
From �xed-length to arbitrary-length RSApadding shemesJean-S�ebastien Coron Franois KoeuneEole Normale Sup�erieure UCL Crypto Group45 rue d'Ulm Bâtiment Maxwell, plae du Levant 3Paris, F-75005, Frane Louvain-la-Neuve, B-1348, Belgiumoron�lipper.ens.fr fkoeune�die.ul.a.beDavid NaaheGemplus Card International34 rue GuynemerIssy-les-Moulineaux, F-92447, Franedavid.naahe�gemplus.omAbstrat. A ommon pratie for signing with RSA is to �rst applya hash funtion or a redundany funtion to the message, add somepadding and exponentiate the resulting padded message using the de-ryption exponent. This is the basis of several existing standards.In this paper we show how to build a seure padding sheme for signingarbitrarily long messages with a seure padding sheme for �xed-sizemessages. This fouses more sharply the question of �nding a seureenoding for RSA signatures, by showing that the diÆulty is not inhandling messages of arbitrary length, but rather in �nding a seureredundany funtion for short messages, whih remains an open problem.Key words : Signature sheme, provable seurity, padding sheme.1 IntrodutionSine the disovery of publi-key ryptography by DiÆe and Hellman [4℄,one of the most important researh topis has been the design of pra-tial and provably seure ryptosystems. A proof of seurity is usually aomputational redution between breaking the ryptosystem and solvinga well established problem suh as fatoring large integers, omputingthe disrete logarithm modulo a prime p or extrating a root modulo aomposite integer. RSA [10℄ is based on this last problem.A ommon pratie for signing with RSA is to �rst apply a hash (or aredundany) funtion to the message m, add some padding and raise the



padded message to the deryption exponent. This is the basis of numerousstandards suh as iso/ie-9796-1 [6℄, iso 9796-2 [7℄ and pks#1 v2.0[8℄. Many padding shemes have been designed and many have been bro-ken (see [9℄ for a survey). The Full Domain Hash (FDH) sheme and theProbabilisti Signature Sheme (PSS) [2℄ were among the �rst pratialand provably seure signature shemes. Those shemes are provably se-ure in the random orale model [1℄, in whih the hash funtion is assumedto behave as a truly random funtion.However, seurity proofs in the random orale model are not \real"proofs, and an be only onsidered as heuristi, sine in the real worldthe random orale is replaed by a funtion whih an be omputed by allparties. A reent result by Canneti, Goldreih and Halevi [3℄ shows thata seurity proof in the random orale does not neessarily imply seurityin the \real world".In this paper we do not model hash funtions as random orales norassume the existene of ollision-resistant hash-funtions. Instead, we as-sume the existene of a seure deterministi padding funtion � for signing�xed-length message and show how to build a seure padding sheme forsigning arbitrarily long messages. This fouses more sharply the questionof �nding a seure enoding for RSA signatures, by showing that thediÆulty is not in handling messages of arbitrary length, but rather in�nding a seure redundany funtion for short messages, whih remainsan open problem.2 De�nitions2.1 Signature shemesThe digital signature of a message m is a string whih depends on m andon some seret known only to the signer, in suh a way that anyone anhek the validity of the signature. The following de�nitions are based on[5℄.De�nition 1 (signature sheme). A signature sheme is de�ned bythe following :- The key generation algorithm Generate is a probabilisti algorithmwhih given 1k, outputs a pair of mathing publi and seret keys, fpk; skg.



- The signing algorithm Sign takes the message M to be signed andthe seret key sk and returns a signature x = Signsk(M). The signingalgorithm may be probabilisti.- The veri�ation algorithm Verify takes a message M , a andidatesignature x0 and the publi key pk. It returns a bit Verifypk(M;x0), equalto 1 if the signature is aepted, and 0 otherwise. We require that if x Signsk(M), then Verifypk(M;x) = 1.2.2 Seurity of signature shemesThe seurity of signature shemes was formalized in an asymptoti set-ting by Goldwasser, Miali and Rivest [5℄. Here we use the de�nitions of[2℄ whih provide a framework for the onrete seurity analysis of dig-ital signatures. Resistane against adaptative hosen-message attaks isonsidered : a forger F an dynamially obtain signatures of messagesof its hoie and attempts to output a valid forgery. A valid forgery is amessage/signature pair fM;xg suh that Verifypk(M;x) = 1 whilst thesignature of M was never requested by F .De�nition 2. A forger F is said to (t; qsig; �)-break the signature shemefGenerate, Sign, Verifyg if after at most qsig signature queries and t pro-essing time, it outputs a valid forgery with probability at least �.De�nition 3. A signature sheme fGenerate, Sign, Verifyg is (t, qsig, �)-seure if there is no forger who (t; qsig; �)-breaks the sheme.2.3 The RSA ryptosystemRSA [10℄ is the most widely used publi-key ryptosytem. It may be usedto provide both serey and digital signatures.De�nition 4 (The RSA ryptosystem). RSA is a family of trapdoorpermutations. It is spei�ed by :- The RSA generator RSA, whih on input 1k, randomly selets 2distint k=2-bit primes p and q and omputes the modulus N = p � q.It randomly piks an enryption exponent e 2 Z��(N) and omputes theorresponding deryption exponent d suh that e � d = 1mod �(N). Thegenerator returns fN; e; dg.- The enryption funtion f : Z�N ! Z�N de�ned by f(x) = xemod N .- The deryption funtion f�1 : Z�N ! Z�N de�ned by f�1(y) =ydmod N .



2.4 The standard RSA signature shemeLet � be a padding funtion taking as input a message of size k + 1 bitsand returning an integer of size k bits. We onsider in �gure 1 the lassialRSA signature sheme fGenerate, Sign, Verifyg whih signs �xed-lengthk + 1-bits messages.System parametersan integer k > 0a funtion � : f0; 1gk+1 ! f0; 1gkKey generation : GeneratefN; e; dg  RSA(1k)publi key : fN; egprivate key : fN; dgSignature generation : Signy  �(m)return ydmod NSignature veri�ation : Verifyy  xemod Ny0  �(m)if y = y0 then return 1 else return 0.Fig. 1. The lassial RSA sheme using funtion � for signing �xed-length messages.
3 The new onstrutionWe onstrut in �gure 2 a new signature sheme fGenerate', Sign', Verify'gusing funtion �. The new onstrution enables to sign messages of size2a � (k�a) bits where a is omprised between 0 and k�1 and k is the sizeof the modulus in bits. The maximum length that an be handled is then2k�1 bits for a = k � 1 or a = k � 2. The onstrution an be reursivelyiterated to sign messages of arbitrary length. For bit strings m1 and m2,we let m1jjm2 denote the onatenation of m1 and m2.This onstrution preserves the resistane against adaptive hosenmessage attak of the signature sheme :



System parametersan integer k > 0an integer a 2 [0; k � 1℄a funtion � : f0; 1gk+1 ! f0; 1gkKey generation : Generate0fN; e; dg  RSA(1k)publi key : fN; egprivate key : fN; dgSignature generation : Sign0Split the message m into bloks of size k � a bitssuh that m = m[1℄jj : : : jjm[r℄.let � = rQi=1�(0jjijjm[i℄)mod Nwhere i in 0jjijjm[i℄ is the a-bit string representing i.let y  �(1jj�)return ydmod NVeri�ation : Verify0y  xemod Nlet � = rQi=1�(0jjijjm[i℄)mod Nlet y0  �(1jj�)if y = y0 then return 1 else return 0.Fig. 2. The new onstrution using funtion � for signing long messages.Theorem 1. If the signature sheme fGenerate, Sign, Verifyg is (t; qsig; �)seure, then the signature sheme fGenerate', Sign', Verify'g whih signsmessages of length 2a � (k � a) bits is (t0; q0sig; �0) seure, where :t0 = t� 2a � qsig � O(k2) (1)q0sig = qsig � 2a+1 (2)�0 = � (3)Proof. Let F 0 be a forger that (t0; q0sig; �0)-breaks the signature shemefGenerate', Sign', Verify'g . We onstrut a forger F that (t; qsig; �)-breaksthe signature sheme fGenerate, Sign, Verifyg using F 0. The forger F hasorale aess to a signer S for the signature sheme fGenerate, Sign, Verifyg



and its goal is to produe a forgery for fGenerate, Sign, Verifyg . The forgerF will answer the signature queries of F 0 itself.The forger F is given as input fN; eg where N; e were obtained byrunning Generate. It starts running F 0 with the publi key fN; eg.When F 0 asks the signature of the j-th message mj with mj =mj[1℄jj : : : jjmj [rj ℄, F omputes :�j = rjYi=1�(0jjijjmj [i℄)mod Nand requests from S the signature sj = �(1jj�j)dmod N of the mes-sage 1jj�j , and returns sj to F 0. Let q be the total number of signaturesrequested by F 0.Eventually F 0 outputs a forgery fm0; s0g for the signature shemefGenerate', Sign', Verify'g withm0 = m0[1℄jj : : : jjm0[r0℄, from whih F om-putes : �0 = r0Yi=1�(0jjijjm0[i℄)mod NWe distinguish two ases :First ase : �0 =2 f�1; : : : ; �qg. In this ase F outputs the forgeryf1jj�0; s0g and halts. This is a valid forgery for the signature shemefGenerate, Sign, Verifyg sine s0 = �(1jj�0)d and the signature of 1jj�0was never asked to the signer S.Seond ase : �0 2 f�1; : : : ; �qg, so there exist  suh that �0 = �.Let denote m = m, � = � and r = r. We have :r0Yi=1�(0jjijjm0[i℄)mod N = rYi=1 �(0jjijjm[i℄)mod N (4)The messagem0 is distint from the messagem beause the signature ofmhas been requested by F 0 whereas the signature ofm0 was never requestedby F , sine m0 is the message of the forgery. Consequently there exist aninteger j suh that :0jjjjjm0[j℄ =2 f0jj1jjm[1℄; : : : ; 0jjrjjm[r℄g (5)or 0jjjjjm[j℄ =2 f0jj1jjm0[1℄; : : : ; 0jjr0jjm0[r0℄g (6)



We assume that ondition (5) is satis�ed (ondition (6) leads to thesame result). In this ase F asks S for the signatures x0i of the messages0jjijjm0[i℄ for i 2 [1; r0℄ and i 6= j, and the signatures xi of the messages0jjijjm[i℄ for i 2 [1; r℄. Sine from (4) :�(0jjjjjm0[j℄) = �Yi �(0jjijjm[i℄��Yi6=j �(0jjjjjm0[j℄)��1mod Nthe forger F an ompute the signature of 0jjjjjm0[j℄ from the other sig-natures : x0j = �(0jjjjjm0[j℄)d = �Yi xi��Yi6=j x0j��1mod Nand F �nally outputs the forgery f0jjjjjm0[j℄; x0jg. This is a valid forgeryfor the signature sheme fGenerate, Sign, Verifyg sine the signature of0jjjjjm0[j℄ was never asked from the signer S.We assume that � an be omputed in time linear in k, as is the asefor most padding funtions. The running time of F is then the runningtime of F 0 plus the time neessary for the multipliations modulo N ,whih is quadrati. utNote that qsig must me greater than 2a+1 so that equation (2) holds.The seurity redution is tight : the probability of suess of F is exatlythe probability of suess of F 0.4 Conlusion and further researhWe have redued the problem of designing a seure deterministi general-purpose RSA padding sheme to the problem of designing a one blokseure padding sheme, by providing an eÆient and seure tool to extendthe latter into the former. As stated previously, this fouses more sharplythe question of �nding a seure enoding for RSA signatures, by showingthat the diÆulty is not in handling messages of arbitrary length, butrather in �nding a seure redundany funtion for short messages, whihremains an open problem.Our onstrution assumes that the padding funtion � takes as inputmessages larger than the modulus; padding shemes suh as ISO/IEC9697-1 are onsequently unovered. A possible line of researh ould be aonstrution similar to ours, using a small (1024-bit) inner modulus anda larger (2048-bit) outer modulus.
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