
New Attaks on PKCS#1 v1.5 EnryptionJean-S�ebastien Coron1;3, Mar Joye2, David Naahe3, and Pasal Paillier31 �Eole Normale Sup�erieure45 rue d'Ulm, 75005 Paris, Franeoron�lipper.ens.fr2 Gemplus Card InternationalPar d'Ativit�es de G�emenos, B.P.100, 13881 G�emenos, Franemar.joye�gemplus.om3 Gemplus Card International34 rue Guynemer, 92447 Issy-les-Moulineaux, Franefjean-sebastien.oron, david.naahe, pasal.paillierg�gemplus.omAbstrat. This paper introdues two new attaks on pks#1 v1.5, anrsa-based enryption standard proposed by RSA Laboratories. As op-posed to Bleihenbaher's attak, our attaks are hosen-plaintext only,i.e. they do not make use of a deryption orale. The �rst attak ap-plies to small publi exponents and shows that a plaintext ending bysuÆiently many zeroes an be reovered eÆiently when two or moreiphertexts orresponding to the same plaintext are available. We believethe tehnique we employ to be of independent interest, as it extends Cop-persmith's low-exponent attak to ertain length parameters. Our seondattak is appliable to arbitrary publi exponents, provided that mostmessage bits are zeroes. It seems to onstitute the �rst hosen-plaintextattak on an rsa-based enryption standard that yields to pratial re-sults for any publi exponent.Keywords: RSA, PKCS# v1.5 enryption, hosen plaintext attak.1 IntrodutionPks stands for Publi-Key Cryptography Standards. It is a large orpus ofspei�ations overing rsa enryption [13℄, DiÆe-Hellman key agreement, pass-word-based enryption, syntax (extended-erti�ates, ryptographi messages,private-key information and erti�ation requests) and seleted attributes. His-torially, pks was developed by RSA Laboratories, Apple, Digital, Lotus, Mi-rosoft, MIT, Northern Teleom, Novell and Sun. The standards have been reg-ularly updated sine. Today, pks has beome a part of several standards andof a wide range of seurity produts inluding Internet Privay-Enhaned Mail.Amongst the pks olletion, pks#1 v1.5 desribes a partiular enodingmethod for rsa enryption alled rsaEnryption. In essene, the enveloped datais �rst enrypted under a randomly hosen keyK using a symmetri blok-ipher(e.g. a triple des in b mode) then K is rsa-enrypted with the reipient'spubli key.



In 1998, Bleihenbaher [2℄ published an adaptive hosen-iphertext attak onpks#1 v1.5 apable of reovering arbitrary plaintexts from a few hundreds ofthousands of iphertexts. Although ative adversary models are generally viewedas theoretial issues,1 Bleihenbaher's attak makes use of an orale that onlydetets onformane with respet to the padding format, a real-life assumptionleading to a pratial threat. Pks#1 was subsequently updated in the release2.0 [15℄ and pathes were issued to users wishing to ontinue using the old versionof the standard.Independently, there exist several well-known hosen-plaintext attaks onrsa-based enryption shemes [8, 5℄. These typially enable an attaker to de-rypt iphertexts at moderate ost without requiring to fator the publi mod-ulus. The most powerful ryptanalyti tool appliable to low exponent rsa isprobably the one based on a theorem due to Coppersmith [6℄. As a matter of fat,one major purpose of imposing a partially random padding form to messages,besides attempting to ahieve a proper seurity level suh as indistinguishability,is to render the whole enryption sheme resistant against suh attaks.This paper shows that, despite these e�orts, hosen-plaintext attaks areatually suÆient to break pks#1 v1.5 even in ases when Coppersmith'sattak does not apply. We introdue new ryptanalyti tehniques allowing anattaker to retrieve plaintexts belonging to a ertain ategory, namely messagesending by a required minimum number of zeroes. The �rst attak requires twoor more iphertexts orresponding to the same plaintext. Although spei�, ourattaks only require a very small amount of iphertexts (say ten of them), areompletely independent from the publi modulus given its size and, moreover,are fully pratial for usual modulus sizes.The rest of this paper is divided as follows. Setion 2 introdues a new low-exponent attak for whih we provide a omparison with Coppersmith's attakin Setion 3. Setion 4 shows how to deal with arbitrary publi exponents whilestaying within the hosen-plaintext attak model. Counter-measures are dis-ussed in Setion 5. For ompleteness, Appendix A reports pratial experimentsof our tehnique performed on 1024-bit iphertexts.2 Our Low-Exponent Chosen-Plaintext AttakWe briey reall the pks#1 v1.5 enoding proedure [14℄. Let fn; eg be an rsapubli key and d be the orresponding seret key. Denoting by k the byte-lengthof n, we have 28(k�1) � n < 28k. A messagem of size jmj bytes with jmj � k�11is enrypted as follows. A padding r0 onsisting of k� 3�jmj � 8 nonzero bytesis generated at random. Then the message m gets transformed into:pks(m; r0) = 000216kr0k0016km;and enrypted to form the iphertext:1 Chosen-iphertext attaks require the strong assumption that the adversary has aomplete aess to a deryption orale.



 = pks(m; r0)e mod n :Letting r = (000216kr0), we an write pks(m; r0) = r 2� + m with � =8jmj + 8. Now assume that m has its least Z signi�ant bits equal to zero.Hene, we an write m = �m 2Z and subsequently:pks(m; r0) = 2Z(r 2��Z + �m) :From two enryptions of the same message m, (i.e. i = [2Z(ri2��Z +�m)℄e mod n for i = 1; 2), the attaker evaluates:� := 1 � 22eZ 2��Z mod n� (r1 � r2)| {z }:=! h e�1Xj=0(r1 2��Z + �m)e�1�j(r2 2��Z + �m)ji| {z }:=v (mod n) : (1)The attak onsists in the following: assuming that r1 > r2 and the numberof zeroes Z to be large enough so that 0 < ! v < n, relation (1) holds over theintegers, and ! = r1 � r2 must divide �. Therefore, by extrating the smallfators of � one expets to reonstrut a andidate for !. The orret guess for! will lead to the message m using the low-exponent attak desribed in [7℄.Letting R the bit-size of random r0 (the standard spei�es R � 64), M thebit size of �m, and N the bit size of modulus n, the ondition w �v < n is satis�edwhenever: eR+ (e� 1)� (M + 10) < N : (2)With N = R+M + Z + 24, equation (2) is equivalent to:(e� 1)R+ (e� 2)M + 10e� 34 < Z2.1 Determining the Fators of � Smaller than a Bound BThe �rst step of our attak onsists in omputing a set D of divisors of � byextrating the primes P = fp1; : : : ; pig that divide � and are smaller than abound B. If all the prime fators of ! are smaller than B (in this ase, ! is saidto be B-smooth), then ! 2 D. Sine only a partial fatorization of � is required,only fatoring methods whih omplexity relies on the size of the prime fatorsare of interest here. We briey reall four of these: trial division, Pollard's �method, p� 1 method and Lenstra's ellipti urve method (ECM) and expressfor eah method the asymptoti omplexity C(p) of extrating a fator p from anumber n.Trial division method: Trial division by primes smaller than a bound B de-mands a omplexity of p+ logn for extrating p.



Pollard's �-method [4℄: Let p be a fator of n. Pollard's �-method onsists initerating a polynomial with integer oeÆients f (i.e. omputing f(x) mod n,f(f(x)) mod n, and so on) until a ollision modulo p is found (i.e. x � x0(mod p)). Then with high probability gd(x � x0 (mod n); n) yields p. Theomplexity of extrating a fator p is O(pp). In pratie, prime fators upto approximately 60 bits an be extrated in reasonable time (less than afew hours on a workstation).p� 1 method: If p� 1 is B-smooth then p� 1 divides the produt `(B) of allprimes smaller than B. Sine ap�1 mod p = 1, we have a`(B) mod p = 1 andthus gd(a`(B) � 1 mod n; n) gives p.Lenstra's ellipti urve method (ECM) [11℄: ECM is a generalization ofthe p � 1 fatoring method. Briey, a point P of a random ellipti urveE modulo n is generated. If #E=(p) (i.e. the order of the urve modulo p)is B-smooth, then [`(B)℄P = O, the point at in�nity. This means that anillegal inversion modulo n has ourred and p is revealed. ECM extrats afator p of n in exp((p2 + o(1))plog p log log p) expeted running time. Inpratie, prime fators up to 80 bits an be pulled out in reasonable time(less than a few hours on a workstation).Traditionally,  (x; y) denotes the number of integers z � x suh that z issmooth with respet to the bound y. The theorem that follows gives an estimatefor  (x; y).Theorem 1 ([9℄). For any non-negative real u, we have:limx!1 (x; x1=u)=x = �(u) ;where �(u) is the so-alled Dikman's funtion and is de�ned as:�(t) = 8<: 1 if 0 � t < 1�(n)� Z tn �(v � 1)v dv if n � t < n+ 1 :Theorem 1 shows that a uniformly distributed random integer z between 1and x is x1=u-smooth with probability �(u). However, the integers referred toin the sequel are not uniformly distributed. Consequently, the probability andomplexity estimates must be onsidered to be heuristi.The probability that ! is B-smooth is approximately �(R= log2B). Thus us-ing two iphertexts, the probability of �nding all fators of ! is �(R= log2B).When using k iphertexts, k�(k�1)=2 paired ombinations an be obtained. As-suming statistial independene between the fatorization of the orrespondingw, approximately k =p2=�(R= log2B)iphertexts are required to ompute the fatorization of at least one ! in om-plexity:



C(B)=�(R= log2 B) :In pratie, a fatorization algorithm starts with trial division up to some boundB0 (we took B0 = 15000), then Pollard's �-method and the p � 1 method areapplied, and eventually the ECM. In Table 1 we give the running times obtainedon a Pentium 233-MHz to extrat a prime fator of size L bits with the ECM,using the arithmeti library MIRACL [12℄.L 32 40 48 56 64 72time in seonds 6 15 50 90 291 730Table 1. Running times for extrating a prime fator of L bits using the ECM.This learly shows that for R � 72, the fators of ! an be reovered eÆ-iently. For R > 72 we estimate in Table 2 the exeution time and the numberof required iphertexts, when only fators up to 72 bits are to be extrated.L 128 160 192 224 256time in seonds 1719 3440 7654 19010 51127number of iphertexts 3 4 5 8 12Table 2. Running time and approximate number of iphertexts needed to reover thefatorization of at least one !.
2.2 Identifying the Candidates for !From the previous setion we obtain a set of primes P = fp1; : : : ; pig dividing�, suh that the primes dividing ! are in P . From P we derive a set D = f�jgof divisors of �, whih ontains !. Denoting by d(k) the number of divisors ofan integer k, the following theorem [10℄ provides an estimate of the number ofdivisors of a random integer. We say that an arithmetial funtion f(k) is of theaverage order of g(k) iff(1) + f(2) + : : :+ f(k) � g(1) + : : :+ g(k) :We state:Theorem 2. The average order of d(k) is log k. More preisely, we have:d(1) + d(2) + � � �+ d(k) = k log k + (2 � 1)k +O(pk) ;where  is Euler's onstant.



Theorem 2 shows that if � was uniformly distributed between 1 and n thenits number of divisors and onsequently the average number of andidates for !would be roughly logn. Sine � is not uniformly distributed this only providesan heuristi argument to show that the average number of andidates for !should be polynomially bounded by logn.In pratie, not all divisors �j need to be tested sine only divisors of lengthlose to or smaller than R are likely to be equal to !. Moreover, from Eq. (1)and letting �m2 = r2 2��Z + �m, we have:� = ! e�1Xj=0(! 2��Z + �m2)e�1�j �mj2= ! e�1Xj=0 e�1�jXk=0 �e� 1� jk �(! 2��Z)e�1�j�k �mj+k2= ! e�1Xh=0" hXi=0 �e� 1� ih� i �# (! 2��Z)e�1�h �mh2 ;whene, noting that Phi=0 �e�1�ih�i � � 0 (mod e) for 1 � h � e� 1,� � ! (! 2��Z)e�1 (mod e) :In partiular, when e is prime, this simpli�es to� � !e 2(��Z)(e�1) � ! (mod e) :This means that only a �j satisfying � � �j (�j 2��Z)e�1 (mod e) (or � ��j (mod e) if e is prime) is a valid andidate for !.2.3 Reovering m Using the Low-Exponent RSA with RelatedMessages AttakThe low-exponent attak on rsa with related messages desribed in [7℄ onsistsin the following: assume that two messages m1, m2 verify a known polynomialrelation P of the formm2 = P(m1) with P 2 ZZn[z℄ and deg(P) = Æ ;and suppose further that the two orresponding iphertexts 1 and 2 are known.Then z = m1 is a ommon root of polynomials Q1;Q2 2 ZZn[z℄ given byQ1(z) = ze � 1 and Q2(z) = (P(z))e � 2 ;so that with high probability one reovers m1 bygd(Q1;Q2) = z �m1 (mod n) :



From the previous setion we obtain a set of divisors �j of �, among whihone is equal to !. Letting m1 = pks(m; r1) and m2 = pks(m; r2) we have:1 = me1 (mod n); 2 = me2 (mod n); and m2 = m1 � 2� ! :For a divisor �j of �, the attaker omputes:Rj(z) = gd(ze � 1; (z � 2��j)e � 2) :If �j = ! then, with high probability, Rj(z) = z �m1 (mod n), whih yieldsthe value of message m, as announed.3 Comparison with Coppersmith's Attaks onLow-exponent RSACoppersmith's method is based on the following theorem [6℄:Theorem 3 (Coppersmith). Let P 2 ZZn[x℄ be a univariate polynomial ofdegree Æ modulo an integer n of unknown fatorization. Let X be the bound onthe desired solution. If X < 12 n1=Æ�", one an �nd all integers x0 with P(x0) = 0(mod n) and jx0j � X in time polynomial in (logn; Æ; 1=").Corollary 1 (Coppersmith). Under the same hypothesis and provided thatX < n1=Æ, one an �nd all integers x0 suh that P(x0) = 0 (mod n) andjx0j � X in time polynomial in (logn; Æ)Theorem 3 applies in the following situations:Stereotyped messages: Assume that the plaintextm onsists of a known partB = 2kb and an unknown part x. The iphertext is  = me = (B + x)e(mod n). Using Theorem 3 with the polynomial P(x) = (B + x)e � , onean reover x from  if jxj < n1=e.Random padding: Assume that two messages m and m0 satisfy an aÆne re-lation m0 = m + r with a small but unknown r. From the rsa-enryptionsof the two messages: = me mod n and 0 = (m+ r)e mod n ;we eliminatem from the two above equations by taking their resultant, whihgives a univariate polynomial in r modulo n of degree e2. Thus, if jrj < n1=e2 ,r an be reovered, wherefrom we derive m as in Setion 2.3.In our ase of interest, for a message ending with Z zeroes, the stereotypedmessages attak works for e(M +R) < N and the random padding attak worksfor e2R < N . Negleting onstant terms, our method of Setion 2 is e�etive foreR+ (e� 1)M < N :
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N/3Fig. 1. Domains of validity for e = 3 of Coppersmith's stereotyped attak (1), Cop-persmith's random padding attak (2) and our attak (3).Consequently, as illustrated in Figure 1, for e = 3, our method improves Cop-persmith's method whenever8>><>>: Ne2 <R< Ne andNe �R <M< Ne� 1 � ee� 1R :4 A Chosen Plaintext Attak for Arbitrary Exponents4.1 DesriptionIn this setion we desribe a hosen plaintext attak against pks#1 v1.5 en-ryption for an arbitrary exponent e. The attak makes use of a known aw inElGamal enryption [3℄ and works for very short messages only. As in Setion 2we only onsider messages ending by Z zeroes:m = �mk0 : : :02 :For a random r0 onsisting of nonzero bytes, the message m is transformedusing pks#1 v1.5 into:pks(m; r0) = 000216kr0k0016k �mk0 : : :02and enrypted into  = pks(m; r0)e mod n. Letting x = 000216kr0k0016k �m, wean write pks(m; r0) = x 2Z :



We de�ne y = =2eZ = xe (mod n), M the bit-size of �m, and X the bit-size ofx. Hene, we have X =M +R+ 10. Assuming that x = x1 x2 where x1 and x2are integers smaller than a bound B, we onstrut the table:yie mod n for i = 1; : : : ; Band for eah j = 0; : : : ; B we hek whether je mod n belongs to the table, inwhih ase we have y=ie = je mod n. Hene, from fi; jg we reover x = i � j,whih leads to the message m.4.2 AnalysisThe attak requires O�B(logn)((logn)3+logB)� operations. Let �(x; y) denotethe number of integers v < x suh that v an be written as v = v1 v2 with v1 < yand v2 < y. The following theorem gives a lower bound for �(x; y).Theorem 4. For x!1 and 1=2 < � < 1,lim inf �(x; x�)=x � �� 1��� �� 11� �� (3)Proof. For y > dpxe, we note:T (x; y) = fv < x; suh that v is y-smooth and not dx=ye-smoothg :Any integer v 2 T (x; y) has a prime fator p standing between dx=ye and y, andso v = p r with p < y and r < y. Consequently,�(x; y) � #T (x; y) : (4)From Theorem 1 we have:limx!1#T (x; x�)=x = �� 1��� �� 11� ��whih, using Eq. (4) gives (3). utSine x is not uniformly distributed between zero and 2X , Theorem 4 onlyprovides a heuristi argument to show that when taking B = 2�X with � > 1=2,then with probability greater than�� 1��� �� 11� ��the attak reovers x in omplexity 2�X+o(1).Thus, we an estimate that an eight-bit message enrypted with pks#1v1.5 with a 64-bit random padding string an be reovered with probability' 0:15 in time and spae omplexity approximately 244 (with � = 0:54).



5 Experiments and Counter-measuresA number of ounter-measures against Bleihenbaher's attak are listed on RSALaboratories' web site (http://www.rsa.om/rsalabs/). A �rst reommenda-tion is a rigorous format hek of all derypted messages. This has no e�et onour attak sine we never ask the legitimate reeiver to derypt anything. Aseond quik �x onsists in asking the sender to demonstrate knowledge of m tothe reipient whih is done by dislosing some additional piee of information.This also has no e�et on our attak. The same is true for the third orretion,where a hash value is inorporated in m, if the hash value oupies the mostsigni�ant part of the plaintext i.e.pks(m; r0) = 000216kr0k0016k SHA(m)km :A good way to thwart our attak is to limit Z. This an be very simplyahieved by foring a onstant pattern � in pks(m; r0):pks(m; r0) = 000216kr0k0016kmk� :This presents the advantage of preserving ompatibility with pks#1 v1.5 andbeing very simple to implement. Unfortunately, the resulting format is insuÆ-iently proteted against [2℄. Instead, we suggest to use:pks(m; r0) = 000216kr0k0016kmk SHA(m; r0) ;whih appears to be an aeptable short-term hoie (r0 was added in the hashfuntion to better resist [2℄ at virtually no additional ost). For long-term per-manent solutions, we reommend OAEP (pks#1 v2.0) [1℄.6 Extensions and ConlusionsWe proposed two new hosen-plaintext attaks on the pks#1 v1.5 enryp-tion standard. The �rst attak applies to small publi exponents and showshow messages ending by suÆiently many zeroes an be reovered from the i-phertexts orresponding to the same plaintext. It is worth seeing our tehniqueas a ryptanalyti tool of independent interest, whih provides an extension ofCoppersmith's low-exponent attak. Our seond attak, although remaining ofexponential omplexity in a strit sense, shows how to extend the weakness toany publi exponent in a pratial way.The attaks an, of ourse, be generalized in several ways. For instane, onean show that the padding format:�(m1;m2; r0) = 000216km1kr0k0016km2(where the plaintext m = m1km2 is spread between two di�erent loations), isequally vulnerable to the new attak: re-de�ning r00 = m1kr0, we an run the
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A A Full-sale 1024-bit AttakTo on�rm the validity of our attak, we experimented it on RSA Laborato-ries' oÆial 1024-bit hallenge RSA-309 for the publi exponent e = 3. As aproof of proper generation r01 and r02 were hosen to be RSA-100 mod 2128 andRSA-110 mod 2128. The parameters are N = 1024, M = 280, R = 128, Z = 592and � = 880. Note that sine R > N=9 and R+M > N=3, Coppersmith's attakon low-exponent rsa does not apply here.n = RSA-309= bdd14965 645e9e42 e7f6586 f3e473 69d246 451714e b182305b 0fd6ed47d84b9a6 10172fb5 6dae2f89 fa40e79 521e3f9 7ea12ff7 3248181 eba33b55212378b 579ae662 7b0821 30955234 e5b26a3e 425b125 4326173d 5f4e25a6d2e172fe 62d81ed 29f362b 982f3065 0881e46 b7d52f14 885eef9 03076a5r01 = RSA-100 mod 2128= f66489d1 55d0b77 17a50ef 75e58fbr02 = RSA-110 mod 2128= e2a5a57d e621ee5 b14ff581 a6368e9bm = �m 2Z00 I49 027 m6d 20 a6120 63 i69 p70 h68 e65 r72 t74 e65 x78 t74 ;220 p70 l6 e65 a61 s73 e6520 b62 r72 e65 a61 k6b20m6d e6520 !21�1 = pks(m; r01)= 0002f664 89d155d 0b7717a 50ef75e 58fb0049 276d2061 20636970 686572746578742 2070665 61736520 62726561 6b206d65 20210000 00000000 0000000000000000 00000000 00000000 00000000 00000000 00000000 00000000 0000000000000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000�2 = pks(m; r02)0002e2a5 a57de621 ee5b14f f581a636 8e9b0049 276d2061 20636970 686572746578742 2070665 61736520 62726561 6b206d65 20210000 00000000 000000006578742 2070665 61736520 62726561 6b206d65 20210000 00000000 0000000000000000 00000000 00000000 00000000 00000000 00000000 00000000 0000000000000000 00000000 00000000 00000000 00000000 00000000 00000000 000000001 = �31 mod n= 2488b6f f2e3d4 01b82776 64790af0 d78f82fd 4605fda2 76b9356d 80e82fb8737340f 5a7091b0 384bb41 ae6462d9 f751766 34387b 54397a2 647d6a813609d876 f29554e0 9efbf2d b49d8300 5fe9ea8 80fd9f2 476fbab0 257f1462d295a4b 5468bb86 b3151a49 14e51ed1 7b083 9ae0b4da 92a7de0 079df4a02 = �32 mod n



= 829da9a7 af261ed 7bb16f94 7b90aa7 df8b99df 06017d7 3af80fd 64494abb31b8db 1167ed d1b6d09e 8a5a98 5e19620 b6313eef 495169d7 9ed9a2b1b393e7d 45bea586 49e20986 9a2399f7 f70dd819 90183e1a 36a971a 33497e57f0ad9fb9 07d331e 7108d661 4487a85 36f7750 060811d8 70b8a040 e039999Using the ECM it took a few hours on a single workstation to �nd that:� = p51 � 10Yi=2 piwhere all the pi are primes. Amongst the 3072 = 6 � 29 possible divisors only663 orresponded to 128-bit andidates f�1; �2; : : : ; �663g where the �i are indereasing order. Then we omputed:Rj(z) = gd(ze � 1; (z � 2��j)e � 2) for 1 � j � 663 :For j 6= 25, Rj(z) = 1 and for j = 25 we obtained:R25(z) = z �m1 :One an hek that: �25 = w = p51 p2 p3 p4 p5 p8 ;and m1 = �1 = pks(m; r01) :� = 00000001 fa75bf4e 390bdf4b 7a0524e0 b9ebed20 5758be2e f1685067 1de199af0f8714f7 077a647 6870ea6d 2de9e7fb 340b8d2 0170197 f9533ed1 f4fe3eab836b6242 aa03181a 56a78001 7164f7a 54efa7 73583ad8 ffeb3a78 eb8bbe28869da15 60be7922 699d29a 52038f7b 83e73d4e 7082700d 85d3a720p1 = 00000002; p2 = 00000007; p3 = 00000035; p4 = 0000005; p5 = 4330e379p6 = 548063d7; p7 = 001ebf96 ff071021; p8 = 0000021b a4d83ae 7dedba55p9 = 0000128a e526e 096996bfp10 = 00000022 e3b1a6b0 13829b67 f604074a 5a1135b3 45be0835 ea407ed7 8138a27a112e788 131f3b3 b6d17d0 e8a905f1 a4b6aff 680b58 4962309d 7aaad2116235 b0d6803e e0a58a7 55bea23 e936f189 a76dfbeb�25 = 13bee453 6fba1b1 6b2a5b6d d627a60R25(z) = z �m1m1=2Z mod 2M 00 I49 027 m6d 20 a6120 63 i69 p70 h68 e65 r72 t74 e65 x78 t74 ;220 p70 l6 e65 a61 s73 e6520 b62 r72 e65 a61 k6b20m6d e6520 !21


