
ON THE SECURITY OF RSA PADDINGJean-S�ebastien Coron1+2 David Naccache2 Julien P. Stern3+41. �Ecole Normale Sup�erieure 2. Gemplus Card International45 rue d'Ulm 34 rue GuynemerF-75005, Paris, France Issy-les-Moulineaux, F-92447, Francecoron@clipper.ens.fr fcoron,naccacheg@gemplus.com3. UCL Cryptography Group 4. Universit�e de Paris-SudBâtiment Maxwell, place du Levant 3 Laboratoire de Recherche en InformatiqueLouvain-la-Neuve, B-1348, Belgium Bâtiment 490, F-91405, Orsay, Francestern@dice.ucl.ac.be stern@lri.frAbstract. This paper presents a new signature forgery strategy.The attack is a sophisticated variant of Desmedt-Odlyzko's method [11]where the attacker obtains the signatures of m1; : : : ;m��1 and exhibitsthe signature of an m� which was never submitted to the signer; weassume that all messages are padded by a redundancy function � beforebeing signed.Before interacting with the signer, the attacker selects � smooth1 �(mi)-values and expresses �(m�) as a multiplicative combination of the paddedstrings �(m1); : : : ; �(m��1). The signature of m� is then forged using thehomomorphic property of RSA.A padding format that di�ers from iso 9796-1 by one single bit was bro-ken experimentally (we emphasize that we could not extend our attackto iso 9796-1); for iso 9796-2 the attack is more demanding but stillmuch more e�cient than collision-search or factoring.For din ni-17.4, pkcs #1 v2.0 and ssl-3.02, the attack is only theo-retical since it only applies to speci�c moduli and happens to be lesse�cient than factoring; therefore, the attack does not endanger any ofthese standards.1 IntroductionAt a recent count (http://www.rsa.com), over 300 million RSA-enabled prod-ucts had been shipped worldwide. This popularity, and the ongoing standard-izations of signature and encryption formats [2, 13, 20, 21, 22, 36] highlightthe need to challenge claims that such standards eradicate RSA's multiplicativeproperties.1 an integer is `-smooth if it has no bigger factors than `.

Exponentiation is homomorphic and RSA-based protocols are traditionallyprotected against chosen-plaintext forgeries [9, 11, 35] by using a padding (orredundancy) function � to make sure that :RSA(�(x)) �RSA(�(y)) 6= RSA(�(x� y))mod nIn general, �(x) hashes x and concatenates its digest to pre-de�ned strings;in some cases, substitution and permutation are used as well.While most padding schemes gain progressive recognition as time goes by,several speci�c results exist : a few functions were broken by ad-hoc analysis([16, 24] showed, for instance, that homomorphic dependencies can still appearin �(m) = a�m+ b) while at the other extreme, assuming that the underlyingbuilding-blocks are ideal, some functions [5, 6] are provably secure in the randomoracle model.The contribution of this paper is that the complexity of forging chosenmessage-signature pairs is sometimes much lower than that of breaking RSA ��by frontal attacks (factoring and collision-search). The strategy introduced inthis article does not challenge RSA's traditional security assumptions; instead,it seeks for multiplicative relations using the expected smoothness of moderate-size integers (the technique is similar in this respect to the quadratic sieve [33],the number �eld sieve [32] and the index-calculus method for computing discretelogarithm [1]).As usual, our playground will be a setting in which the attacker A and thesigner S interact as follows :� A asks S to provide the signatures of � � 1 chosen messages (� beingpolylogarithmically-bounded in n). S will, of course, correctly pad all the plain-texts before raising them to his secret power d.� After the query phase and some post-processing, A must exhibit the sig-nature of at least one message (m�) which has never been submitted to S.Previous work :Misarsky's PKC'98 invited survey [30] is probably the bestdocumented reference on multiplicative RSA forgeries. Davida's observation [9]is the basis of most RSA forgery techniques. [16, 24] forge signatures that aresimilar to pkcs #1 v2.0 but do not produce their necessary SHA/MD5 digests[31, 34]. [15] analyzes the security of RSA signatures in an interactive context.Michels et al. [28] create relations between the exponents of de Jonge-Chaumand Boyd's schemes; their technique extends to blind-RSA but does not applyto any of the padding schemes attacked in this paper. Baudron and Stern [4]apply lattice reduction to analyze the security of RSA � � in a security-proofperspective.A Desmedt-Odlyzko variant [11] applicable to padded RSA signatures issketched in section 3.5 of [30]. It consists in factoring �(m�) into small primesand obtaining the e-th roots of these primes from multiplicative combinations ofsignatures of messages which �(mi)-values are smooth. The signature of m� isforged by multiplying the e-th roots of the factors of �(m�). The complexity ofthis attack depends on the size of � and not on the size of n; the approach is thus

inapplicable to padding formats having the modulus' size (e.g. iso 9796-2). Inthis paper we extend this strategy to padding schemes for which a linear com-bination of n and the padded value is small; when applied to William's schemeour attack allows to factor n.2 A general outlineLet fn; eg be an RSA public key and d be the corresponding secret key. Althoughin this paper � will alternatively denote iso 9796-2, pkcs #1 v2.0, ansi x9.31,ssl-3.02 or an iso 9796-1 variant denoted F , we will start by describing ourattack in a simpler scenario where � is SHA-1 or MD5 (in other words, messageswill only be hashed before being exponentiated); the attack will be later adaptedto the di�erent padding standards mentioned above.The outline of our idea is the following : since �(m) is rather short (128 or 160bits), the probability that �(m) is `-smooth (for a reasonably small `) is smallbut non-negligible; consequently, if A can obtain the signatures of chosen smooth�(mi)-values, then he could look for a messagem� such that �(m�) has no biggerfactors than pk (the k-th prime) and construct �(m�)dmod n as a multiplicativecombination of the signatures of the chosen plaintexts m1; : : : ;m��1.The di�culty of �nding `-smooth digests is a function of ` and the sizeof �(m). De�ning (x; y) = #fv < x, such that v is y-smoothg, it is known[12, 14, 19] that, for large x, the ratio (x; tpx)=x is equivalent to Dickman'sfunction de�ned by :�(t) = 8>><>>: 1 if 0 � t � 1�(n)� Z tn �(v � 1)v dv if n � t � n+ 1�(t) is thus an approximation of the probability that a u-bit number is 2u=t-smooth; since �(t) is somewhat cumbersome to compute, we refer the reader toappendix A for a lookup table.Before we proceed, let us illustrate the concerned orders of magnitude. Re-ferring to appendix A, we see that the probability that SHA/MD5 digests are224-smooth is rather high (�= 2�19; 2�13); this means that �nding smooth di-gests would be practically feasible. This was con�rmed by extensive simulationsas illustrated by :MD5(message 30854339 successfully forged) =955dd317dd4715d26465081e4bfac00016 =214 � 3� 53 � 13� 227� 1499� 1789� 2441� 4673� 4691� 9109� 8377619

Several heuristics can, of course, accelerate the search : in our experiments, wefactored only digests beginning or ending by a few zeroes; the optimal numberof zeroes being a function of the running times of the attacker's hashing andfactorization algorithms (parallelization is also possible).In any case, denoting by L the size of the digest and by F (L) the factoringcost, the complexity of �nding pk-smooth digests is :CL;k = O(F (L)�(L= log2(pk))) = O(kL log2(pk)�(L= log2(pk))) = O(kL log2(k ln k)�(L= log2(k ln k)))this is justi�ed by the fact that pk-smooth L-bit digests are expected onlyonce per 1=�(L= log2(pk)) and that the most straightforward way to factor Lis k trial divisions by the �rst primes (where each division costs L log2(pi) bit-operations).These formulae should, however, be handled with extreme caution for thefollowing reasons :� Although in complexity terms L can be analyzed as a variable, one shouldconstantly keep in mind that L is a �xed value because the output size of speci�chash functions is not extensible.� Trial division is de�nitely not the best candidate for F (L). In practice, ourprogram used the following strategy to detect the small factors of �(m) : sincevery small divisors are very common, it is worthwhile attempting trial and errordivision up to pi �= 2048 before applying a primality test to �(m) (the candidateis of course rejected if the test fails). As a next step, trial and error division byprimes smaller than 15; 000 is performed and the resulting number is handed-over to Pollard-Brent's algorithm [7] which is very good at �nding small factors.Since it costs O(ppi) to pull-out pi using Pollard-Brent's method we can furtherbound F (L) by Lppk to obtain :CL;k = O(Lpk ln k�(L= log2(k ln k)))3 The attackThe attack applies to RSA and Williams' scheme [37]; we assume that the readeris familiar with RSA but brie
y recall Williams' scheme, denoting by J(x), theJacobi symbol of x with respect to n.In Williams' scheme �(m) = 6mod 16 and :p = 3mod 8 e = 2q = 7mod 8 d = (n� p� q + 5)=8Before signing, S must check that J(�(m)) = 1. If J(�(m)) = �1, �(m) isreplaced by �(m)=2 to guarantee that J(�(m)) = 1 since J(2) = �1.

A signature s is valid if w = s2mod n is such that :�(m) ?=8>><>>:w if w = 6mod 82w if w = 3mod 8n� w if w = 7mod 82(n� w) if w = 2mod 83.1 Finding homomorphic dependenciesThe attack's details slightly di�er between the RSA and Williams' scheme. ForRSA, � � 1 chosen signatures will yield an additional �(m�)dmod n while inWilliams' case, � chosen signatures will factor n. All chosen messages have theproperty that there exists a linear combination of �(mi) and n such that :ai � n� bi � �(mi) is pk-smoothwhere bi is pk-smooth as well.It follows that �(mi) is the modular product of small primes :�(mi) = kYj=1 pvi;jj mod n for 1 � i � �Let us associate to each �(mi) a k-dimensional vector ~Vi with coordinatesvi;j taken modulo the public exponent e :�(mi) 7�! ~Vi = fvi;1mod e; : : : ; vi;k mod egWe can now express, by Gaussian elimination, one of these vectors (re-indexed as ~V�) as a linear combination of the others :~V� = ��1Xi=1 �i~Vi mod e; with �i 2 ZZe (1)From equation (1) we get :v�;j = ��1Xi=1 �ivi;j �
j � e for all 1 � j � k. and denoting x = kQj=1 p�
jj :�(m�) = xe � ��1Yi=1 �(mi)�i mod nFor RSA, the forger will submit the � � 1 �rst messages to S and forge thesignature of m� by :

�(m�)d = x� ��1Yi=1 ��(mi)d��i mod nIn Williams' case, the signature of m� will be computed from the othersignatures using equation (2) if J(x) = 1, using the fact that :u = x2dmod n = � x if x is a square modulo n�x if not.�(m�)d = �x� ��1Yi=1 ��(mi)d��i mod n (2)If J(x) = �1, then u2 = x2mod n and (u � x)(u + x) = 0mod n. SinceJ(x) = � J(u) we have x 6= �umod n and GCD(u � x; n) will factor n. A canthus submit the � messages to S, recover u, factor n and sign any message.3.2 Expected complexityIt remains, however, to estimate � as a function of k :� In the most simple setting e is prime and the set of vectors with k coordi-nates over ZZe is a k-dimensional linear space; � = k+1 vectors are consequentlysu�cient to guarantee that (at least) one of the vectors can be expressed as alinear combination (easily found by Gaussian elimination) of the other vectors.�When e is the r-th power of a prime p, � = k+1 vectors are again su�cientto ensure that (at least) one vector can be expressed as a linear combination ofthe others. Using the p-adic expansion of the vectors' coe�cients and Gaus-sian elimination on k + 1 vectors, we can write one of the vectors as a linearcombination of the others.� Finally, the previous argument can be extended to the most general case :e = !Yi=1 priiwhere it appears that � = 1 + !k = O(k log e) vectors are su�cient toguarantee that (at least) one vector is a linear combination of the others; moduloeach of the prii , the attacker can �nd a set Ti of (! � 1)k + 1 vectors, each ofwhich can be expressed by Gaussian elimination as a linear combination of kother vectors. Intersecting the Ti and using Chinese remaindering, one gets that(at least) one vector must be a linear combination of the others modulo e.The overall complexity of our attack can therefore be bounded by :C 0L;k = O(�CL;k) = O(Lk log epk ln k�(L= log2(k ln k)))and the attacker can optimize his resources by operating at a k where C 0L;kis minimal.Space complexity (dominated by the Gaussian elimination) is O(k2 log3 e).

4 Analyzing di�erent signature formats4.1 The security of iso/iec-9796-1-like signaturesiso/iec-9796-1 [21] was published in 1991 by ISO as the �rst international stan-dard for digital signatures. It speci�es padding formats applicable to algorithmsproviding message recovery (algorithms are not explicit but map r bits to r bits).iso 9796-1 is not hashing-based and there are apparently no attacks [16, 18]other than factoring on this scheme ([30] : \...iso 9796-1 remains beyond thereach of all multiplicative attacks known today..."). The scheme is used to signmessages of limited length and works as follows when n and m are respectivelyN = 2
 + 1 and
-bit numbers and
 = 4` is a multiple of eight.De�ne by a � b the concatenation of a and b, let !i be the i-th nibble of mand denote by s(x) the hexadecimal substitution table2 :x = 0 1 2 3 4 5 6 7 8 9 A B C D E Fs(x) = E 3 5 8 9 4 2 F 0 D B 6 7 A C 1Letting �s(x) force the most signi�cant bit in s(x) to 1 and ~s(x) complementthe least signi�cant bit of s(x), iso 9796-1 speci�es :�(m) = �s(!`�1) �~s(!`�2) �!`�1 �!`�2 �s(!`�3) �s(!`�4) �!`�3 �!`�4 �: : :s(!3) �s(!2) �!3 �!2 �s(!1) �s(!0) �!0 �616The attack that we are about to describe applies to a slight variant of iso9796-1 where ~s(x) is replaced by s(x); this variant (denoted F) di�ers from iso9796-1 by one single bit.Let aj denote nibbles and consider messages of the form :mi = a6 � a5 � a4 � a3 � a2 � a1 � 6616�a6 � a5 � a4 � a3 � a2 � a1 � 6616�: : :a6 � a5 � a4 � a3 � a2 � a1 � 6616which F-padding is :�(mi) = �s(a6) �s(a5) �a6 �a5 � s(a4) �s(a3) �a4 �a3 �s(a2) �s(a1) �a2 �a1 � 216 �216 �616 �616 �: : :s(a6) �s(a5) �a6 �a5 � s(a4) �s(a3) �a4 �a3 �s(a2) �s(a1) �a2 �a1 � 216 �216 �616 �6162 actually, the bits of s(x) are respectively x3 � x1 � x0, x3 � x2 � x0, x3 � x2 � x1and x2 � x1 � x0 but this has no importance in our analysis.

Restricting the choice of a6 to the (eight) nibbles for which s = �s, we cangenerate 223 numbers of the form �(mi) = x��23 where x is the 8-byte numbers(a6) � s(a5) � a6 � a5 � s(a4) � s(a3) � a4 � a3 � s(a2) � s(a1) � a2 � a1 � 226616 and :�23 =
=32�1Xi=0 264iSection 3 could thus apply (treat �23 as an extra pi) as soon as the expecta-tion of pk-smooth x-values reaches k + 1 :k + 1 � 223 � �� 64log2(k ln k)� (3)Using k = 3000 we forged thousands of 1024-bit F-signatures in less thana day on a Pentium-PC (an example is given in appendix C). The attack isapplicable to any (64� c+ 1)-bit modulus and its complexity is independent ofc 2 IN (once computed, the same x-strings work with any such n).k # of pk-smooth x-values (amongst 223) forgeries345 346 1500 799 2981000 3203 22021500 6198 46972000 9344 73432500 12555 100543000 15830 12829Table 1. Experimental F-forgeries for 64-bit x-values, prime e.The attack is equally applicable to 32, 48, 80, 96 or 112-bit x-strings (whichyield 7, 15, 31, 39 and 47-bit plaintext spaces); a combined attack, mixing x-strings of di�erent types is also possible (this has the drawback of adding the un-knowns �7; �15; : : : but improves the probability of �nding pk-smooth x-strings).Long plain-English messages ending by the letter f can be forged using a moretechnical approach sketched in appendix B (6616 represents the ASCII charac-ter f). Note, as a mere curiosity, a slight (�= 11%) experimental deviation fromformula (3) due to the non-uniform distribution of the x-strings (which mostand least signi�cant bits can never be long sequences of zeroes). Finally, sincethe powers of 2 and �23 are identical, one can use k chosen messages instead ofk + 1, packing p1 = 2 and pk+1 = �23 into the updated unknown p1 = 2�23.Non-impact on iso 9796-1 : The authors could not extend the attack toiso 9796-1 and it would be wrong to state that iso 9796-1 is broken.Note : When we �rst looked into the standard, we did not notice ~s and weare grateful to Peter Landrock and J�rgen Brandt for drawing our attention tothat. It appears from our discussions with iso/jtc1/sc27 that ~s (the alterationthat codes the message-border) has also been introduced to prevent arithmeticoperations on �(m); further information on iso 9796-1 and our attack on F willbe soon posted on http://www.iso.ch/jtc1/sc27.

4.2 The security of iso 9796-2 signaturesiso 9796-2 is a generic padding standard allowing total or partial message re-covery. Hash-functions of di�erent sizes are acceptable and parameter L (in thestandard kh) is consequently a variable. Section 5, note 4 of [22] recommends64 � L � 80 for total recovery (typically an iso 10118-2 [23]) and 128 � L � 160for partial recovery.Partial message recovery. For simplicity, assume that N , L and the size ofm are all multiples of eight and that the hash function is known to both parties.The message m = m[1] �m[2] is separated into two parts where m[1] consists ofthe N � L� 16 most signi�cant bits of m and m[2] of all the remaining bits ofm. The padding function is :�(m) = 6A16 �m[1] �HASH(m) � BC16and m[2] is transmitted in clear.Dividing (6A16 + 1)� 2N by n we obtain :(6A16 + 1)� 2N = i� n+ r with r < n < 2Nn0 = i� n = 6A16 � 2N + (2N � r) = 6A16 � n0[1] � n0[0]where n0 is N + 7 bits long and n0[1] is N � L� 16 bits long.Setting m[1] = n0[1] we get :t = i� n� �(m)� 28 = n0[0]�HASH(m) � BC0016where the size of t is less than L+ 16 bits.The forger can thus modify m[2] (and therefore HASH(m)) until he gets aset of messages which t-values are pk-smooth and express one such �(m�) as amultiplicative combination of the others.Note that the attack is again independent of the size of n (forging 1024-bitsignatures is not harder than forging 512-bit ones) but, unlike our F-attack,forged messages are speci�c to a given n and can not be recycled when attackingdi�erent moduli.To optimize e�orts, A must use the k minimizing C 0L+16;k.Although the optimal time complexities for L = 160 and L = 128 are lowerthan the birthday complexities of SHA and MD5 we consider that L = 160implementations are still reasonably secure.L = kh optimal log2 k log2 time log2 space128 18 54 36160 20 61 40Table 2. Attacks on iso 9796-2, small public exponent.

Total message recovery. Assuming again that the hash function is knownto both parties, that N and L are multiples of eight and that the size of m isN � L� 16, function � is :�(m) = 4A16 �m �HASH(m) � BC16Let us separate m = m[1] �m[0] into two parts where m[0] consists of the `least signi�cant bits of m and m[1] of all the remaining bits of m and compute,as in the previous case, an i such that :n0 = i� n = 4A16 � n0[1] � n0[0]where n0[0] is (L+ `+ 16)-bits long and n0[1] � n0[0] is N -bits long.Setting m[1] = n0[1] we get :t = i� n� �(m)� 28 = n0[0]�m[0] � HASH(m) � BC0016where the size of t is less than L+ `+ 16 bits.A will thus modify m[0] (and therefore HASH(m)) as needed and concludethe attack as in the partial recovery case. ` must be tuned to expect just enoughpk-smooth t-values with a reasonably high probability i.e. :k � 2` � �� L+ `+ 16log2(k ln k)�The complexities summarized in the following table (a few PC-weeks forkh = 64) seem to suggest a revision of this standard.L = kh optimal log2 k log2 time log2 space `64 15 47 30 3280 17 51 34 34Table 2 (continued) Attacks on iso 9796-2, small public exponent.Note that our attack would have applied as well to :�(m) = 4A16 �HASH(m) �m � BC16In which case take n0 = i � n such that n0mod 256 = BC16 and use m toreplicate the least signi�cant bits of n0; subtraction will then yield a moderatesize integer times of a power of two.An elegant protection against our attack is described in [13] (its security isbasically comparable to that of pkcs #1 v2.0, discussed later on in this paper);a second e�cient solution, suggested by Jean-Jacques Quisquater in the rumpsession of crypto'97 is :�(m) = 4A16 � (m�HASH(m)) �HASH(m) � BC16

4.3 Analyzing pkcs #1 v2.0, ssl-3.02 and ansi x9.31This section describes theoretical attacks on pkcs #1 v2.0, ssl-3.02 and ansix9.31 which are better than the birthday-paradox. Since our observations arenot general (for they apply to moduli of the form n = 2k� c) and more demand-ing than factorization, they do not endanger current implementations of thesestandards. It appears that n = 2k� c o�ers regular 1024-bit RSA security as faras c is not much smaller than 2500, and square-free c-values as small as 400 bitsmay even be used [25]. In general (n > 2512) such moduli appear to o�er regularsecurity as long as log2(c) �= log2(n)=2 and c is square-free [26].Although particular, n = 2k � c has been advocated by a number of cryp-tographers for it allows trial and error divisions to be avoided. For instance,the informative annex of iso 9796-1 recommends \...some forms of the modulus(n = 2k � c) [that] simplify the modulo reduction and need less table storage.".Note however, that even in our worst scenario, iso 9796-1's particular form isstill secure : for 1024-bit moduli, iso 9796-1 recommends a 767-bit c whereasour attack will require a 400-bit c. The reader is referred to section 14.3.4 of [27]for further references on n = 2k � c.Assume that we are given a 1024-bit n = 2k � c, where ` = log2(c) �= 400and c is square-free; we start by analyzing ssl-3.02 where :�(m) = 000116 � FFFF16 : : : FFFF16 � 0016 � SHA(m) �MD5(m)n� 215 � �(m) is an `-bit number on which we conduct an iso 9796-2-likeattack which expected complexity is C 0̀;k.The characteristics of the attack are summarized in table 3 which should becompared to the birthday paradox (2144 time, negligible space) and the hardnessof factorization (ftime, spaceg denote the base-two logarithms of the time andspace complexities of the attacks) :log2 n ` optimal log2 k our attack factorization606 303 28 f84, 56g f68, 41g640 320 29 f87, 58g f70, 42g768 384 33 f97, 66g f75, 45g1024 400 34 f99, 68g f86, 50g1024 512 39 f115, 78g f86, 50gTable 3. Estimates for ssl 3.02, small public exponent.The phenomenon also scales-down to pkcs #1 v2.0 where :�(m) = 000116 � FFFF16 : : :FFFF16 � 0016 � cSHA � SHA(m)�(m) = 000116 � FFFF16 : : :FFFF16 � 0016 � cMD5 �MD5(m)cSHA = 3021300906052B0E03021A0500041416cMD5 = 3020300C06082A864886F70D02050500041016and :

log2 n ` optimal log2 k our attack factorization512 256 23 f77, 46g f64, 39g548 274 27 f80, 54g f66, 40gTable 4. Estimates for pkcs #1 v2.0 and ansi x9.31, small public exponent.These �gures appear roughly equivalent to a birthday-attack on SHA, evenfor rather small (550-bit) moduli. Note that the attack applies to n = 2k + c bycomputing n� 214 � �(m).Note : In a recent correspondence, Burt Kaliski informed us that Ron Rivestdeveloped in 1991 a forgery strategy which is a simple case of the one describedin this paper; the design of pkcs #1 v1.5 took this into account, but Ron'sobservation was never published. Further information on our attack will appearsoon in an RSA bulletin http://www.rsa.com/rsalabs/.A similar analysis where the prescribed moduli begin by 6BBBBB : : :16 is ap-plicable to ansi x9.31 (yielding exactly the same complexities as for pkcs #1v2.0) where :�(m) = 6B16 � BBBB16 : : : BBBB16 � BA16 � SHA(m) � 33CC16ansi x9.31 recommends to avoid n = 2k � c. If one strictly follows thestandard n = 6BBBBB : : :16 can not occur (the standard requires a bit lengthwhich is a multiple of eight) but one could in theory work with 2�(m) insteadof �(m).Finally, we will consider a theoretical setting in which an authority certi�esmoduli generated by users who wish to join a network; naturally, users never re-veal their secret keys but using storage optimizations as a pretext, the authorityimplements an ID-based scheme where di�erent random looking bits (registra-tion ID, account numbers etc) are forced into the most signi�cant bits of each n[26]. Users generate moduli having the prescribed patterns they receive.If the authority can �nd two small constants fu; vg such that :log2(u� n� v � �(m)) �= � for a moderate � (4)then our attack would extend to moduli which are not necessarily of theform 2k � c. To do so, oversimplify the setting to �(m) = (2w � 1) � f(m) andn = n[1] �n[0] where n[0] has the size of f(m) and substitute these de�nitions inequation (4) : log2(u� (n[1] � n[0])� v � ((2w � 1) � f(m))) �= �since the authority has no control over f(m), the best thing to do would beto request that u � n[1] = v � (2w � 1) which results in an � �= log2(f(m)) +log2(maxfu; vg).The authority can thus prescribe moduli which most signi�cant bits are vi�(2w � 1)=ui where ui are moderate-size factors of 2w � 1. Such factors lookrandom and should not raise the user's suspicion.

We can therefore conclude that although practically safe, the use of authority-speci�ed moduli in �xed-pattern padding contexts might be an interesting the-oretical playground.5 Conclusion and further researchAlthough the analysis presented in this paper indicates a weakness in iso 9796-2 when kh �= 64, products using this standard should not be systematically with-drawn; a few product analyzes reveal that system-level speci�cations (messagecontents, insu�cient access to S etc.) frequently make real-life attacks harderthan expected.It seems reasonable (although we can not base our belief on formal grounds)that good message recovery padding schemes should be usable for encryptionas well; we motivate this recommendation by the functional similarity betweenRSA encryption and message recovery.Full-domain-hash o�ers the best possible protection against our attack andwe advocate its systematic use whenever possible. If impossible, it seems appro-priate to link L and N since for a �xed L there is necessarily a point (birthday)above which increasing N will slow-down the legitimate parties without improv-ing security.We also recommend four research directions :� An integer is fa; pkg-semismooth [3] if each of its prime factors is smallerthan a and all but one are smaller than pk. A well known-strategy (called thelarge prime variant) consists of searching, using the birthday paradox, fa; pkg-semismooth f�(x); �(y)g pairs having an identical large prime factor (e.g. 80-bitslong); the ratio �(x)=�(y)mod n can then be used as one pk-smooth input inthe Gaussian elimination.� It might be interesting to �nd out if our F-attack could handle ~s by usinga di�erent � :� = � � 00000000000116 � 00000000000116 � � � 00000000000116In which case x-values should end by the pattern 226616, be pk-smooth andsuch that x0 = x=� is a valid message header. Note that di�erent �-values mightbe mixed in the same attack, using a large prime variant where the di�erent � -values are eliminated by modular division.� Although we have no speci�c instances for the moment, one could also tryto combine our technique with [4] to speed-up forgery in speci�c situations.� Finally, it appears that incomplete ad-hoc analyzes of hash-functions (build-ing digests with u prescribed bits in less than 2u operations) could be the sourceof new problems in badly designed padding schemes.

6 AcknowledgementsWe are grateful to Arjen Lenstra, Pascal Paillier and Michael Tunstall for theirhelpful comments, the authors also thank Pascal Autissier, Christophe Clavier,Renato Menicocci and Phong N'guyen for their insights into several mathemat-ical details. Last but not least, we express our recognition to Burt Kaliski, BartPreneel and Jean-Jacques Quisquater for their help.References1. L. Adleman, A subexponential algorithm for the discrete logarithm prob-lem with applications to cryptography, Proceedings of the IEEE 20-thAnnual symposium on the foundations of computer science, pp. 55-60,1979.2. ANSI X9.31, Digital signatures using reversible public-key cryptographyfor the �nancial services industry (rDSA), 1998.3. E. Bach and R. Peralta, Asymptotic semismoothness probabilities, Math-ematics of computation, vol. 65, no. 216, pp. 1701{1715, 1996.4. O. Baudron and J. Stern, To pad or not to pad : does formatting degradesecurity ?, 1999 RSA Data Security Conference proceeding book, 1999.5. M. Bellare and P. Rogaway, Random oracles are practical : a paradigm fordesigning e�cient protocols, Proceedings of the �rst annual conference oncomputer and communication security, acm, 1993.6. M. Bellare and P. Rogaway, The exact security of digital signatures : howto sign with RSA and Rabin, Advances in cryptology eurocrypt'96,Springer-Verlag, Lectures notes in computer science 1070, pp. 399{416,1996.7. R. Brent, An improved Monte Carlo factorization algorithm, Nordisk Tid-skrift f�or Informationsbehandling (bit) vol. 20, pp. 176{184, 1980.8. N. de Bruijn, On the number of positive integers � x and free of primefactors � y, Indagationes Mathematicae, vol. 13, pp. 50{60, 1951. (cf. aswell to part II, vol. 28, pp. 236{247, 1966.).9. G. Davida, Chosen signature cryptanalysis of the RSA (MIT) public-keycryptosystem, TR-CS-82-2, Department of electrical engineering and com-puter science, University of Wisconsin, Milwaukee, 1982.10. D. Denning, Digital signatures with RSA and other public-key cryptosys-tems, Communications of the ACM, vol. 27-4, pp. 388{392, 1984.11. Y. Desmedt and A. Odlyzko. A chosen text attack on the RSA cryp-tosystem and some discrete logarithm schemes, Advances in cryptologycrypto'85, Springer-Verlag, Lectures notes in computer science 218, pp.516{522, 1986.12. K. Dickman, On the frequency of numbers containing prime factors of acertain relative magnitude, Arkiv f�or matematik, astronomi och fysik, vol.22A, no. 10, pp. 1{14, 1930.

13. DIN NI-17.4, Speci�cation of chipcard interface with digital signature ap-plication/function according to SigG and SigV, version 1.0, 1998.14. J. Dixon, Asymptotically fast factorization of integers, Mathematics ofcomputation, vol. 36, no. 153, pp. 255{260, 1981.15. J. Evertse and E. van Heyst,Which new RSA-signatures can be computedfrom certain given RSA signatures ?, Journal of cryptology vol. 5, no. 1,41{52, 1992.16. M. Girault, J.-F. Misarsky, Selective forgery of RSA signatures using re-dundancy, Advances in cryptology eurocrypt'97, Springer-Verlag, Lec-tures notes in computer science 1233, pp. 495{507, 1997.17. J. Gordon, How to forge RSA key certi�cates, Electronic Letters, vol. 21,no. 9, April 25-th, 1985.18. L. Guillou, J.-J. Quisquater, M. Walker, P. Landrock and C. Shaer, Pre-cautions taken against various attacks in iso/iec dis 9796, Advances incryptology eurocrypt'90, Springer-Verlag, Lectures notes in computerscience 473, pp. 465{473, 1991.19. H. Halberstam, On integers whose prime factors are small, Proceedings ofthe London mathematical society, vol. 3, no. 21, pp. 102{107, 1970.20. K. Hickman, The SSL Protocol, December 1995. Available electronicallyat : http://www.netscape.com/newsref/std/ssl.html21. ISO/IEC 9796, Information technology - Security techniques - Digital sig-nature scheme giving message recovery, Part 1 : Mechanisms using redun-dancy, 1999.22. ISO/IEC 9796-2, Information technology - Security techniques - Digitalsignature scheme giving message recovery, Part 2 : Mechanisms using ahash-function, 1997.23. ISO/IEC 10118-2, Information technology - Security techniques - Hash-functions; Part 2 : Hash functions using an n-bit block-cipher algorithm,1994.24. W. de Jonge and D. Chaum. Attacks on some RSA signatures, Advancesin cryptology crypto'85, Springer-Verlag, Lectures notes in computer sci-ence 218, pp. 18{27, 1986.25. A. Lenstra, Generating RSA moduli with a predetermined portion, Ad-vances in cryptology asiacrypt'98, Springer-Verlag, Lectures notes incomputer science 1514, pp. 1{10, 1998.26. A. Lenstra, de auditu, January 1999.27. A. Menezes, P. van Oorschot and S. Vanstone, Handbook of applied cryp-tography, crc Press.28. M. Michels, M. Stadler and H.-M. Sun, On the security of some variantsof the RSA signature scheme, Computer security-esorics'98, Springer-Verlag, Lectures notes in computer science 1485, pp. 85{96, 1998.29. J.-F. Misarsky, A multiplicative attack using LLL algorithm on RSA sig-natures with redundancy, Advances in cryptology crypto'97, Springer-Verlag, Lectures notes in computer science 1294, pp. 221{234, 1997.

30. J.-F. Misarsky, How (not) to design RSA signature schemes, Public-keycryptography, Springer-Verlag, Lectures notes in computer science 1431,pp. 14{28, 1998.31. National Institute of Standards and Technology, Secure hash standard,FIPS publication 180-1, April 1994.32. J. Pollard, Factoring with cubic integers, The development of the number�eld sieve, Springer-Verlag, Lectures notes in computer science 1554, pp.4{10, 1993.33. C. Pomerance, The quadratic sieve factoring algorithm, Advances in cryp-tology eurocrypt'84, Springer-Verlag, Lectures notes in computer science209, pp. 169{182, 1985.34. R. Rivest, RFC 1321 : The MD5 message-digest algorithm, Internet activ-ities board, April 1992.35. R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital sig-natures and public-key cryptosystems, Communications of the ACM, vol.21-2, pp. 120{126, 1978.36. RSA Laboratories, pkcs #1 : RSA cryptography speci�cations, version2.0, September 1998.37. H. Williams, A modi�cation of the RSA public key encryption procedure,IEEE TIT, vol. 26, pp. 726{729, 1980.APPENDIX AThe following (redundant) look-up table lists � for the various smoothnessand digest-size values concerned by this paper; �(136=24), the probability thata 136-bit number has no prime factors larger than 224 is 2�14:2 :� log2 �& 16 20 24 28 32 36 40 44 48 52 56 60 64 68 7232 1.7 0.9 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.048 4.4 2.7 1.7 1.1 0.8 0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.064 7.7 5.0 3.4 2.4 1.7 1.2 0.9 0.7 0.5 0.3 0.2 0.0 0.0 0.0 0.080 11.5 7.7 5.4 3.9 2.9 2.2 1.7 1.3 1.0 0.8 0.6 0.5 0.4 0.3 0.296 15.6 10.7 7.7 5.7 4.4 3.4 2.7 2.1 1.7 1.4 1.1 0.9 0.8 0.6 0.5112 20.1 13.9 10.2 7.7 5.9 4.7 3.8 3.1 2.5 2.1 1.7 1.4 1.2 1.0 0.8128 24.9 17.4 12.8 9.8 7.7 6.1 5.0 4.1 3.4 2.8 2.4 2.0 1.7 1.4 1.2136 27.4 19.2 14.2 10.9 8.6 6.9 5.6 4.6 3.9 3.2 2.8 2.3 2.0 1.7 1.5144 29.9 21.1 15.6 12.0 9.5 7.7 6.3 5.2 4.4 3.7 3.1 2.7 2.3 2.0 1.7152 32.4 22.9 17.1 13.2 10.5 8.5 7.0 5.8 4.9 4.1 3.5 3.0 2.6 2.3 2.0160 35.1 24.9 18.6 14.4 11.5 9.3 7.7 6.4 5.4 4.6 3.9 3.4 2.9 2.6 2.2168 37.9 26.9 20.1 15.6 12.5 10.2 8.4 7.0 5.9 5.1 4.4 3.8 3.3 2.9 2.5176 40.6 28.9 21.7 16.9 13.5 11.0 9.1 7.7 6.5 5.6 4.8 4.2 3.6 3.2 2.8400 129. 95.2 73.9 59.2 49.0 41.5 35.1 30.2 26.5 23.1 20.8 18.5 16.7 15.1 13.7512 179. 133 104 84.0 69.8 59.0 50.8 44.0 38.8 34.1 30.6 27.2 24.9 22.5 20.6The table uses the exact formula (section 2) for t � 10 and de Bruijn'sapproximation [8] for t > 10 :�(t) �= (2�t)�1=2 exp�
 � t� + Z �0 es � 1s ds�where � is the positive solution of e� � 1 = t� and
 is Euler's constant.

APPENDIX BThe attack's time-consuming part is the exhaustive-search of k appropriate x-strings; therefore, when one wants the x-strings to be 256-bits long, the increasein k makes the attack impractical.To overcome this problem, we suggest the following : as a �rst step, col-lect the signatures corresponding to moderate-size pk-smooth x-strings (whichare relatively easy to �nd) and extract from their appropriate multiplicativecombinations the e-th roots of the k �rst primes. Then, exhaustive-search twoplain-English 128-bit messages fm;m0g ending by the letter f such that �(m)=�and �(m0)=� are both pk-smooth, with :� = 2256(c�1) + : : :+ 2256 + 1for a (256� c + 1)-bit modulus. Since we only need two such numbers, theoverall workload is very tolerable. Next, submit m to S and divide its signatureby the e-th roots of its small prime factors to recover � dmod n. Using � dmod nand the e-th roots of the k �rst primes we can now forge, by multiplication, thesignature of m0. APPENDIX CThis appendix contains an F forgery that works with any 1025-bit modulus;to �t into the appendix, the example was computed for e = 3 but forgeries forother public exponents are as easy to obtain.step 1 : Select any 1025-bit RSA modulus, generate d = 3�1mod �(n), let� = F and form the 180 messages :mi = (256� message[i]16 + 102)� 11Xj=0 232jwhere message[i] denotes the elements of the following table :00014E 008C87 00D1E8 01364B 0194D8 01C764 021864 03442F 0399FB 048D9E 073284 0863DE 09CCE80A132E 0A2143 0BD886 0C364A 0C368C 0C6BCF 0D3AC1 0D5C02 0EA131 0F3D68 0F9931 31826A 31BE8131ED6B 31FCD0 320B25 32B659 332D04 3334D8 33EAFC 33EB1D 343B49 353D02 35454C 35A1A9 36189E362C79 365174 3743AB 3765F6 37C1E2 3924AC 3998A8 3AF8A7 3B6900 3B9EEB 3BC1FF 3DE2DE 3E51BE3E8191 3F49F3 3F69AC 4099D9 40BF29 41C36C 41D8C0 424EE8 435DB7 446DC1 4499CC 44AA20 44EE534510E8 459041 45A464 45AA03 460B80 4771E7 486B6A 499D40 4A5CF8 4AC449 4ADA0A 4B87A8 4C06A14C5C17 4D4685 4E39EA 4EB6B6 4F8464 716729 71C7D3 71FA22 722209 72DBF1 7619AB 765082 767C3976885C 78F5F3 79E412 79FAD6 7CD0ED 7D0ABA 7DBA1D 7DE6A5 7E06A2 7EA5F2 7EC1ED 7EEC78 90BB4B90DE38 9139D7 934C2C 9366C5 941809 941BFB 947EB4 94DB29 952D45 9745BD 978897 97A589 9827AF984FAC 9A193D 9A83E2 9B74E3 9BEAE9 9C704F 9DBA98 9F9337 A00D15 A02E3D A10370 A429A6 A4DADDA4F689 A5485D A6D728 A76B0F A7B249 A87DF3 A95438 A96AA4 AB1A82 AD06A8 AEA0D0 AEB113 D076C5D13F0E D18262 D1B0A7 D35504 D3D9D4 D3DEE4 D4F71B D91C0B D96865 DA3F44 DB76A8 DE2528 DE31DDDE46B8 DE687D DEB8C8 DF24C3 DFDFCF DFF19A E12FAA E1DD15 E27EC1 E39C56 E40007 E58CC8 E63CE0E6596C E7831E E796FB E7E80C E85927 E89243 E912B4 E9BFFF EA0DFC EACF65 EB29FA

step 2 : construct the message m0 = EE7E8E6616 �P11j=0 232j and obtainfrom the signer the 180 signatures si = �(mi)dmod n.step 3 : the signature of m0 is :�(m0)d = 345Yi=0 p�gamma[i]i 180Yi=1 sbeta[i]i mod nwhere pi denotes the i-th prime (with p0 = �23) and beta[i] denotes theelements of the following table :1 2 1 2 2 2 2 1 2 2 2 1 1 2 2 2 1 1 2 1 2 2 2 2 2 1 1 2 1 1 2 1 1 2 1 11 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 2 1 1 2 1 2 1 1 2 2 1 1 1 1 2 1 1 2 11 1 1 1 2 2 1 2 1 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 21 1 1 2 2 2 2 1 2 2 1 1 2 2 2 2 1 1 2 1 2 2 2 2 1 1 1 2 1 1 2 1 1 1 1 22 1 1 1 1 2 2 1 2 2 1 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 1 2 1 2 2 1 1 2 1 1gamma[i] represents the hexadecimal values :57 57 68 33 27 18 16 13 10 0F 0E 0B 09 09 0D 05 0B 07 04 08 07 07 07 09 0A 03 0704 05 05 03 04 03 01 02 03 04 03 01 03 03 03 02 06 03 03 04 06 02 04 04 02 02 0302 04 04 03 04 01 04 03 02 03 02 01 02 02 01 03 01 01 01 01 03 03 01 03 02 02 0104 02 04 02 02 01 02 01 01 01 03 03 01 02 01 01 00 03 02 03 01 01 02 01 02 02 0303 04 03 03 02 03 01 02 03 02 01 03 02 02 01 01 00 02 01 01 03 01 01 01 01 01 0200 02 00 00 01 02 01 01 01 00 01 01 00 01 01 02 02 01 01 01 00 01 00 01 01 04 0202 02 01 02 02 01 02 01 02 00 01 00 02 01 02 02 00 01 02 01 01 01 02 01 01 01 0201 00 01 01 00 00 01 02 00 01 00 01 01 00 01 00 01 02 02 01 01 02 00 00 02 01 0202 01 00 00 01 00 01 00 01 00 02 00 00 00 01 01 00 00 01 01 00 00 00 01 00 00 0000 00 00 01 01 00 00 01 02 01 01 01 00 01 02 01 01 01 02 00 00 00 01 01 00 01 0000 00 02 02 01 00 01 02 00 01 00 01 02 00 01 00 00 01 00 01 01 01 00 01 01 00 0101 01 01 00 00 01 01 00 00 01 01 00 01 01 00 00 01 00 00 00 01 01 02 02 01 01 0000 01 02 01 02 00 01 01 00 01 00 00 00 00 00 00 01 00 00 01 02 01

