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Abstract. A common practice for signing with RSA is to first apply
a hash function or a redundancy function to the message, add some
padding and exponentiate the resulting padded message using the de-
cryption exponent. This is the basis of several existing standards.

In this paper we show how to build a secure padding scheme for signing
arbitrarily long messages with a secure padding scheme for fixed-size
messages. This focuses more sharply the question of finding a secure
encoding for RSA signatures, by showing that the difficulty is not in
handling messages of arbitrary length, but rather in finding a secure
redundancy function for short messages, which remains an open problem.
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1 Introduction

Since the discovery of public-key cryptography by Diffie and Hellman [4],
one of the most important research topics has been the design of prac-
tical and provably secure cryptosystems. A proof of security is usually a
computational reduction between breaking the cryptosystem and solving
a well established problem such as factoring large integers, computing
the discrete logarithm modulo a prime p or extracting a root modulo a
composite integer. RSA [10] is based on this last problem.

A common practice for signing with RSA is to first apply a hash (or a
redundancy) function to the message m, add some padding and raise the



padded message to the decryption exponent. This is the basis of numerous
standards such as 1SO/IEC-9796-1 [6], 1SO 9796-2 [7] and PKCS#1 v2.0

[8].

Many padding schemes have been designed and many have been bro-
ken (see [9] for a survey). The Full Domain Hash (FDH) scheme and the
Probabilistic Signature Scheme (PSS) [2] were among the first practical
and provably secure signature schemes. Those schemes are provably se-
cure in the random oracle model [1], in which the hash function is assumed
to behave as a truly random function.

However, security proofs in the random oracle model are not “real”
proofs, and can be only considered as heuristic, since in the real world
the random oracle is replaced by a function which can be computed by all
parties. A recent result by Canneti, Goldreich and Halevi [3] shows that
a security proof in the random oracle does not necessarily imply security
in the “real world”.

In this paper we do not model hash functions as random oracles nor
assume the existence of collision-resistant hash-functions. Instead, we as-
sume the existence of a secure deterministic padding function u for signing
fixed-length message and show how to build a secure padding scheme for
signing arbitrarily long messages. This focuses more sharply the question
of finding a secure encoding for RSA signatures, by showing that the
difficulty is not in handling messages of arbitrary length, but rather in
finding a secure redundancy function for short messages, which remains
an open problem.

2 Definitions

2.1 Signature schemes

The digital signature of a message m is a string which depends on m and
on some secret known only to the signer, in such a way that anyone can
check the validity of the signature. The following definitions are based on

[5].

Definition 1 (signature scheme). A signature scheme is defined by
the following :

- The key generation algorithm Generate is a probabilistic algorithm
which given 1%, outputs a pair of matching public and secret keys, {pk, sk}.



- The signing algorithm Sign takes the message M to be signed and
the secret key sk and returns a signature x = Signg (M). The signing
algorithm may be probabilistic.

- The verification algorithm Verify takes a message M, a candidate
signature x' and the public key pk. It returns a bit Verifypk(M, z'), equal
to 1 if the signature is accepted, and 0 otherwise. We require that if x <
Signgy (M), then Verifypk(M, z) = 1.

2.2 Security of signature schemes

The security of signature schemes was formalized in an asymptotic set-
ting by Goldwasser, Micali and Rivest [5]. Here we use the definitions of
[2] which provide a framework for the concrete security analysis of dig-
ital signatures. Resistance against adaptative chosen-message attacks is
considered : a forger F can dynamically obtain signatures of messages
of its choice and attempts to output a valid forgery. A valid forgery is a
message/signature pair {M,z} such that Verifypk(M, z) = 1 whilst the
signature of M was never requested by F.

Definition 2. A forger F is said to (t, qsig, €)-break the signature scheme
{Generate, Sign, Verify} if after at most qsi, signature queries and t pro-
cessing time, it outputs a valid forgery with probability at least .

Definition 3. A signature scheme {Generate, Sign, Verify} is (¢, gsig, €)-
secure if there is no forger who (t,qsig. €)-breaks the scheme.

2.3 The RSA cryptosystem

RSA [10] is the most widely used public-key cryptosytem. It may be used
to provide both secrecy and digital signatures.

Definition 4 (The RSA cryptosystem). RSA is a family of trapdoor
permutations. It is specified by :

- The RSA generator RSA, which on input 1%, randomly selects 2
distinct k/2-bit primes p and q and computes the modulus N = p - q.
It randomly picks an encryption exponent e € Z;‘)(N) and computes the
corresponding decryption exponent d such that e - d = 1mod ¢(N). The
generator returns {N,e,d}.

- The encryption function f : Z% — L% defined by f(r) = z°mod N.

- The decryption function f~' : Z% — 7% defined by f~'(y) =
y?mod N.



2.4 The standard RSA signature scheme

Let p be a padding function taking as input a message of size k + 1 bits
and returning an integer of size k£ bits. We consider in figure 1 the classical
RSA signature scheme {Generate, Sign, Verify} which signs fixed-length
k + 1-bits messages.

System parameters
an integer k > 0
a function g : {0, 1}5+1 — {0, 1}
Key generation : Generate
{N,e,d} + RSA(1%)
public key : {N, e}
private key : {N,d}
Signature generation : Sign
y < pu(m)
return y% mod N
Signature verification : Verify
y < z°mod N
y' <« p(m)
if y = 1’ then return 1 else return 0.

Fig. 1. The classical RSA scheme using function p for signing fixed-length messages.

3 The new construction

We construct in figure 2 a new signature scheme {Generate’, Sign’, Verify'}
using function . The new construction enables to sign messages of size
2% . (k —a) bits where a is comprised between 0 and k — 1 and & is the size
of the modulus in bits. The maximum length that can be handled is then
2k=1 bits for a = k — 1 or a = k — 2. The construction can be recursively
iterated to sign messages of arbitrary length. For bit strings m, and my,
we let mq||mgy denote the concatenation of m; and ms.

This construction preserves the resistance against adaptive chosen
message attack of the signature scheme :



System parameters

an integer k > 0

an integer a € [0,k — 1]

a function g : {0, 1}¢+1 — {0, 1}
Key generation : Generate’

{N,e,d} < RSA(1%)

public key : {N, e}

private key : {N,d}
Signature generation : Sign’

Split the message m into blocks of size k — a bits

such that m = m/[1]|| ... |lm[r].

r

let @ = [] w(0]|7|/m[i]) mod N
i=1

where i in 0||2||m[é] is the a-bit string representing i.
let y « u(1]|a)
return y* mod N
Verification : Verify'
y < x®mod N
r
let o = [] p(0|]7]||m[i]) mod N
i=1
let ¢ < pu(1]]r)
if y = 5/ then return 1 else return 0.

Fig. 2. The new construction using function p for signing long messages.

Theorem 1. If the signature scheme {Generate, Sign, Verify} is (£, gsig, €)
secure, then the signature scheme {Generate’, Sign’, Verify'} which signs
messages of length 2¢ - (k — a) bits is (', q;,. €') secure, where :

th=1—2" qgq O(k?) (1)
q;ig = Qsig — 20+ (2)
€ =c¢ (3)

Proof. Let F' be a forger that (#',q;,, €')-breaks the signature scheme
{Generate’, Sign’, Verify'} . We construct a forger F that (£, gsig, €)-breaks
the signature scheme {Generate, Sign, Verify} using F'. The forger F has
oracle access to a signer S for the signature scheme {Generate, Sign, Verify}



and its goal is to produce a forgery for {Generate, Sign, Verify} . The forger
F will answer the signature queries of F' itself.

The forger F is given as input {N,e} where N,e were obtained by
running Generate. It starts running 7' with the public key {N,e}.

When F' asks the signature of the j-th message m; with m; =
m[U|]... [|m;[r;], F computes :

Tj
a; = [T n(olfillmy i]) mod N
=1

and requests from S the signature s; = pu(1/jaj)?mod N of the mes-
sage 1||a;, and returns s; to F'. Let g be the total number of signatures
requested by F'.

Eventually F' outputs a forgery {m’,s'} for the signature scheme
{Generate’, Sign’, Verify'} with m' = m/[1]||... ||m/[r'], from which F com-
putes :

o =[] wOllil ' [i)) mod N
=1

We distinguish two cases :

First case : o ¢ {ai,...,a4}. In this case F outputs the forgery
{1]]e/, s'} and halts. This is a valid forgery for the signature scheme
{Generate, Sign, Verify} since s’ = u(1]/a’)? and the signature of 1||o/
was never asked to the signer S.

Second case : o/ € {a1,..., a4}, so there exist ¢ such that o/ = ..
Let denote m = m., @ = a, and r = r.. We have :

[T (011 mod ¥ = T (0]}l i) mod N (4)

i=1

The message m' is distinct from the message m because the signature of m
has been requested by F' whereas the signature of m’ was never requested
by F, since m’ is the message of the forgery. Consequently there exist an
integer 7 such that :

0flj|lm'[5] ¢ {Oll1||ml[1],..., Ofr|lm[r]} (5)

or

Ofljllml[4] ¢ {oll1|lm/[1], ..., Of|r"||m [T} (6)



We assume that condition (5) is satisfied (condition (6) leads to the
same result). In this case F asks S for the signatures z; of the messages
0|[i||m'[i] for 4 € [1,7'] and i # j, and the signatures x; of the messages
0||2||m[é] for i € [1,7]. Since from (4) :

-1
p(O1llm'5]) = (T pllillmfi]) ( TT#1m'l])  mod N
i i#
the forger F can compute the signature of 0||j||m/[j] from the other sig-
natures :

= w3l )" = (TTa:) ([T#)  mod

i#]
and F finally outputs the forgery {0|[j|[m'[j], z’;}. This is a valid forgery

for the signature scheme {Generate, Sign, Verify} since the signature of
0]|7||m'[7] was never asked from the signer S.

We assume that p can be computed in time linear in k, as is the case
for most padding functions. The running time of F is then the running
time of F' plus the time necessary for the multiplications modulo N,
which is quadratic.

O

Note that gs;, must me greater than 2¢7! so that equation (2) holds.
The security reduction is tight : the probability of success of F is exactly
the probability of success of F'.

4 Conclusion and further research

We have reduced the problem of designing a secure deterministic general-
purpose RSA padding scheme to the problem of designing a one block
secure padding scheme, by providing an efficient and secure tool to extend
the latter into the former. As stated previously, this focuses more sharply
the question of finding a secure encoding for RSA signatures, by showing
that the difficulty is not in handling messages of arbitrary length, but
rather in finding a secure redundancy function for short messages, which
remains an open problem.

Our construction assumes that the padding function p takes as input
messages larger than the modulus; padding schemes such as ISO/TEC
9697-1 are consequently uncovered. A possible line of research could be a
construction similar to ours, using a small (1024-bit) inner modulus and
a larger (2048-bit) outer modulus.
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