against such an adversary. The approach is based on
secret-sharing every variable x into n shares xi with x = x1 ⊕ x2 · · · ⊕ xn, and
processing the shares in a way so that no information about the initial variable
x can be learned by any t-limited adversary, for n ≥ 2t+ 1.

In recent years, numerous papers on provable security against side-channel
attacks have been published in the literature, forming the rapidly emerging field
of leakage-resilient cryptography. Building upon the leakage model introduced
by Micali and Reyzin [16] and on the bounded retrieval model [6,7], the leakage
resilience model assumes that the adversary has the ability to repeatedly learn
arbitrary functions of the secret key, as long as the total number of bits leaked
to the adversary is bounded by some parameter L. This is a very strong secu-
rity notion because an attacker can choose arbitrary leakage functions; only the
amount of leaked information is bounded. In particular, it is more general than
the ISW probing model [11], in which the attacker has only access to a limited
number of physical bits computed in the circuit.
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However, cryptosystems proven secure in the most general leakage-resilient
model are often too inefficient for practical use. In practice, one typically has to
design a countermeasure against side-channel attacks for an existing algorithm
(such as AES or HMAC-SHA-1) instead of devising a completely new algorithm
based on the principles of leakage-resilient cryptography. The main advantage
of the ISW probing model is that it can potentially lead to relatively practical
designs. Another benefit is its interplay with resistance against power analysis
attacks. Namely, if a given algorithm is proven resistant against t probes in the
ISW model, then (at least) t + 1 measurements in a power acquisition must be
combined to obtain the key. As shown in [3], the number of power acquisitions
required to recover the key grows exponentially with t. This means that, even
if a real probing attack would be physically impossible or too costly, it makes
sense to obtain countermeasures with the largest possible value of t since this
translates into an (exponentially in t) increasing level of security against power
attacks. In this paper, we mainly work in the ISW model.

Proving the resistance of a countermeasure against a single-probe attack (or
a first-order attack) is usually straightforward since it suffices to show that all
intermediate variables are uniformly distributed (or, at least, that their distri-
bution is independent from the secret key) as in this case a single probe reveals
no information to the attacker. To prove resistance against t probes, one should
a priori consider every possible t-tuple of variables and show that their joint
distribution is independent from the secret key. This approach has been used to
prove the security of algorithms against second-order attacks [19]. However, as
the number of such t-tuples grows exponentially with t, this analysis becomes
unfeasible, even for small values of t. To work around this problem, Ishai, Sahai
and Wagner introduced in [11] a very practical simulation framework in which
one shows how to simulate any set of t wires probed by the adversary from a
subset of the input shares of the transformed circuits. Since any proper subset
of these input shares can be simulated without knowledge of the input values
in the original circuit, a perfect simulation of the t probed wires is possible. We
follow the same approach in this paper.

Boolean vs Arithmetic Masking. Boolean masking is widely-used counter-
measure for cryptographic algorithms that use only linear operations over the
field F2 and non-linear SBOXes (e.g. DES and AES). However, if an algorithm
includes arithmetic operations (such as IDEA [15], RC6 [4], and SHA-1 [17]), a
masking scheme that is compatible with the arithmetic operation must be used
[3]. For example, if x3 = x1 + x2 must be computed securely, we can mask both
x1 and x2 arithmetically by writing x1 = A1 + r1 and x2 = A2 + r2 for some
random values r1 and r2. Then, instead of computing the sum x3 directly, we
can add the two shares separately, which results again in two arithmetic shares
for x3 = (A1 + A2) + (r1 + r2). Note that throughout this paper all additions
and subtractions are performed modulo 2k for some k.

Besides IDEA, RC6 and SHA-1, there exist many other algorithms that exe-
cute both arithmetic (e.g. modular addition) and logical operations. Examples
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include ARX-based block ciphers like XTEA and Threefish, the SHA-3 finalists
Blake and Skein, as well as all four stream ciphers from the e-Stream software
portfolio. Hence, techniques to protect both kinds of operation are of practical
importance. One approach to achieve this is to use appropriate masking (cor-
responding to the operation) and convert between the maskings whenever it is
necessary. Of course, this requires that the mask conversion itself is also secure
against first-order (resp. higher-order) attacks. Another idea is to use only one
kind of masking (either Boolean or arithmetic) and employ secure algorithms
to perform the needed operations directly on the shares. While there exist some
papers about the first method, the second approach has, surprisingly, not been
studied in detail. The decision whether to apply the conversion or not depends
on the target cryptographic algorithm. For HMAC-SHA-1, the second method
yields more efficient implementations, as we will show in this paper.

Our Contribution. Currently, there exists no practical conversion technique
that works for masking of order two or higher. The present paper attempts to
fill this gap. We introduce the first conversion algorithms between Boolean and
arithmetic masking that are secure against t-th order attacks (instead of first-
order only). We start with the problem of how to apply arithmetic operations
directly on Boolean shares and present an algorithm for secure addition modulo
2k with n shares (where n ≥ 2t+ 1) that has a complexity of O(n2k). Then, we
introduce algorithms to convert from Boolean to arithmetic masking and vice
versa, again with a complexity of O(n2k) in both directions. These algorithms
are proven secure in the Ishai, Sahai and Wagner (ISW) framework for private
circuits [11].

We apply our countermeasures to protect HMAC-SHA-1 against second and
third-order attacks. We implemented and evaluated all our masking schemes on
a 32-bit AVR processor. Based on a detailed performance analysis, we identify
the most efficient algorithms in practice for different levels of security.

2 Previous Work

2.1 First-order Conversion: Goubin’s Algorithms

In this section, we firstly recall Goubin’s algorithm for conversion from Boolean
to arithmetic masking and vice versa [9]. Goubin’s conversion algorithms are
proven secure against first-order attacks only; thus, we restrict our attention to
first-order masking. For Boolean masking, we can write x = x′ ⊕ r, where r is
a randomly generated k-bit value, while for arithmetic masking, we can write
x = A + r mod 2k (as mentioned previously, all additions and subtractions are
performed modulo 2k for some parameter k).

Boolean to Arithmetic Conversion. The Boolean to arithmetic conversion
method of Goubin [9] is based on the following function Ψx′(r) : F2k→ F2k

Ψx′(r) = (x′ ⊕ r)− r
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Theorem 1 (Goubin [9]). The function Ψx′(r) is affine over F2.

Due to this affine property, the conversion from Boolean to arithmetic masking
is fairly straightforward. Given x′ and r so that x = x′ ⊕ r, we have to compute
A so that x = A+ r, which can be done as follows:

A = (x′ ⊕ r)− r = Ψx′(r) = Ψx′(r ⊕ r2)⊕ (Ψx′(r2)⊕ Ψx′(0))

where r2 is a random element of F2k . This conversion method is clearly secure
against first-order attacks because the left term Ψx′(r⊕ r2) is independent from
r (and, therefore, independent from x), and the right term Ψx′(r2) ⊕ Ψx′(0) is
also independent from r and x. Note that this technique is very efficient since
it requires only a constant number of operations (independent of k).

Arithmetic to Boolean Conversion. Goubin also introduced a technique to
convert from arithmetic to Boolean masking, secure against first-order attacks
[9]. Unfortunately, his arithmetic-to-Boolean conversion is more costly than the
conversion in the other direction since its time complexity is O(k) for registers
of k bits. It is based on the following theorem; we denote by 2x the multiplication
of x by 2 modulo 2k.

Theorem 2 (Goubin [9]). If we denote x′ = (A + r) ⊕ r, we also have x′ =
A⊕ uk−1, where uk−1 is obtained from the following recursion formula:{

u0 = 0
∀i ≥ 0, ui+1 = 2[ui ∧ (A⊕ r)⊕ (A ∧ r)]

Since this iterative computation of ui contains only logical XOR and AND
operations, it can be easily protected against first-order leakage. We refer to [9]
for further details. Recently, Karroumi et al applied this method to obtain a
first-order secure addition on Boolean shares directly [12].

2.2 The Ishai, Sahai and Wagner Framework

In this subsection we describe the framework of Ishai, Sahai and Wagner (ISW)
[11] for proving the security against an adversary observing at most t variables
within a circuit. We will use this framework in Section 4 and in Appendix A to
prove the security of our conversion algorithms.

A stateless circuit over F2 can be defined as a directed acyclic graph whose
sources and sinks are input and output variables, respectively, while its vertices
are Boolean gates [5]. Such a stateless circuit can be augmented with random-
bit gates to form a randomized circuit. As stated in [11], a random-bit gate has
no input and produces as output a uniformly random bit at each new invocation
of the circuit. A t-limited adversary can probe up to t wires in the circuit, and
has unlimited computational power. Given a stateless circuit C, we must trans-
form it into a new circuit C ′ that can resist such an adversary. However, this is
only possible if the inputs and outputs of the new circuit C ′ are hidden since
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an input of C might contain some secret-key bits and by probing these bits the
adversary can obtain information about the secret key. Therefore, we allow the
use of a randomized input encoder I and output decoder O, whose wires can
not be probed by the adversary. Both I and O should be independent from the
circuit C being transformed.

Definition 1. Let T be an efficiently computable, deterministic function map-
ping a stateless circuit C to a stateless circuit C ′, and let I, O be input and out-
put decoder, respectively. (T, I,O) is said to be a t-private stateless transformer
if it satisfies soundness and privacy, defined as follows:

– Soundness: C and O ◦ C ′ ◦ I have identical input-output functionality.
– Privacy: the values of any t wires of C ′ can be efficiently simulated without

access to any wire of C ′.

In our conversion algorithms we will often work with k-bit variables (for some
fixed parameter k) instead of single bits; in this case probing one such variable
will automatically reveal its k-bit value instead of a single bit. Clearly, this can
only make the adversary stronger.

The ISW framework also includes definitions for stateful circuits, i.e. circuits
with memory gates. As shown in [11], achieving privacy for stateful circuits is
easy once privacy has been achieved in the stateless model. Thus, we focus on
the stateless model in our work. We recall the main theorem from [11] below.

Theorem 3 (Ishai, Sahai, Wagner [11]). There exists a perfectly t-private
stateless transformer (T, I,O) such that T maps any stateless circuit C of size
|C| and depth d to a randomized stateless circuit of size O(n2 · |C|) and depth
O(d log t), where n = 2t+ 1.

Privacy for Stateless Circuits. For an arbitrary circuit C the corresponding
circuit C ′ is constructed by maintaining the following invariant: for each wire in
the circuit C, there are n wires in C ′, which add up to the value on the wire in
C. Without loss of generality, any circuit C can be represented using NOT and
AND gates only. Thus, if we can transform these two gates, the whole circuit is
transformable. It is easy to transform a NOT gate using the following simple
relation: If x = x1 ⊕ x2 ⊕ · · · ⊕ xn then NOT(x) = NOT(x1)⊕ x2 ⊕ · · · ⊕ xn. To
transform AND gates, the authors present an elegant solution, which is shown
in Algorithm 1.

3 Secure Addition on Boolean Shares

In this section, we describe algorithms that can be used to perform an addition
(or a subtraction) on the Boolean shares directly, thereby eliminating the need
to convert masks from one form to the other. Formally, given n Boolean shares
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Algorithm 1 SecAnd

Input: (xi) and (yi) for 1 ≤ i ≤ n

Output: (zi) for 1 ≤ i ≤ n, with
n⊕

i=1

zi =
n⊕

i=1

xi ∧
n⊕

i=1

yi

1: for i = 1 to n do
2: for j = i + 1 to n do
3: ri,j ← rand(1)
4: rj,i ← (ri,j ⊕ (xi ∧ yj))⊕ (xj ∧ yi)
5: end for
6: end for
7: for i = 1 to n do
8: zi = xi ∧ yi
9: for j = 1 to n do

10: if i 6= j then
11: zi ← zi ⊕ ri,j
12: end if
13: end for
14: end for

of x = x1⊕· · ·⊕xn and y = y1⊕· · ·⊕ yn, we need to compute n Boolean shares
of z = z1 ⊕ · · · ⊕ zn satisfying the relation z = x+ y, i.e.

z1 ⊕ · · · ⊕ zn = (x1 ⊕ · · · ⊕ xn) + (y1 ⊕ · · · ⊕ yn)

We propose two algorithms to solve this problem based on the ISW method.

3.1 First Variant

The first solution is obtained by transforming the k-bit addition circuit into a
circuit of XOR and AND gates so that the the ISW technique can be applied
directly [11]. A modular addition of two k-bit variables x and y can be defined
recursively as (x+ y)(i) = x(i) ⊕ y(i) ⊕ c(i), where{

c(0) = 0
∀i ≥ 1, c(i) = (x(i−1) ∧ y(i−1))⊕ (x(i−1) ∧ c(i−1))⊕ (c(i−1) ∧ y(i−1)) (1)

Here, x(i) denotes the i-th bit of variable x, with x(0) being the least significant
bit. Since this recursion formula involves solely XOR and AND operations, we
can simply use the ISW approach from [11] to protect it against attacks of any
order. The resulting algorithm is shown in Algorithm 2.

Initially, there will be no carry; therefore, we set all n shares of the carry to
zero (Step 1). Next, we compute the carries for the remaining bits through the
formula given in Equation (1). The loop runs from 0 to k − 2 only, since the
carry from the last bit does not need to be computed in a modular addition. In
Step 8 we apply an XOR operation on the two inputs xi, yi and the carry ci to
obtain the n shares corresponding to x + y mod 2k. The algorithm SecAnd has
a time complexity of O(n2) and, as a consequence, the full algorithm has a time



8 J.-S. Coron, J. Großschädl, P. K. Vadnala

Algorithm 2 SecAdd

Input: (xi) and (yi) for 1 ≤ i ≤ n

Output: (zi) for 1 ≤ i ≤ n, with
n⊕

i=1

zi =
n⊕

i=1

xi +
n⊕

i=1

yi

1: (c
(0)
i )1≤i≤n ← 0 . Initially carry is zero

2: for j = 0 to k − 2 do . Compute carry bit by bit
3: (xy

(j)
i )1≤i≤n ← SecAnd((x

(j)
i )1≤i≤n, (y

(j)
i )1≤i≤n) . x(j) ∧ y(j)

4: (xc
(j)
i )1≤i≤n ← SecAnd((x

(j)
i )1≤i≤n, (c

(j)
i )1≤i≤n) . x(j) ∧ c(j)

5: (yc
(j)
i )1≤i≤n ← SecAnd((y

(j)
i )1≤i≤n, (c

(j)
i )1≤i≤n) . y(j) ∧ c(j)

6: (c
(j+1)
i )1≤i≤n ← (xy

(j)
i )1≤i≤n ⊕ (xc

(j)
i )1≤i≤n ⊕ (yc

(j)
i )1≤i≤n

7: end for
8: (zi)1≤i≤n ← (xi)1≤i≤n ⊕ (yi)1≤i≤n ⊕ (ci)1≤i≤n . z = x + y = x⊕ y ⊕ c
9: return (zi)1≤i≤n

complexity of O(n2k). Algorithm 2 has to perform AND and XOR operations
only. Due to the ISW scheme, we already know that such a circuit is protected
from attacks of order t, where n ≥ 2t+1. This proves the following theorem and
shows the security of Algorithm 2 in the ISW model.

Theorem 4. Let (xi)1≤i≤n and (yi)1≤i≤n be the input shares of Algorithm 2
and let 2t < n. For any set of t intermediate variables, there exists a subset
I ⊂ [1, n] of indices such that |I| ≤ n − 1, whereby the shares x|I and y|I can
perfectly simulate those t intermediate variables as well as the output shares z|I .

3.2 Second Variant

The second approach is based on the recursion from Goubin’s theorem (Theo-
rem 2), which uses the relation x + y = x ⊕ y ⊕ uk−1, where uk−1 is obtained
from the following recursion formula:{

u0 = 0
∀i ≥ 0, ui+1 = 2[ui ∧ (x⊕ y)⊕ (x ∧ y)]

Algorithm 3 represents the solution based on Goubin’s formula to compute the
addition. Here, the function SecAnd is called with arguments of a size of k bits
instead of 1-bit arguments as in Algorithm 2. In this setting, the ISW scheme
has to be adapted as follows: (i) all 1-bit variables defined over F2 are replaced
by k-bit variables defined over F2k ; (ii) the 1-bit XOR operations are replaced
by k-bit XOR operations; and (iii) the 1-bit AND operations are replaced by k-
bit AND operations. This extension still preserves the security of the original
scheme. Note that this method has been used before in the higher-order secure
masking technique for AES proposed by Rivain and Prouff [20].1

1 In the Rivain-Prouff masking scheme, the AND operations over F2 were replaced
with multiplications over F2k instead of AND operations over F2k .
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Algorithm 3 SecAddGoubin

Input: (xi) and (yi) for 1 ≤ i ≤ n

Output: (zi) for 1 ≤ i ≤ n, with
n⊕

i=1

zi =
n⊕

i=1

xi +
n⊕

i=1

yi

1: (wi)1≤i≤n ← SecAnd((xi)1≤i≤n, (yi)1≤i≤n) . ω = x ∧ y
2: (ui)1≤i≤n ← 0 . Initialize shares of u to zero
3: (ai)1≤i≤n ← (xi)1≤i≤n ⊕ (yi)1≤i≤n . a = x⊕ y
4: for j = 1 to k − 1 do
5: (uai)1≤i≤n ← SecAnd

(
(ui)1≤i≤n, (ai)1≤i≤n

)
6: (ui)1≤i≤n ← (uai)1≤i≤n ⊕ (wi)1≤i≤n

7: (ui)1≤i≤n ← 2(ui)1≤i≤n . u← 2(u ∧ a⊕ ω)
8: end for
9: (zi)1≤i≤n ← (xi)1≤i≤n ⊕ (yi)1≤i≤n ⊕ (ui)1≤i≤n . z = x + y = x⊕ y ⊕ u

10: return (zi)1≤i≤n

The time complexity of Algorithm 3 is still O(n2k). However, in practice, this
algorithm will be faster for two reasons: (i) the number of calls to the function
SecAnd inside the loop is reduced from three to one, and (ii) all the operations
are directly performed on the k-bit variables instead of single bits, thus there is
no need to perform bit manipulations. Similar to Algorithm 2, it is easy to see
that the security of Algorithm 3 follows from the original ISW scheme.

Theorem 5. Let (xi)1≤i≤n and (yi)1≤i≤n be the input shares of Algorithm 3
and let 2t < n. For any set of t intermediate variables, there exists a subset
I ⊂ [1, n] of indices such that |I| ≤ n − 1, whereby the shares x|I and y|I can
perfectly simulate those t intermediate variables as well as the output shares z|I .

4 Secure Arithmetic to Boolean Masking for any Order

In this section, we describe two new algorithms for conversion from arithmetic
to Boolean masking of any order. That is, given n arithmetic shares with the
property x = A1 + · · · + An, our algorithms output the corresponding Boolean
shares satisfying x = x1 ⊕ · · · ⊕ xn, secure against attacks of order t, where
2t ≤ n− 1. We describe in Section 5 the algorithm for secure conversion in the
other direction, i.e. from Boolean to arithmetic masking.

We first present a straightforward algorithm with complexity O(n3k), where
n and k are the number of shares and the register size, respectively. Then, we
give an improved algorithm with a complexity of O(n2k). Internally, both algo-
rithms use the secure addition function we described in Section 3. Though it is
more efficient in practice to perform secure addition directly on Boolean shares
(due to the overhead of converting between the masks twice), such conversion
algorithms may still be useful, e.g. when the required number of conversions is
lower than the required number of secure additions.2

2 For HMAC-SHA-1, it is more efficient to perform secure addition directly on the
Boolean shares, as we will show later.
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4.1 A Simple Algorithm with Complexity O(n3k)

We first describe a simple approach for converting from arithmetic to Boolean
masking with complexity O(n3k). Assume that a sensitive variable x is shared
among n arithmetic masks as follows:

x = A1 + · · ·+An (2)

We separately re-share each of the arithmetic shares Ai (1 ≤ i ≤ n) into n ran-
dom Boolean shares xi,j (1 ≤ j ≤ n) so that Ai = xi,1 ⊕ · · · ⊕ xi,n. Hence, the
sensitive variables x is now given as:

x = (x1,1 ⊕ · · · ⊕ x1,n) + · · ·+ (xn,1 ⊕ · · · ⊕ xn,n) (3)

For each arithmetic share Ai (1 ≤ i ≤ n), such re-sharing can be accomplished
by generating xi,j independently at random for 2 ≤ j ≤ n and letting xi,1 =
Ai ⊕ xi,2 ⊕ · · · ⊕ xi,n. We then sequentially add the Ai’s using their n-Boolean
shared representation Ai =

⊕n
j=1 xi,j . For this, we use either the SecAdd or the

SecAddGoubin algorithm from Section 3. Eventually, we get the final result x in
Boolean form as

x = z1 ⊕ · · · ⊕ zn (4)

Since each of the n− 1 calls to SecAdd has a complexity of O(n2k), the overall
complexity of the arithmetic to Boolean conversion is O(n3k).

Theorem 6. Let (Ai)1≤i≤n be the input shares of the previous algorithm and
let 2t < n. For any set of t intermediate variables, there exists a subset I ⊂ [1, n]
of indices such that |I| ≤ 2t < n, whereby the shares A|I can perfectly simulate
those t intermediate variables as well as the output shares z|I .

Proof. We show how to simulate any set of t probes, for 2t < n. We firstly con-
sider the initial re-sharing of the arithmetic shares Ai (1 ≤ i ≤ n). At first, the
set I is empty. If there is a probe in the re-sharing of Ai, we add the index i to
I. Then, we consider the second part of the algorithm, starting from Equation
(3) to the final result given by Equation (4). This second part is essentially an
iteration of a circuit obtained through the ISW transform. Therefore, by apply-
ing the ISW methodology, we can simply continue with the construction of the
subset I, so that any probe in this second part, and any of the output shares
z|I , can be perfectly simulated by knowing the inputs xi,j for j ∈ I and for all
1 ≤ i ≤ n; moreover, we know from the ISW methodology that |I| ≤ 2t < n.

For any i /∈ I, since the re-sharing of Ai is not probed, we can perfectly
simulate the xi,j for j ∈ I without knowing Ai. Namely, since |I| ≤ 2t < n, the
xi,j for j ∈ I form a proper subset of n shares, and we can perfectly simulate
such a subset without knowing Ai by generating the values independently and
uniformly at random. For i ∈ I, we can simulate the xi,j in the same way as in
the “real” circuit because we know the input Ai. Therefore, as required, we can
perfectly simulate the xi,j for j ∈ I and all 1 ≤ i ≤ n.

In summary, the t probes as well as the output shares z|I can be perfectly
simulated from the knowledge of the input shares A|I , where |I| ≤ 2t < n.



Secure Conversion Between Boolean and Arithmetic Masking of Any Order 11

It is easy to observe that one can improve the complexity of this algorithm
by using fewer shares at the beginning. In particular, Equation (3) contains a
total of n2 shares, while only n are necessary. Therefore, at the beginning, we
use only two shares for every Ai instead of n shares. Then, we build a tree where
at each layer the number of additive terms is divided by two, while the number
of Boolean shares within an additive term is doubled. In this way, the overall
number of shares remains n or 2n at each level, and so the complexity becomes
O(n2k) instead of O(n3k). We provide a complete description below.

4.2 Our New Arithmetic to Boolean Conversion Algorithm

In this section, we describe our new algorithm for converting from arithmetic to
Boolean masking with a complexity of O(n2k). Our algorithm is best described
recursively. Assume that we already found an algorithm An/2 for converting a
set of n/2 arithmetic shares Ai into n/2 Boolean shares xi such that

A1 + · · ·+An/2 = x1 ⊕ · · · ⊕ xn/2.

Now, given as input a variable x represented with n arithmetic shares Ai:

x = A1 + · · ·+An

we can first apply algorithm An/2 separately on the two halves to get

x = (A1 + · · ·+An/2) + (An/2+1 + · · ·+An)

= (x1 ⊕ · · · ⊕ xn/2) + (y1 ⊕ · · · ⊕ yn/2)

We now apply a simple expansion step, in which the n/2 shares xi and yi are
each expanded to n shares. This can be done by randomly splitting every share
xi into xi = x′2i−1 ⊕ x′2i and similarly for yi = y′2i−1 ⊕ y′2i. We obtain:

x = (x′1 ⊕ · · · ⊕ x′n) + (y′1 ⊕ · · · ⊕ y′n)

Then, we apply the n-Boolean addition circuit SecAdd or SecAddGoubin from
Section 3 to obtain x represented with n Boolean shares x = z1 ⊕ · · · ⊕ zn as
required.

We now show that the algorithm has a complexity of O(n2k). For the sake
of simplicity, we assume that n is a power of two. Let Ti be the execution time
of Ai, which takes i arithmetic shares as input. We proceed by induction, based
on the assumption that Ti ≤ c · i2 for all i ≤ n/2 and some constant c. When
running algorithm An with n shares, one first applies An/2 on both halves, and
then executes the expansion step (with 3n steps). Finally, the SecAdd algorithm
is performed, which gives:

Tn ≤ 2Tn/2 + 3n+ c′ · n2 ≤ 2c · (n/2)2 + 3n+ c′ · n2

for some constant c′, such that the execution time of SecAdd with n shares is
≤ c′ · n2. We get:

Tn ≤ (c/2 + 3 + c′) · n2
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Algorithm 4 ConvertA→B

Input: (Ai) for 1 ≤ i ≤ n

Output: (zi) for 1 ≤ i ≤ n, with
n⊕

i=1

zi =
n∑

i=1

Ai

1: If n = 1 then return A1

2: (xi)1≤i≤n/2 ← ConvertA→B
(
(Ai)1≤i≤n/2)

)
3: (x′i)1≤i≤n ← Expand

(
(xi)1≤i≤n/2)

)
.

n⊕
i=1

x′i =
n/2⊕
i=1

xi =
n/2∑
i=1

Ai

4: (yi)1≤i≤n/2 ← ConvertA→B
(
(Ai)n/2+1≤i≤n)

)
5: (y′i)1≤i≤n ← Expand

(
(yi)1≤i≤n/2)

)
.

n⊕
i=1

y′i =
n/2⊕
i=1

yi =
n∑

i=n/2+1

Ai

6: (zi)1≤i≤n ← SecAdd ((x′i)1≤i≤n, (y′i)1≤i≤n)

7: return (zi)1≤i≤n .
n⊕

i=1

zi =
n⊕

i=1

x′i +
n⊕

i=1

y′i =
n∑

i=1

Ai

Algorithm 5 Expand
Input: xi for 1 ≤ i ≤ n

Output: yi for 1 ≤ i ≤ 2n with
2n⊕
i=1

yi =
n⊕

i=1

xi

1: (ri)1≤i≤n ← Rand(k)
2: (y2i)1≤i≤n ← (xi ⊕ ri)1≤i≤n

3: (y2i+1)1≤i≤n ← (ri)1≤i≤n

4: return (yi)1≤i≤2n

Hence, it suffices to fix the constant c so that 3 + c′ ≤ c/2 to get Tn ≤ c · n2 as
required to prove the result. A formal description of our new conversion method
can be found in Algorithm 4, which, in turn, uses the expansion step specified
in Algorithm 5. The following theorem confirms that Algorithm 4 is secure in
the ISW framework.

Theorem 7. Let (Ai)1≤i≤n be the input shares of Algorithm 4. For any set of t
intermediate variables and any k output shares, there exists a subset I ⊂ [1, n] of
indices such that |I| ≤ k + 2t, where the shares A|I can perfectly simulate those
t intermediate variables as well as the output shares x|I .

Proof. We first prove the following property of the Expand method.

Lemma 1. In Algorithm 5, a set of k outputs (k ≤ 2n) and t probes (t ≤ n)
can be perfectly simulated using at most bk/2c+ t inputs.

Proof of Lemma 1. We proceed by induction. When n = 1, the algorithm gets
only x as input and outputs (x⊕ r, r) for a uniformly random r. Now, we have
to distinguish between the following two cases: there is no probe (t = 0), and
there is at least one probe (t ≥ 1).

In the latter case, i.e. there is at least one probe (for x, or r, or x⊕ r), then
t ≥ 1 and the probe can be perfectly simulated by using the input x and gener-
ating r uniformly at random. This will also perfectly simulate both outputs. As
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a consequence, for t = 1 and any k with 0 ≤ k ≤ 2, we can perfectly simulate
the t probes and the k outputs using at most 1 ≤ bk/2c+ t inputs.

We now assume that there are no probes (t = 0). If no output needs to be
simulated (i.e. k = 0), then knowledge of the input x is not required. If only a
single output must be simulated (k = 1), where either y1 = x⊕ r or y2 = r has
to be simulated, such output can be perfectly simulated by generating a ran-
dom number uniformly, without knowing x. Finally, if k = 2, then one input is
required. Therefore, for any k with 0 ≤ k ≤ 2, the number of required inputs is
always at most bk/2c+ t.

For n > 1, let us consider the i-th sub-circuit and denote the number of out-
puts to be simulated by ki and the number of probes by ti for 1 ≤ i ≤ n. Based
on the above arguments, the total number of inputs needed for the simulation
is then at most

n∑
i=1

bki/2c+ ti ≤ bk/2c+ t,

which finally proves the Lemma.

The proof of Theorem 7 is obtained via induction on the number of shares
n. We assume that the result holds for n/2 and prove that it holds for n. We
distinguish among 5 sets of probes:

• The tA probes for the Secure Addition subroutine (Line 6 of Algorithm 4).

• The tEL and tER probes for the left and right Expand circuit, respectively
(lines 3 and 5 of Algorithm 4).

• The tCL and tCR probes for the left and right Arithmetic to Boolean con-
version circuit, respectively (lines 2 and 4 of Algorithm 4).

From the security proof of the SecAnd algorithm given in [11], we know that
a set of k outputs and tA probes can be simulated using a subset of k + 2tA
inputs in each of the two input shares x′i and y′i. Therefore, the property also
holds for the SecAdd algorithm.

According to Lemma 1, a set of k + 2tA outputs and tEL (resp. tER) probes
can be simulated using at most b(k + 2tA)/2c+ tEL = bk/2c+ tA + tEL inputs
(resp. bk/2c+ tA + tER inputs). Since the result is assumed to hold for n/2, the
bk/2c+ tA + tEL outputs and the tCL probes of the left conversion can be sim-
ulated using at most bk/2c + tA + tEL + 2tCL inputs. An upper bound of the
number of inputs for the right conversion can be derived in the same way. As a
consequence, the total number of required inputs is at most k + 2t according to
the following equation

|I| ≤ bk/2c+ tA + tEL + 2tCL + bk/2c+ tA + tER + 2tCR

≤ k + 2(tA + tEL + tER + tCL + tCR)

≤ k + 2t,

which proves Theorem 7.
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5 From Boolean to Arithmetic Masking of Any Order

We now present a new algorithm for converting in the other direction, i.e. from
Boolean to arithmetic masking, again with a complexity of O(n2k). Algorithm
6 specifies our arithmetic-to-Boolean conversion in detail.

Algorithm 6 Conversion from Boolean to Arithmetic Masking

Input: (xi) for 1 ≤ i ≤ n

Output: (Ai) for 1 ≤ i ≤ n, with
n∑

i=1

Ai =
n⊕

i=1

xi

1: (Ai)1≤i≤n−1 ← Rand(k)
2: (A′i)1≤i≤n−1 ← (−Ai)1≤i≤n−1, A′n ← 0

3: (yi)1≤i≤n ← ConvertA→B
(
(A′i)1≤i≤n

)
.

n⊕
i=1

yi =
n∑

i=1

A′i = −
n−1∑
i=1

Ai

4: (zi)1≤i≤n ← SecAdd
(
(xi)1≤i≤n, (yi)1≤i≤n

)
.

n⊕
i=1

zi =
n⊕

i=1

xi +
n⊕

i=1

yi

5: An ← FullXor
(
(zi)1≤i≤n

)
. An =

n⊕
i=1

zi =
n⊕

i=1

xi −
n−1∑
i=1

Ai

6: return (Ai)1≤i≤n. .
n∑

i=1

Ai =
n⊕

i=1

xi

We use the same randomized XOR method as in [5] to compute An ←
n⊕

i=1

zi; we

recall this method in Algorithm 7. The randomized XOR method, in turn, uses
Algorithm 8 (which was first proposed by Rivain and Prouff [20]) to refresh the
masks.

Algorithm 7 FullXor

Input: y1, . . . , yn
Output: y such that y = y1 ⊕ · · · ⊕ yn
1: for i = 1 to n do (y1, . . . , yn)← RefreshMasks(y1, . . . , yn)
2: return y1 ⊕ · · · ⊕ yn

Algorithm 8 RefreshMasks

Input: z1, . . . , zn such that z = z1 ⊕ · · · ⊕ zn
Output: z1, . . . , zn such that z = z1 ⊕ · · · ⊕ zn
1: for j = 2 to n do
2: tmp← Rand(k)
3: z1 ← z1 ⊕ tmp
4: zj ← zj ⊕ tmp
5: end for
6: return z1, . . . , zn
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The following theorem proves the security of Algorithm 6 in the ISW model; the
proof is provided in Appendix A.

Theorem 8. Let (xi)1≤i≤n be the input shares of Algorithm 6. For any set of t
intermediate variables with 2t < n, there exists a subset I ⊂ [1, n] of indices such
that |I| ≤ 2t, whereby the shares x|I can perfectly simulate those t intermediate
variables as well as the output shares A|I .

6 Implementation Results

We have implemented all the solutions proposed in this paper on a 32-bit AVR
microcontroller for security level t = 2, 3. We then applied all these techniques
to HMAC-SHA-1 and compared the running time with respect to an unmasked
implementation. Table 1 gives the running time of the addition and conversion
algorithms along with the number of calls to the rand function for security level
t = 2, 3. As expected, the addition algorithms using Goubin’s theorem (i.e. the
second variant presented in Section 3.2) outperform the first variant (given in
Section 3.1). Therefore, we applied the second variant to implement the secure
conversion algorithms.

Table 1. Execution times of all algorithms (in thousands of clock cycles) for t = 2, 3
and the number of calls to the rand function

Algorithm Time rand

second-order addition

Algorithm 2 87 1240

Algorithm 3 26 320

second-order conversion

Algorithm 4 54 484

Algorithm 6 81 822

third-order addition

Algorithm 2 156 2604

Algorithm 3 46 672

third-order conversion

Algorithm 4 121 1288

Algorithm 6 162 1997

HMAC-SHA-1. The hash function SHA-1 operates on blocks of 512 bits and
produces a 160-bit message digest. Each message block is divided into 16 words
of 32-bits each, which are extended to produce 64 further words (i.e. the total
number of words is 80). The main loop contains 80 iterations corresponding to
each of these 80 words. In order to protect HMAC-SHA-1 against side-channel
attacks, we follow two different approaches, which are summarized below.
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In the first approach, we use Boolean masking and perform secure addition
on Boolean shares directly whenever required. Every iteration of the main loop
requires four 32-bit additions, which amounts in a total of 320 additions for 80
iterations. Moreover, five additions have to be performed at the end to update
the state. So, in total, 325 secure additions need to be carried out per message
block.

In the other approach, we use Boolean masking and convert it to arithmetic
masking wherever necessary. In this case, we need four Boolean to arithmetic
conversions and one arithmetic to Boolean conversion per iteration, yielding a
total of 400 conversions for 80 iterations. Additionally, we need 10 conversions
to update the result, i.e. a total of 410 conversions per block are required. The
execution times of both approaches are summarized in Table 2.

Table 2. Execution times of second and third-order secure masking (in thousands
of clock cycles) and performance penalty compared to an unmasked implementation
of HMAC-SHA-1

Algorithm Time Penalty

HMAC-SHA-1 104 1

second-order addition

Algorithm 2 57172 549

Algorithm 3 17847 171

second-order conversion

Algorithm 4, 6 62669 602

third-order addition

Algorithm 2 106292 987

Algorithm 3 31195 299

third-order conversion

Algorithm 4, 6 127348 1224

7 Conclusions

In this paper, we addressed the problem of secure conversion between Boolean
and arithmetic masking for any order. By applying the ISW framework and
Goubin’s results for first-order conversion, we developed two algorithms of the
same asymptotic complexity to securely add Boolean shares. We then described
novel conversion algorithms between Boolean and arithmetic masking that are
provably secure at any order. Practical experiments based on HMAC-SHA-1
as case study show that, in the case of second and third-order security, using
Boolean masking and performing secure addition on Boolean shares directly is
more efficient than converting between Boolean and arithmetic masking. Even
though the proposed algorithms entail a massive performance penalty, they can
still be practically useful for applications like challenge-response authentication
where only a single block of data needs to be encrypted.
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A Proof of Theorem 8

We recall the following Lemma from [5] (with |I| ≤ t instead of |I| ≤ 2t) and its
proof.
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Lemma 2. Let (yi)1≤i≤n be the input shares of the FullXor algorithm. For any
set of t intermediate variables, there exists a subset I ⊂ [1, n] of indices such
that |I| ≤ t and the distribution of those t variables can be perfectly simulated
from y|I and y = y1 ⊕ · · · ⊕ yn.

Proof of Lemma 2. We first consider the series of n RefreshMasks. If any variable
yj is probed inside any of the RefreshMasks, we add j to I.

Moreover since t < n, there must be at least one RefreshMasks that is
not probed at all; let i∗ be the index of this RefreshMasks. Since we know
y = y1 ⊕ · · · ⊕ yn, we can perfectly simulate all the shares (yi)1≤i≤n after this
i∗-th RefreshMasks. Therefore we can perfectly simulate all yi’s until the last
RefreshMasks, and all intermediate variables for computing y = y1 ⊕ · · · ⊕ yn.

In summary before the i∗ RefreshMasks, with the knowledge of the input
shares y|I , we can perfectly simulate all intermediate variables yj for j ∈ I, and
after the i∗ RefreshMasks we can perfectly simulate all intermediate variables.
Finally the tmp variables are simulated as in the real circuit. This proves Lemma
2.

From Lemma 2, the set of t1 probes in the FullXor circuit computing An =⊕n
i=1 zi can be simulated from An and at most t1 inputs zi. From the previous

lemmas, those t1 inputs zi and the t2 probes in the remaining circuit can be
perfectly simulated using x|I , for I ⊂ [1, n], where |I| ≤ t1 + 2t2. If t1 > 0 we
add n to I; we still have |I| ≤ 2t where t = t1 + t2.

It remains to show how we can simulate An, as this is required for the sim-
ulation in Lemma 2 if t1 > 0, or if t1 = 0 and n ∈ I, since we must simulate all
outputs A|I . We select an arbitrary i0 /∈ I such that i0 6= n; this is possible since
in both cases we have n ∈ I and |I| ≤ 2t < n. We have:

An =

x− n−1∑
i=1

i 6=i0

Ai

−Ai0

Since i0 /∈ I the variable Ai0 does not enter in any computation of the simulation.
Since in the real circuit Ai0 is generated uniformly at random, we can simulate
An by generating a uniform random value. This proves Theorem 8.


