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omAbstra
t. This paper introdu
es two new atta
ks on pk
s#1 v1.5, anrsa-based en
ryption standard proposed by RSA Laboratories. As op-posed to Blei
henba
her's atta
k, our atta
ks are 
hosen-plaintext only,i.e. they do not make use of a de
ryption ora
le. The �rst atta
k ap-plies to small publi
 exponents and shows that a plaintext ending bysuÆ
iently many zeroes 
an be re
overed eÆ
iently when two or more
iphertexts 
orresponding to the same plaintext are available. We believethe te
hnique we employ to be of independent interest, as it extends Cop-persmith's low-exponent atta
k to 
ertain length parameters. Our se
ondatta
k is appli
able to arbitrary publi
 exponents, provided that mostmessage bits are zeroes. It seems to 
onstitute the �rst 
hosen-plaintextatta
k on an rsa-based en
ryption standard that yields to pra
ti
al re-sults for any publi
 exponent.Keywords: RSA, PKCS# v1.5 en
ryption, 
hosen plaintext atta
k.1 Introdu
tionPk
s stands for Publi
-Key Cryptography Standards. It is a large 
orpus ofspe
i�
ations 
overing rsa en
ryption [13℄, DiÆe-Hellman key agreement, pass-word-based en
ryption, syntax (extended-
erti�
ates, 
ryptographi
 messages,private-key information and 
erti�
ation requests) and sele
ted attributes. His-tori
ally, pk
s was developed by RSA Laboratories, Apple, Digital, Lotus, Mi-
rosoft, MIT, Northern Tele
om, Novell and Sun. The standards have been reg-ularly updated sin
e. Today, pk
s has be
ome a part of several standards andof a wide range of se
urity produ
ts in
luding Internet Priva
y-Enhan
ed Mail.Amongst the pk
s 
olle
tion, pk
s#1 v1.5 des
ribes a parti
ular en
odingmethod for rsa en
ryption 
alled rsaEn
ryption. In essen
e, the enveloped datais �rst en
rypted under a randomly 
hosen keyK using a symmetri
 blo
k-
ipher(e.g. a triple des in 
b
 mode) then K is rsa-en
rypted with the re
ipient'spubli
 key.



In 1998, Blei
henba
her [2℄ published an adaptive 
hosen-
iphertext atta
k onpk
s#1 v1.5 
apable of re
overing arbitrary plaintexts from a few hundreds ofthousands of 
iphertexts. Although a
tive adversary models are generally viewedas theoreti
al issues,1 Blei
henba
her's atta
k makes use of an ora
le that onlydete
ts 
onforman
e with respe
t to the padding format, a real-life assumptionleading to a pra
ti
al threat. Pk
s#1 was subsequently updated in the release2.0 [15℄ and pat
hes were issued to users wishing to 
ontinue using the old versionof the standard.Independently, there exist several well-known 
hosen-plaintext atta
ks onrsa-based en
ryption s
hemes [8, 5℄. These typi
ally enable an atta
ker to de-
rypt 
iphertexts at moderate 
ost without requiring to fa
tor the publi
 mod-ulus. The most powerful 
ryptanalyti
 tool appli
able to low exponent rsa isprobably the one based on a theorem due to Coppersmith [6℄. As a matter of fa
t,one major purpose of imposing a partially random padding form to messages,besides attempting to a
hieve a proper se
urity level su
h as indistinguishability,is to render the whole en
ryption s
heme resistant against su
h atta
ks.This paper shows that, despite these e�orts, 
hosen-plaintext atta
ks area
tually suÆ
ient to break pk
s#1 v1.5 even in 
ases when Coppersmith'satta
k does not apply. We introdu
e new 
ryptanalyti
 te
hniques allowing anatta
ker to retrieve plaintexts belonging to a 
ertain 
ategory, namely messagesending by a required minimum number of zeroes. The �rst atta
k requires twoor more 
iphertexts 
orresponding to the same plaintext. Although spe
i�
, ouratta
ks only require a very small amount of 
iphertexts (say ten of them), are
ompletely independent from the publi
 modulus given its size and, moreover,are fully pra
ti
al for usual modulus sizes.The rest of this paper is divided as follows. Se
tion 2 introdu
es a new low-exponent atta
k for whi
h we provide a 
omparison with Coppersmith's atta
kin Se
tion 3. Se
tion 4 shows how to deal with arbitrary publi
 exponents whilestaying within the 
hosen-plaintext atta
k model. Counter-measures are dis-
ussed in Se
tion 5. For 
ompleteness, Appendix A reports pra
ti
al experimentsof our te
hnique performed on 1024-bit 
iphertexts.2 Our Low-Exponent Chosen-Plaintext Atta
kWe brie
y re
all the pk
s#1 v1.5 en
oding pro
edure [14℄. Let fn; eg be an rsapubli
 key and d be the 
orresponding se
ret key. Denoting by k the byte-lengthof n, we have 28(k�1) � n < 28k. A messagem of size jmj bytes with jmj � k�11is en
rypted as follows. A padding r0 
onsisting of k� 3�jmj � 8 nonzero bytesis generated at random. Then the message m gets transformed into:pk
s(m; r0) = 000216kr0k0016km;and en
rypted to form the 
iphertext:1 Chosen-
iphertext atta
ks require the strong assumption that the adversary has a
omplete a

ess to a de
ryption ora
le.




 = pk
s(m; r0)e mod n :Letting r = (000216kr0), we 
an write pk
s(m; r0) = r 2� + m with � =8jmj + 8. Now assume that m has its least Z signi�
ant bits equal to zero.Hen
e, we 
an write m = �m 2Z and subsequently:pk
s(m; r0) = 2Z(r 2��Z + �m) :From two en
ryptions of the same message m, (i.e. 
i = [2Z(ri2��Z +�m)℄e mod n for i = 1; 2), the atta
ker evaluates:� := 
1 � 
22eZ 2��Z mod n� (r1 � r2)| {z }:=! h e�1Xj=0(r1 2��Z + �m)e�1�j(r2 2��Z + �m)ji| {z }:=v (mod n) : (1)The atta
k 
onsists in the following: assuming that r1 > r2 and the numberof zeroes Z to be large enough so that 0 < ! v < n, relation (1) holds over theintegers, and ! = r1 � r2 must divide �. Therefore, by extra
ting the smallfa
tors of � one expe
ts to re
onstru
t a 
andidate for !. The 
orre
t guess for! will lead to the message m using the low-exponent atta
k des
ribed in [7℄.Letting R the bit-size of random r0 (the standard spe
i�es R � 64), M thebit size of �m, and N the bit size of modulus n, the 
ondition w �v < n is satis�edwhenever: eR+ (e� 1)� (M + 10) < N : (2)With N = R+M + Z + 24, equation (2) is equivalent to:(e� 1)R+ (e� 2)M + 10e� 34 < Z2.1 Determining the Fa
tors of � Smaller than a Bound BThe �rst step of our atta
k 
onsists in 
omputing a set D of divisors of � byextra
ting the primes P = fp1; : : : ; pig that divide � and are smaller than abound B. If all the prime fa
tors of ! are smaller than B (in this 
ase, ! is saidto be B-smooth), then ! 2 D. Sin
e only a partial fa
torization of � is required,only fa
toring methods whi
h 
omplexity relies on the size of the prime fa
torsare of interest here. We brie
y re
all four of these: trial division, Pollard's �method, p� 1 method and Lenstra's ellipti
 
urve method (ECM) and expressfor ea
h method the asymptoti
 
omplexity C(p) of extra
ting a fa
tor p from anumber n.Trial division method: Trial division by primes smaller than a bound B de-mands a 
omplexity of p+ logn for extra
ting p.



Pollard's �-method [4℄: Let p be a fa
tor of n. Pollard's �-method 
onsists initerating a polynomial with integer 
oeÆ
ients f (i.e. 
omputing f(x) mod n,f(f(x)) mod n, and so on) until a 
ollision modulo p is found (i.e. x � x0(mod p)). Then with high probability g
d(x � x0 (mod n); n) yields p. The
omplexity of extra
ting a fa
tor p is O(pp). In pra
ti
e, prime fa
tors upto approximately 60 bits 
an be extra
ted in reasonable time (less than afew hours on a workstation).p� 1 method: If p� 1 is B-smooth then p� 1 divides the produ
t `(B) of allprimes smaller than B. Sin
e ap�1 mod p = 1, we have a`(B) mod p = 1 andthus g
d(a`(B) � 1 mod n; n) gives p.Lenstra's ellipti
 
urve method (ECM) [11℄: ECM is a generalization ofthe p � 1 fa
toring method. Brie
y, a point P of a random ellipti
 
urveE modulo n is generated. If #E=(p) (i.e. the order of the 
urve modulo p)is B-smooth, then [`(B)℄P = O, the point at in�nity. This means that anillegal inversion modulo n has o

urred and p is revealed. ECM extra
ts afa
tor p of n in exp((p2 + o(1))plog p log log p) expe
ted running time. Inpra
ti
e, prime fa
tors up to 80 bits 
an be pulled out in reasonable time(less than a few hours on a workstation).Traditionally,  (x; y) denotes the number of integers z � x su
h that z issmooth with respe
t to the bound y. The theorem that follows gives an estimatefor  (x; y).Theorem 1 ([9℄). For any non-negative real u, we have:limx!1 (x; x1=u)=x = �(u) ;where �(u) is the so-
alled Di
kman's fun
tion and is de�ned as:�(t) = 8<: 1 if 0 � t < 1�(n)� Z tn �(v � 1)v dv if n � t < n+ 1 :Theorem 1 shows that a uniformly distributed random integer z between 1and x is x1=u-smooth with probability �(u). However, the integers referred toin the sequel are not uniformly distributed. Consequently, the probability and
omplexity estimates must be 
onsidered to be heuristi
.The probability that ! is B-smooth is approximately �(R= log2B). Thus us-ing two 
iphertexts, the probability of �nding all fa
tors of ! is �(R= log2B).When using k 
iphertexts, k�(k�1)=2 paired 
ombinations 
an be obtained. As-suming statisti
al independen
e between the fa
torization of the 
orrespondingw, approximately k =p2=�(R= log2B)
iphertexts are required to 
ompute the fa
torization of at least one ! in 
om-plexity:



C(B)=�(R= log2 B) :In pra
ti
e, a fa
torization algorithm starts with trial division up to some boundB0 (we took B0 = 15000), then Pollard's �-method and the p � 1 method areapplied, and eventually the ECM. In Table 1 we give the running times obtainedon a Pentium 233-MHz to extra
t a prime fa
tor of size L bits with the ECM,using the arithmeti
 library MIRACL [12℄.L 32 40 48 56 64 72time in se
onds 6 15 50 90 291 730Table 1. Running times for extra
ting a prime fa
tor of L bits using the ECM.This 
learly shows that for R � 72, the fa
tors of ! 
an be re
overed eÆ-
iently. For R > 72 we estimate in Table 2 the exe
ution time and the numberof required 
iphertexts, when only fa
tors up to 72 bits are to be extra
ted.L 128 160 192 224 256time in se
onds 1719 3440 7654 19010 51127number of 
iphertexts 3 4 5 8 12Table 2. Running time and approximate number of 
iphertexts needed to re
over thefa
torization of at least one !.
2.2 Identifying the Candidates for !From the previous se
tion we obtain a set of primes P = fp1; : : : ; pig dividing�, su
h that the primes dividing ! are in P . From P we derive a set D = f�jgof divisors of �, whi
h 
ontains !. Denoting by d(k) the number of divisors ofan integer k, the following theorem [10℄ provides an estimate of the number ofdivisors of a random integer. We say that an arithmeti
al fun
tion f(k) is of theaverage order of g(k) iff(1) + f(2) + : : :+ f(k) � g(1) + : : :+ g(k) :We state:Theorem 2. The average order of d(k) is log k. More pre
isely, we have:d(1) + d(2) + � � �+ d(k) = k log k + (2
 � 1)k +O(pk) ;where 
 is Euler's 
onstant.



Theorem 2 shows that if � was uniformly distributed between 1 and n thenits number of divisors and 
onsequently the average number of 
andidates for !would be roughly logn. Sin
e � is not uniformly distributed this only providesan heuristi
 argument to show that the average number of 
andidates for !should be polynomially bounded by logn.In pra
ti
e, not all divisors �j need to be tested sin
e only divisors of length
lose to or smaller than R are likely to be equal to !. Moreover, from Eq. (1)and letting �m2 = r2 2��Z + �m, we have:� = ! e�1Xj=0(! 2��Z + �m2)e�1�j �mj2= ! e�1Xj=0 e�1�jXk=0 �e� 1� jk �(! 2��Z)e�1�j�k �mj+k2= ! e�1Xh=0" hXi=0 �e� 1� ih� i �# (! 2��Z)e�1�h �mh2 ;when
e, noting that Phi=0 �e�1�ih�i � � 0 (mod e) for 1 � h � e� 1,� � ! (! 2��Z)e�1 (mod e) :In parti
ular, when e is prime, this simpli�es to� � !e 2(��Z)(e�1) � ! (mod e) :This means that only a �j satisfying � � �j (�j 2��Z)e�1 (mod e) (or � ��j (mod e) if e is prime) is a valid 
andidate for !.2.3 Re
overing m Using the Low-Exponent RSA with RelatedMessages Atta
kThe low-exponent atta
k on rsa with related messages des
ribed in [7℄ 
onsistsin the following: assume that two messages m1, m2 verify a known polynomialrelation P of the formm2 = P(m1) with P 2 ZZn[z℄ and deg(P) = Æ ;and suppose further that the two 
orresponding 
iphertexts 
1 and 
2 are known.Then z = m1 is a 
ommon root of polynomials Q1;Q2 2 ZZn[z℄ given byQ1(z) = ze � 
1 and Q2(z) = (P(z))e � 
2 ;so that with high probability one re
overs m1 byg
d(Q1;Q2) = z �m1 (mod n) :



From the previous se
tion we obtain a set of divisors �j of �, among whi
hone is equal to !. Letting m1 = pk
s(m; r1) and m2 = pk
s(m; r2) we have:
1 = me1 (mod n); 
2 = me2 (mod n); and m2 = m1 � 2� ! :For a divisor �j of �, the atta
ker 
omputes:Rj(z) = g
d(ze � 
1; (z � 2��j)e � 
2) :If �j = ! then, with high probability, Rj(z) = z �m1 (mod n), whi
h yieldsthe value of message m, as announ
ed.3 Comparison with Coppersmith's Atta
ks onLow-exponent RSACoppersmith's method is based on the following theorem [6℄:Theorem 3 (Coppersmith). Let P 2 ZZn[x℄ be a univariate polynomial ofdegree Æ modulo an integer n of unknown fa
torization. Let X be the bound onthe desired solution. If X < 12 n1=Æ�", one 
an �nd all integers x0 with P(x0) = 0(mod n) and jx0j � X in time polynomial in (logn; Æ; 1=").Corollary 1 (Coppersmith). Under the same hypothesis and provided thatX < n1=Æ, one 
an �nd all integers x0 su
h that P(x0) = 0 (mod n) andjx0j � X in time polynomial in (logn; Æ)Theorem 3 applies in the following situations:Stereotyped messages: Assume that the plaintextm 
onsists of a known partB = 2kb and an unknown part x. The 
iphertext is 
 = me = (B + x)e(mod n). Using Theorem 3 with the polynomial P(x) = (B + x)e � 
, one
an re
over x from 
 if jxj < n1=e.Random padding: Assume that two messages m and m0 satisfy an aÆne re-lation m0 = m + r with a small but unknown r. From the rsa-en
ryptionsof the two messages:
 = me mod n and 
0 = (m+ r)e mod n ;we eliminatem from the two above equations by taking their resultant, whi
hgives a univariate polynomial in r modulo n of degree e2. Thus, if jrj < n1=e2 ,r 
an be re
overed, wherefrom we derive m as in Se
tion 2.3.In our 
ase of interest, for a message ending with Z zeroes, the stereotypedmessages atta
k works for e(M +R) < N and the random padding atta
k worksfor e2R < N . Negle
ting 
onstant terms, our method of Se
tion 2 is e�e
tive foreR+ (e� 1)M < N :
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N/3Fig. 1. Domains of validity for e = 3 of Coppersmith's stereotyped atta
k (1), Cop-persmith's random padding atta
k (2) and our atta
k (3).Consequently, as illustrated in Figure 1, for e = 3, our method improves Cop-persmith's method whenever8>><>>: Ne2 <R< Ne andNe �R <M< Ne� 1 � ee� 1R :4 A Chosen Plaintext Atta
k for Arbitrary Exponents4.1 Des
riptionIn this se
tion we des
ribe a 
hosen plaintext atta
k against pk
s#1 v1.5 en-
ryption for an arbitrary exponent e. The atta
k makes use of a known 
aw inElGamal en
ryption [3℄ and works for very short messages only. As in Se
tion 2we only 
onsider messages ending by Z zeroes:m = �mk0 : : :02 :For a random r0 
onsisting of nonzero bytes, the message m is transformedusing pk
s#1 v1.5 into:pk
s(m; r0) = 000216kr0k0016k �mk0 : : :02and en
rypted into 
 = pk
s(m; r0)e mod n. Letting x = 000216kr0k0016k �m, we
an write pk
s(m; r0) = x 2Z :



We de�ne y = 
=2eZ = xe (mod n), M the bit-size of �m, and X the bit-size ofx. Hen
e, we have X =M +R+ 10. Assuming that x = x1 x2 where x1 and x2are integers smaller than a bound B, we 
onstru
t the table:yie mod n for i = 1; : : : ; Band for ea
h j = 0; : : : ; B we 
he
k whether je mod n belongs to the table, inwhi
h 
ase we have y=ie = je mod n. Hen
e, from fi; jg we re
over x = i � j,whi
h leads to the message m.4.2 AnalysisThe atta
k requires O�B(logn)((logn)3+logB)� operations. Let �(x; y) denotethe number of integers v < x su
h that v 
an be written as v = v1 v2 with v1 < yand v2 < y. The following theorem gives a lower bound for �(x; y).Theorem 4. For x!1 and 1=2 < � < 1,lim inf �(x; x�)=x � �� 1��� �� 11� �� (3)Proof. For y > dpxe, we note:T (x; y) = fv < x; su
h that v is y-smooth and not dx=ye-smoothg :Any integer v 2 T (x; y) has a prime fa
tor p standing between dx=ye and y, andso v = p r with p < y and r < y. Consequently,�(x; y) � #T (x; y) : (4)From Theorem 1 we have:limx!1#T (x; x�)=x = �� 1��� �� 11� ��whi
h, using Eq. (4) gives (3). utSin
e x is not uniformly distributed between zero and 2X , Theorem 4 onlyprovides a heuristi
 argument to show that when taking B = 2�X with � > 1=2,then with probability greater than�� 1��� �� 11� ��the atta
k re
overs x in 
omplexity 2�X+o(1).Thus, we 
an estimate that an eight-bit message en
rypted with pk
s#1v1.5 with a 64-bit random padding string 
an be re
overed with probability' 0:15 in time and spa
e 
omplexity approximately 244 (with � = 0:54).



5 Experiments and Counter-measuresA number of 
ounter-measures against Blei
henba
her's atta
k are listed on RSALaboratories' web site (http://www.rsa.
om/rsalabs/). A �rst re
ommenda-tion is a rigorous format 
he
k of all de
rypted messages. This has no e�e
t onour atta
k sin
e we never ask the legitimate re
eiver to de
rypt anything. Ase
ond qui
k �x 
onsists in asking the sender to demonstrate knowledge of m tothe re
ipient whi
h is done by dis
losing some additional pie
e of information.This also has no e�e
t on our atta
k. The same is true for the third 
orre
tion,where a hash value is in
orporated in m, if the hash value o

upies the mostsigni�
ant part of the plaintext i.e.pk
s(m; r0) = 000216kr0k0016k SHA(m)km :A good way to thwart our atta
k is to limit Z. This 
an be very simplya
hieved by for
ing a 
onstant pattern � in pk
s(m; r0):pk
s(m; r0) = 000216kr0k0016kmk� :This presents the advantage of preserving 
ompatibility with pk
s#1 v1.5 andbeing very simple to implement. Unfortunately, the resulting format is insuÆ-
iently prote
ted against [2℄. Instead, we suggest to use:pk
s(m; r0) = 000216kr0k0016kmk SHA(m; r0) ;whi
h appears to be an a

eptable short-term 
hoi
e (r0 was added in the hashfun
tion to better resist [2℄ at virtually no additional 
ost). For long-term per-manent solutions, we re
ommend OAEP (pk
s#1 v2.0) [1℄.6 Extensions and Con
lusionsWe proposed two new 
hosen-plaintext atta
ks on the pk
s#1 v1.5 en
ryp-tion standard. The �rst atta
k applies to small publi
 exponents and showshow messages ending by suÆ
iently many zeroes 
an be re
overed from the 
i-phertexts 
orresponding to the same plaintext. It is worth seeing our te
hniqueas a 
ryptanalyti
 tool of independent interest, whi
h provides an extension ofCoppersmith's low-exponent atta
k. Our se
ond atta
k, although remaining ofexponential 
omplexity in a stri
t sense, shows how to extend the weakness toany publi
 exponent in a pra
ti
al way.The atta
ks 
an, of 
ourse, be generalized in several ways. For instan
e, one
an show that the padding format:�(m1;m2; r0) = 000216km1kr0k0016km2(where the plaintext m = m1km2 is spread between two di�erent lo
ations), isequally vulnerable to the new atta
k: re-de�ning r00 = m1kr0, we 
an run the



atta
k (as is) on pk
s(m; r00) and noti
e that the size of ! will still be R0 giventhat the most signi�
ant part of r00 is always 
onstant.We believe that su
h examples illustrate the risk indu
ed by the 
hoi
e ofad ho
 low-
ost treatments as message paddings, and highlights the need for
arefully s
rutinized en
ryption designs, strongly motivating (on
e again) thesear
h for provably se
ure en
ryption s
hemes.7 A
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A A Full-s
ale 1024-bit Atta
kTo 
on�rm the validity of our atta
k, we experimented it on RSA Laborato-ries' oÆ
ial 1024-bit 
hallenge RSA-309 for the publi
 exponent e = 3. As aproof of proper generation r01 and r02 were 
hosen to be RSA-100 mod 2128 andRSA-110 mod 2128. The parameters are N = 1024, M = 280, R = 128, Z = 592and � = 880. Note that sin
e R > N=9 and R+M > N=3, Coppersmith's atta
kon low-exponent rsa does not apply here.n = RSA-309= bdd14965 645e9e42 e7f658
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a5r01 = RSA-100 mod 2128= f66489d1 55d
0b77 1
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5e58fbr02 = RSA-110 mod 2128= e2a5a57d e621ee
5 b14ff581 a6368e9bm = �m 2Z00 I49 027 m6d 20 a6120 
63 i69 p70 h68 e65 r72 t74 e65 x78 t74 ;2
20 p70 l6
 e65 a61 s73 e6520 b62 r72 e65 a61 k6b20m6d e6520 !21�1 = pk
s(m; r01)= 0002f664 89d155d
 0b771
7a 50ef7
5e 58fb0049 276d2061 20636970 686572746578742
 20706
65 61736520 62726561 6b206d65 20210000 00000000 0000000000000000 00000000 00000000 00000000 00000000 00000000 00000000 0000000000000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000�2 = pk
s(m; r02)0002e2a5 a57de621 ee
5b14f f581a636 8e9b0049 276d2061 20636970 686572746578742
 20706
65 61736520 62726561 6b206d65 20210000 00000000 000000006578742
 20706
65 61736520 62726561 6b206d65 20210000 00000000 0000000000000000 00000000 00000000 00000000 00000000 00000000 00000000 0000000000000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
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39999Using the ECM it took a few hours on a single workstation to �nd that:� = p51 � 10Yi=2 piwhere all the pi are primes. Amongst the 3072 = 6 � 29 possible divisors only663 
orresponded to 128-bit 
andidates f�1; �2; : : : ; �663g where the �i are inde
reasing order. Then we 
omputed:Rj(z) = g
d(ze � 
1; (z � 2��j)e � 
2) for 1 � j � 663 :For j 6= 25, Rj(z) = 1 and for j = 25 we obtained:R25(z) = z �m1 :One 
an 
he
k that: �25 = w = p51 p2 p3 p4 p5 p8 ;and m1 = �1 = pk
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