
Optimal seurity proofs for PSS and other signature shemesJean-S�ebastien CoronGemplus Card International34 rue GuynemerIssy-les-Moulineaux, F-92447, Franejean-sebastien.oron�gemplus.omAbstrat. The Probabilisti Signature Sheme (PSS) designed by Bellare and Rogaway is asignature sheme provably seure against hosen message attaks in the random orale model,with a seurity level equivalent to RSA. In this paper, we derive a new seurity proof for PSSin whih a muh shorter random salt is used to ahieve the same seurity level, namely weshow that log2 qsig bits suÆe, where qsig is the number of signature queries made by theattaker. When PSS is used with message reovery, a better bandwidth is obtained beauselonger messages an now be reovered. Moreover, we show that this size is optimal: if less thanlog2 qsig bits of random salt are used, PSS is still provably seure but no seurity proof an betight. This result is based on a new tehnique whih shows that other signature shemes suhas the Full Domain Hash sheme and Gennaro-Halevi-Rabin's sheme have optimal seurityproofs.Key-words: Probabilisti Signature Sheme, provable seurity, random orale model.1 IntrodutionSine the invention of publi key ryptography in the seminal DiÆe-Hellman paper [8℄,signi�ant researh endeavors were devoted to the design of pratial and provably seureshemes. A proof of seurity is usually a omputational redution from solving a well estab-lished problem to breaking the ryptosystem. Well established problems of ryptographirelevane inlude fatoring large integers, omputing disrete logarithms in prime ordergroups, or extrating roots modulo a omposite integer.For digital signature shemes, the strongest seurity notion was de�ned by Goldwasser,Miali and Rivest in [12℄, as existential unforgeability under an adaptive hosen messageattak. This notion aptures the property that an attaker annot produe a valid signature,even after obtaining the signature of (polynomially many) messages of his hoie.Goldwasser, Miali and Rivest proposed in [12℄ a signature sheme based on signaturetrees whih provably meets this de�nition. The eÆieny of the sheme was later improvedby Dwork and Naor [9℄, and Cramer and Damg�ard [6℄. A signi�ant drawbak of thosesignature shemes is that the signature of a message depends on previously signed messages:the signer must thus store information relative to the signatures he generates as time goesby. Gennaro, Halevi and Rabin presented in [11℄ a new hash-and-sign sheme provably seureagainst adaptive hosen message attaks whih is both state-free and eÆient. Its seurityis based on the strong-RSA assumption. Cramer and Shoup presented in [7℄ a signaturesheme provably seure against adaptive hosen message attaks, whih is also state-free,eÆient, and based on the strong-RSA assumption.The random orale model, introdued by Bellare and Rogaway in [1℄, is a theoretialframework allowing to prove the seurity of hash-and-sign signature shemes. In this model,the hash funtion is seen as an orale whih outputs a random value for eah new query.



2Bellare and Rogaway de�ned in [2℄ the Full Domain Hash (FDH) signature sheme, whihis provably seure in the random orale model assuming that inverting RSA is hard. [2℄ alsointrodued the Probabilisti Signature Sheme (PSS), whih o�ers better seurity guaranteesthan FDH. Similarly, Pointheval and Stern [18℄ proved the seurity of disrete-log basedsignature shemes in the random orale model (see also [15℄ for a onrete treatment).However, seurity proofs in the random orale are not real proofs, sine the random orale isreplaed by a well de�ned hash funtion in pratie; atually, Canetti, Goldreih and Halevi[4℄ showed that a seurity proof in the random orale model does not neessarily imply thata sheme is seure in the real world.For pratial appliations of provably seure shemes, the tightness of the seurity redu-tion must be taken into aount. A seurity redution is tight when breaking the signaturesheme leads to solving the well established problem with probability lose to one. In thisase, the signature sheme is almost as seure as the well established problem. On theontrary, if the above probability is too small, the guarantee on the signature sheme willbe weak; in whih ase larger seurity parameters must be used, thereby dereasing theeÆieny of the sheme.The seurity redution of [2℄ for Full Domain Hash bounds the probability " of breakingFDH in time t by (qhash + qsig) � "0 where "0 is the probability of inverting RSA in time t0lose to t and where qhash and qsig are the number of hash queries and signature queriesperformed by the forger. This was later improved in [5℄ to " ' qsig � "0, whih is a signi�antimprovement sine in pratie qsig happens to be muh smaller than qhash. However, FDH'sseurity redution is still not tight, and FDH is still not as seure as inverting RSA.On the ontrary, PSS is almost as seure as inverting RSA (" ' "0). Additionally, forPSS to have a tight seurity proof in [2℄, the random salt used to generate the signaturemust be of length at least k0 ' 2 � log2 qhash + log2 1="0, where qhash is the number of hashqueries requested by the attaker and "0 the probability of inverting RSA within a giventime bound. Taking qhash = 260 and "0 = 2�60 as in [2℄, we obtain a random salt of sizek0 = 180 bits. In this paper, we show that PSS has atually a tight seurity proof for arandom salt as short as log2 qsig bits, where qsig is the number of signature queries made bythe attaker. For example, for an appliation in whih at most one billion signatures will begenerated, k0 = 30 bits of random salt are atually suÆient to guarantee the same level ofseurity as RSA, and taking a longer salt does not inrease the seurity level. When PSSis used with message reovery, we obtain a better bandwidth beause a larger message annow be reovered when verifying the signature.Moreover, we show that this size is optimal: if less than log2 qsig bits of random saltare used, PSS is still provably seure, but PSS annot have exatly the same seurity levelas RSA. First, using a new tehnique, we derive an upper bound for the seurity of FDH,whih shows that the seurity proof in [5℄ with " ' qsig � "0 is optimal. In other words, itis not possible to further improve the seurity proof of FDH in order to obtain a seuritylevel equivalent to RSA. This answers the open question raised by Bellare and Rogawayin [2℄, about the existene of a better seurity proof for FDH: as opposed to PSS, FDHannot be proven as seure as inverting RSA. The tehnique also applies to other signatureshemes suh as Gennaro-Halevi-Rabin's sheme [11℄ and Paillier's signature sheme [16℄.To our knowledge, this is the �rst result onerning optimal seurity proofs. Then, using theupper bound for the seurity of FDH, we show that our size k0 for the random salt in PSSis optimal: if less than log2 qsig bits are used, no seurity proof for PSS an be tight.



32 De�nitionsIn this setion we briey present some notations and de�nitions used throughout the paper.We start by realling the de�nition of a signature sheme.De�nition 1 (signature sheme). A signature sheme (Gen; Sign; Verify) is de�ned asfollows:- The key generation algorithm Gen is a probabilisti algorithm whih given 1k, outputsa pair of mathing publi and private keys, (pk; sk).- The signing algorithm Sign takes the message M to be signed, the publi key pk andthe private key sk, and returns a signature x = Signpk;sk(M). The signing algorithm maybe probabilisti.- The veri�ation algorithm Verify takes a message M , a andidate signature x0 and pk.It returns a bit Verifypk(M;x0), equal to one if the signature is aepted, and zero otherwise.We require that if x Signpk;sk(M), then Verifypk(M;x) = 1.In the previously introdued existential unforgeability under an adaptive hosen messageattak senario, the forger an dynamially obtain signatures of messages of his hoie andattempts to output a valid forgery. A valid forgery is a message/signature pair (M;x) suhthat Verifypk(M;x) = 1 whereas the signature of M was never requested by the forger.A signi�ant line of researh for proving the seurity of signature shemes is the previ-ously introdued random orale model, where resistane against adaptive hosen messageattaks is de�ned as follows [1℄:De�nition 2. A forger F is said to (t; qhash; qsig; ")-break the signature sheme (Gen; Sign;Verify) if after at most qhash(k) queries to the hash orale, qsig(k) signatures queries andt(k) proessing time, it outputs a valid forgery with probability at least "(k) for all k 2 N.and quite naturally:De�nition 3. A signature sheme (Gen; Sign; Verify) is (t; qsig; qhash, ")-seure if thereis no forger who (t; qhash; qsig; ")-breaks the sheme.The RSA ryptosystem, invented by Rivest, Shamir and Adleman [19℄, is the most widelyused ryptosystem today:De�nition 4 (The RSA ryptosystem). The RSA ryptosystem is a family of trapdoorpermutations, spei�ed by:- The RSA generator RSA, whih on input 1k, randomly selets two distint k=2-bitprimes p and q and omputes the modulus N = p � q. It randomly piks an enryptionexponent e 2 Z��(N) and omputes the orresponding deryption exponent d suh that e � d =1 mod �(N). The generator returns (N; e; d).- The enryption funtion f : Z�N ! Z�N de�ned by f(x) = xe mod N .- The deryption funtion f�1 : Z�N ! Z�N de�ned by f�1(y) = yd mod N .FDH was the �rst pratial and provably seure signature sheme based on RSA. Itis de�ned as follows: the key generation algorithm, on input 1k, runs RSA(1k) to obtain(N; e; d). It outputs (pk; sk), where the publi key pk is (N; e) and the private key sk is(N; d). The signing and verifying algorithms use a hash funtion H : f0; 1g� ! Z�N whihmaps bit strings of arbitrary length to the set of invertible integers modulo N .SignFDHN;d(M) VerifyFDHN;e(M;x)y  H(M) y  xe mod Nreturn yd mod N if y = H(M) then return 1 else return 0.



4 FDH is provably seure in the random orale model, assuming that inverting RSA ishard. An inverting algorithm I for RSA gets as input (N; e; y) and tries to �nd yd mod N .Its suess probability is the probability to output yd mod N when (N; e; d) are obtained byrunning RSA(1k) and y is set to xe mod N for some x hosen at random in Z�N.De�nition 5. An inverting algorithm I is said to (t; ")-break RSA if after at most t(k)proessing time its suess probability is at least "(k) for all k 2 N.De�nition 6. RSA is said to be (t; ")-seure if there is no inverter whih (t; ")-breaks RSA.The following theorem [5℄ proves the seurity of FDH in the random orale model. Weinlude the proof in appendix A for further referene in the paper.Theorem 1. Assuming that RSA is (tI ; "I)-seure, FDH is (tF ; qhash; qsig; "F )-seure,with: tI = tF + (qhash + qsig + 1) � O(k3) (1)"I = "Fqsig ��1� 1qsig + 1�qsig+1 (2)The same method an be used to obtain an improved seurity proof for Gennaro-Halevi-Rabin's signature sheme [11℄ in the random orale model and for Paillier's signature sheme[16℄. From a forger whih outputs a forgery with probability "F , the redution sueeds insolving the hard problem with probability roughly "F =qsig, in approximately the same timebound.For example, if we assume that, for a given seurity parameter k, the probability ofinverting RSA is less than 2�60 for a given time bound t, and if the forger is allowed tomake at most 260 hash queries and 230 signature queries, then the probability of breakingFDH is less than 2�28 for a time bound lose to t.The seurity redution of FDH is not tight: the probability "F of breaking FDH issmaller than roughly qsig � "I where "I is the probability of inverting RSA, whereas theseurity redution of PSS is tight: the probability of breaking PSS is almost the same as theprobability of inverting RSA ("F ' "I).3 New seurity proof for PSSSeveral standards inlude PSS, among these are IEEE P1363a [13℄, a revision of ISO/IEC9796-2, and the upoming PKCS#1 v2.1 [17℄. In this setion we obtain a better seurityproof for PSS, in whih a shorter random salt is used to generate the signature. We onsider�rst a variant of PSS for whih the seurity proof is simpler.3.1 A variant of PSSIn this setion we desribe a variant of PSS, whih we all PFDH, for Probabilisti FullDomain Hash. The sheme is similar to Full Domain Hash exept that a random salt of k0bits is onatenated to the message M before hashing it. The di�erene with PSS is thatthe random salt is not reovered when verifying the signature; instead the random salt istransmitted separately. As FDH, the sheme uses a hash funtion H : f0; 1g� ! Z�N.



5SignPFDH(M) : VerifyPFDH(M; s; r) :r R f0; 1gk0 y  se mod Ny  H(Mkr) if y = H(Mkr) then return 1return (yd mod N; r) else return 0The following theorem proves the seurity of PFDH in the random orale model, assum-ing that inverting RSA is hard. It shows that PFDH has a tight seurity proof for a randomsalt of length k0 = log2 qsig bits.Theorem 2. Suppose that RSA is (t0; "0)-seure. Then the signature sheme PFDH[k0℄ is(t; qhash; qsig; ")-seure, where: t = t0 � (qhash + qsig) � O(k3) (3)" = "0 � �1 + 6 � qsig � 2�k0� (4)Proof. Let F be a forger whih (t; qsig; qhash; ")-breaks PFDH. We onstrut an inverter Iwhih (t0; "0)-breaks RSA. The inverter reeives as input (N; e; �) and must output �d mod N .We assume that the forger never repeats a hash query. However, the forger may repeat asignature query, in order to obtain the signature of M with distint integers r. The inverterI maintains a ounter i, initially set to zero.When a message M appears for the �rst time in a hash query or a signature query, theinverter inrements the ounter i and sets Mi  M . Then, the inverter generates a list Liof qsig random integers in f0; 1gk0 .When the forger makes a hash query for Mikr, we distinguish two ases. If r belongsto the list Li, the inverter generates a random x 2 Z�N and returns H(Mikr) = xe mod N .Otherwise, the inverter generates a random x 2 Z�N and returns � �xe mod N . Consequently,for eah message Mi, the list Li ontains the integers r 2 f0; 1gk0 suh that the inverterknows the signature x orresponding to Mikr.When the forger makes a signature query forMi, the inverter piks a random r in Li anddisards it from the list. Sine the list ontains initially qsig integers and there are at mostqsig signature queries, this is always possible. If there was already a hash query forMikr, wehave H(Mikr) = xe mod N and the inverter returns the signature x. Otherwise the invertergenerates a random x 2 Z�N, sets H(Mikr) = xe mod N and returns the signature x.When the forger outputs a forgery (M; s; r), we assume that it has already made a hashquery forM , soM =Mi for a given i. Otherwise, the inverter goes ahead and makes the hashquery for Mkr. Then if r does not belong to the list Li, we have H(Mikr) = � � xe mod N .From s = H(Mikr)d = �d � x mod N , we obtain �d = s=x mod N and the inverter sueedsin outputting �d mod N .Sine the forger has not made any signature query for the message Mi in the forgery(Mi; s; r), the forger has no information about the qsig random integers in the list Li. There-fore, the probability that r does not belong to Li is (1�2�k0)qsig . If the size k0 of the randomsalt is greater than log2 qsig, we obtain if qsig � 2:�1� 2�k0�qsig � �1� 1qsig�qsig � 14Sine the forger outputs a forgery with probability ", the suess probability "0 of the inverteris then at least "=4, whih shows that for k0 � log2 qsig the probability of breaking PFDHis almost the same as the probability of inverting RSA.
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Μ∗Fig. 1. PSS (left) and PSS-R (right)For the general ase, i.e. if we do not assume k0 � log2 qsig, we generate fewer than qsigrandom integers in the list Li, so that the salt r in the forgery (Mi; s; r) belongs to Li withlower probability. More preisely, starting from an empty list Li, the inverter generates withprobability � a random r  f0; 1gk0 , adds it to Li, and starts again until the list Li ontainsqsig elements. Otherwise (so with probability 1��) the inverter stops adding integers to thelist. The number ai of integers in Li is then a random variable following a geometri law ofparameter �: Pr[ai = j℄ = � (1� �) � �j if j < qsig�qsig if j = qsig (5)The inverter answers a signature query for Mi if the orresponding list Li ontainsone more integer, whih happens with probability � (otherwise the inverter must abort).Consequently, the inverter answers all the signature queries with probability greater than�qsig . Note that if � = 1, the setting boils down to the previous ase: all the lists Li ontainexatly qsig integers, and the inverter answers all the signature queries with probability one.The probability that r in the forgery (Mi; s; r) does not belong to the list Li is then(1 � 2�k0)j , when the length ai of Li is equal to j. The probability that r does not belongto Li is then: f(�) = qsigXj=0 Pr[ai = j℄ � �1� 2�k0�j (6)Sine the forger outputs a forgery with probability ", the suess probability of the inverteris at least " � �qsig � f(�). We selet a value of � whih maximizes this suess probability; inappendix B we show that for any (qsig; k0), there exists �0 suh that:�qsig0 � f(�0) � 11 + 6 � qsig � 2�k0 (7)whih gives (4). The running time of I is the running time of F plus the time neessary toompute the integers xe mod N , whih gives (3).3.2 Appliation to PSSThe signature sheme PSS is parameterized by the integers k0 and k1. The key generation isidential to FDH. The signing and verifying algorithms use two hash funtion H : f0; 1g� !f0; 1gk1 and G : f0; 1gk1 ! f0; 1gk�k1�1. Let G1 be the funtion whih on input ! 2f0; 1gk1 returns the �rst k0 bits of G(!), whereas G2 is the funtion returning the remainingk � k0 � k1 � 1 bits of G(!). The sheme is illustrated in �gure 1.



7SignPSS(M) : VerifyPSS(M;x) :r R f0; 1gk0 y  xe mod N!  H(Mkr) Break up y as bk!kr�kr�  G1(!)� r Let r  r� �G1(!)y  0k!kr�kG2(!) if H(Mkr) = ! and G2(!) =  and b = 1return yd mod N then return 1 else return 0The following theorem [2℄ proves the seurity of PSS in the random orale model:Theorem 3. Assuming that RSA is (t0; "0)-seure, the signature sheme PSS[k0; k1℄ is (t;qsig, qhash; ")-seure, where :t = t0 � (qhash + qsig + 1) � k0 � O(k3)" = "0 + 3 � (qsig + qhash)2 � �2�k0 + 2�k1�Theorem 3 shows that for PSS to be as seure as RSA (i.e. "0 ' "), it must be the asethat (qsig + qhash)2 � �2�k0 + 2�k1� < "0, whih gives k0 � kmin and k1 � kmin, where:kmin = 2 � log2(qhash + qsig) + log2 1"0 (8)Taking qhash = 260, qsig = 230 and "0 = 2�60 as in [2℄, we obtain that k0 and k1 must begreater than kmin = 180 bits.The following theorem shows that PSS an be proven as seure as RSA for a muhshorter random salt, namely k0 = log2 qsig bits, whih for qsig = 230 gives k0 = 30 bits. Theminimum value for k1 remains unhanged. The proof is very similar to the proof of theorem2 for PFDH and is given in appendix C.Theorem 4. Assuming that RSA is (t0; "0)-seure, the signature sheme PSS[k0; k1℄ is (t;qsig, qhash; ")-seure, where :t = t0 � (qhash + qsig) � k1 � O(k3) (9)" = "0 � �1 + 6 � qsig � 2�k0�+ 2 � (qhash + qsig)2 � 2�k1 (10)3.3 DisussionIn �gure 2 we plot log2 "0=" as a funtion of the size k0 of the salt, whih depits the relativeseurity of PSS ompared to RSA, for qsig = 230, and k1 > kmin. For k0 = 0, we reahthe seurity level of FDH, where approximately log2 qsig bits of seurity are lost omparedto RSA. For k0 omprised between zero and log2 qsig, we gain one bit of seurity when k0inreases by one bit. And for k0 greater than log2 qsig, the seurity level of PSS is almostthe same as inverting RSA. This shows that PSS has a tight seurity proof as soon as thesalt size reahes log2 qsig, and using larger salts does not further improve seurity. For thesigner, qsig represents the maximal number of signatures whih an be generated for a givenpubli-key. For example, for an appliation in whih at most one billion signatures will begenerated, k0 = 30 bits of random salt are atually suÆient to guarantee the same level ofseurity as RSA, and taking a larger salt does not inrease the seurity level.More preisely, taking k0 = log2 qsig and k1 = kmin where kmin is given by (8), we obtainthat the probability of breaking PSS in time less than t, is less than " = 9 � "0, where "0 isthe probability of inverting RSA in time lose to t. Therefore with those parameters PSS
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Fig. 2. Seurity gap between PSS and RSA: log2 "0=" as a funtion of the salt size k0 for qsig = 230 signaturequeries.is almost as seure as inverting RSA1. Taking qhash = 260, qsig = 230 and "0 = 2�60 for a1024-bit modulus as in [2℄, we an take k1 = kmin = 180 bits and k0 = log2 qsig = 30 bits.PSS-R is a variant of PSS whih provides message reovery; the sheme is illustrated in�gure 1. The goal is to save on the bandwidth: instead of transmitting the message separately,the message is reovered when verifying the signature.The seurity proof for PSS-R is almostidential to the seurity proof of PSS, and PSS-R ahieves the same seurity level as PSS.Consequently, using the same parameters as for PSS with a 1024-bits RSA modulus, 813bits of message an now be reovered when verifying the signature (instead of 663 bits withthe previous seurity proof).4 Optimal seurity proof for FDHIn setion 2 we have seen that the seurity proof of theorem 1 for FDH is still not tight: theprobability "F of breaking FDH is smaller than roughly qsig � "I where "I is the probabilityof inverting RSA, whereas the seurity redution of PSS is tight: the probability of breakingPSS is almost the same as the probability of inverting RSA ("F ' "I). An interestingquestion is whether it is possible to obtain a better seurity bound for FDH. In partiular,is it possible to show that FDH is as seure as inverting RSA ?In this setion we show that the seurity proof of theorem 1 for FDH is optimal, i.e. thereis no better redution from inverting RSA to breaking FDH, and one annot avoid loosingthe qsig fator in the probability bound. A possible diretion would be to demonstrate anattak against FDH whih would not apply to inverting RSA. More preisely, if we ouldprove that the best possible attak against FDH is qsig times faster than the best possibleattak against RSA, this would show that FDH is indeed less seure than RSA and thatthe previous seurity proof for FDH is optimal. But atually we don't know any attak onFDH, faster than fatoring N .1 The fator 9 is not relevant here, beause it represents less than 4 bits of seurity. To obtain "0 ' ", wean take k0 = log2 qsig + 8 and k1 = kmin + 8, whih gives "0 = 1:04 � ".



9Instead, in order to show that there is no better redution from inverting RSA to breakingFDH, we will use a similar approah as Boneh and Venkatesan in [3℄ for disproving theequivalene between inverting low-exponent RSA and fatoring. They show that any eÆientalgebrai redution from fatoring to inverting low-exponent RSA an be onverted into aneÆient fatoring algorithm. Suh redution is an algorithm A whih fators N using ane-th root orale for N . They show how to onvert algorithm A into an algorithm B thatfators integers without using the e-th root orale. Thus, unless fatoring is easy, invertinglow-exponent RSA annot be equivalent to fatoring under algebrai redutions.Similarly, we show that any better redution from inverting RSA to breaking FDH anbe onverted into an eÆient RSA inverting algorithm. Suh redution is an algorithm Rwhih uses a forger as an orale in order to invert RSA. We show how to onvert R into analgorithm I whih inverts RSA without using the orale forger. Consequently, if invertingRSA is hard, there is no suh better redution for FDH, and the redution of theorem 1must be optimal.Our tehnique is the following. Reall that resistane against adaptive hosen messageattaks is onsidered, so the forger is allowed to make signature queries for messages of itshoie, whih must be answered by the redution R. Eventually the forger outputs a forgery,and the redution must invert RSA. Therefore we �rst ask the redution to sign a messageM and reeive its signature s, then we rewind the redution to the state in whih it wasbefore the signature query, and we send s as a forgery for M . This is a true forgery for theredution, beause after the rewind there was no signature query for M , so eventually theredution inverts RSA. Consequently, we have onstruted from R an algorithm I whihinverts RSA without using any forger. Atually, this tehnique allows to simulate a forgerwith respet to R, without being able to break FDH. However, the simulation is not perfet,beause it outputs a forgery only for messages whih an be signed by the redution, whereasa real forger outputs the forgery of a message whih the redution may or may not be ableto sign.We quantify the eÆieny of the redution by giving the probability that the redutioninverts RSA using a forger that (tF ; qhash,qsig,"F )-breaks the signature sheme, within anadditional running time of tR:De�nition 7. We say that a redution algorithm R (tR; qhash; qsig; "F ; "R)-redues invertingRSA to breaking FDH if upon input (N; e; y) and after running any forger that (tF , qhash,qsig,"F )-breaks FDH, the redution outputs yd mod N with probability greater than "R, withinan additional running time of tR.In the above de�nition, tR is the running time of the redution algorithm only anddoes not inlude the running time of the forger. Eventually, the time needed to invertRSA is tF + tR, where tF is the running time of the forger. For example, the redutionof theorem 1 for FDH (tR; qhash; qsig; "F ; "R)-redues inverting RSA to breaking FDH withtR(k) = (qhash + qsig) � O(k3) and "R = "F =(4 � qsig).The following theorem shows that from any suh redution R we an invert RSA withprobability greater than roughly "R � "F =qsig, in roughly the same time bound. The term"F =qsig is due to the fat that our simulation of a forger is not perfet. This also orrespondsto the suess probability of the redution in theorem 1. This means that if the suessprobability "R of the redution is greater than "F =qsig, we obtain an algorithm whih invertsRSA without using the forger. Therefore, if inverting RSA is hard, the suess probabilityof the redution annot be greater than roughly "F =qsig, and the redution of theorem 1must be optimal.



10Theorem 5. Let R be a redution whih (tR; qhash; qsig; "R; "F )-redues inverting RSA tobreaking FDH. R runs the forger only one. From R we an onstrut an algorithm whih(tI ; "I)-inverts RSA, with:tI = 2 � tR (11)"I = "R � "F � exp(�1)qsig ��1� qsigqhash��1 (12)Proof. From R we build an algorithm I whih inverts RSA, without using a forger for FDH.We reeive as input (N; e; y) and our goal is to output yd mod N using R. We selet qhashdistint messages M1; : : : ;Mqhash of length O(k) and starts running R with (N; e; y).First we ask R to hash the qhash messages M1; : : : ;Mqhash , and obtain the hash valuesh1; : : : ; hqhash . We selet a random integer � 2 [1; qhash℄ and a random sequene � of qsigintegers in [1; qhash℄ n f�g, whih we denote � = (�1; : : : ; �qsig ). We selet a random integeri 2 [1; qsig℄ and de�ne the sequene of i integers �0 = (�1; : : : ; �i�1; �). Then we make the isignature queries orresponding to �0 to R and reeive from R the orresponding signatures,the last one being the signature s� of M�. For example, if �0 = (3; 2), this orresponds tomaking a signature query for M3 �rst, and then for M2.Then we rewind R to the state it was after the hash queries, and this time, we makethe qsig signature queries orresponding to �. If R has answered all the signature queries,then with probability "F , we send (M� ; s�) as a forgery to R. This is a true forgery for Rbeause after the rewind of R, there was no signature query for M�. Eventually R invertsRSA and outputs yd mod N .We denote by Q the set of sequenes of signature queries whih are orretly answered byR after the hash queries, in time less than tR. If a sequene of signature queries is orretlyanswered by R, then the same sequene without the last signature query is also orretlyanswered, so for any (�1; : : : ; �j) 2 Q, we have (�1; : : : ; �j�1) 2 Q. Let us denote by ans theevent � 2 Q, whih orresponds to R answering all the signature queries after the rewind,and by ans' the event �0 2 Q, whih orresponds to R answering all the signature queriesbefore the rewind.Let us onsider a forger whih makes the same hash queries, the same signature queriesorresponding to �, and outputs a forgery for M� with probability "F . By de�nition, wheninterating with suh a forger, R would output yd mod N with probability at least "R. Afterthe rewind,R sees exatly the same transript as when interating with this forger, exept ifevent ans is true and ans' is false: in this ase, the forger outputs a forgery with probability"F , whereas our simulation does not output a forgery. Consequently, when interating withour simulation of a forger, R outputs yd mod N with probability at least:"R � "F � Pr[ans ^ :ans'℄ (13)Lemma 1. Let Q be a set of sequenes of at most n integers in [1; k℄, suh that for anysequene (�1; : : : ; �j) 2 Q, we have (�1; : : : ; �j�1) 2 Q. Then the following holds:Pri [1;n℄(�1;:::;�n;�) [1;k℄n+1 [(�1; : : : ; �n) 2 Q ^ (�1; : : : ; �i�1; �) =2 Q℄ � exp(�1)nProof. The proof is given in appendix D.Using lemma 1 with n = qsig and k = qhash, we obtain:Pr[ans ^ :ans'℄ � exp(�1)qsig �1� qsigqhash��1 (14)



11The term (1 � qsig=qhash) in equation (14) is due to the fat that we selet �1; : : : ; �qsig in[1; qhash℄nf�g whereas in lemma 1 the integers are seleted in [1; qhash℄. From equations (13)and (14) we obtain that I sueeds with probability greater than "I given by (12). Beauseof the rewind, the running time of I is at most twie the running time of R, whih gives(11).4.1 DisussionThe previous theorem shows that from any redution R whih inverts RSA with probability"R when interating with a forger whih outputs a forgery with probability "F , we an invertRSA with probability roughly "R�"F =qsig, in roughly the same time bound, without using aforger. For simpliity, we neglet here the fators exp(�1) and (1� qsig=qhash). Moreover weonsider a forger whih makes qsig signature queries, and with probability "F = 1 outputs aforgery2. We begin by providing an asymptoti analysis, and then we illustrate the theoremwith a onrete analysis, i.e. for a �xed size of the modulus.Theorem 5 implies that from a polynomial time redution R whih sueeds with prob-ability "R when interating with this forger, we obtain a polynomial time RSA inverterI whih sueed with probability "I = "R � 1=qsig, without using the forger. If invertingRSA is hard, the suess probability "I of the polynomial time inverter must be negligible.Consequently, the suess probability "R of the redution must be less than 1=qsig + negl.This shows that from a forger whih outputs a forgery with probability one, a polynomialtime redution annot sueed with probability greater than 1=qsig+negl. On the ontrary,a tight seurity redution would invert RSA with probability lose to one. Here we an-not avoid the qsig fator in the seurity proof: the seurity level of FDH annot be provenequivalent to RSA.For the onrete analysis, we need to assume a lower bound for the omplexity of breakingRSA for a given key size. The running time of the best fatoring algorithm known (NFS[14℄) for fatoring a modulus N is aboutTNFS(k) = exp(C � (logN)1=3 � (log logN)2=3)where C ' 1:923. Therefore we might assume that RSA is (t; ")-seure for any (t; ") satisfyingt(k)="(k) < TNFS(k). For a 1024-bit modulus, we obtain that RSA is (t; t � 2�86)-seure forall t � 286. For example, the probability of inverting RSA in time 226 is less than 2�60.Using the previous forger, the redution of theorem 1 outputs yd mod N with probabilityabout 1=qsig = 2�20 in additional time (qhash+qsig)�O(k3). Taking qhash = 240 and qsig = 220,and assuming that the modular exponentiations orresponding to the term O(k3) are donein unit time for a 1024-bit modulus, we get an additional running time of 240.Let us onsider another redution R whih, using the same forger, outputs yd mod Nwith probability "R in additional time tR. Theorem 5 shows that from R and without usingthe forger, we an invert RSA in time tI = 2 � tR, with probability at least "R � 1=qsig.Conversely, if RSA is (tI ; "I)-seure, the redution R annot invert RSA with probabilitygreater than 1=qsig + "I . Assume that R is as eÆient as the redution of theorem 1, i.e.its running time tR is less than 240. This gives tI = 241, and sine RSA is (241; 2�45)-seurefor a 1024-bit modulus, the probability that R outputs yd mod N using the previous forgerannot be greater than 1=qsig + 2�45 ' 2�20. From a forger whih outputs a forgery withprobability one, the redution annot invert RSA with probability greater than roughly2 Suh forger an be onstruted by �rst fatoring the modulus N , then omputing a forgery using thefatorisation of N .



121=qsig = 2�20, if the running time of the redution is less than 240. Again, this shows thatwe annot avoid the qsig fator in the seurity proof: the seurity proof of theorem 1 forFDH is optimal and the seurity level of FDH annot be proven equivalent to RSA.5 Extension to any signature sheme with unique signatureAtually, our tehnique whih onsists in making a signature query for M , rewinding theforger, then sending the signature of M as a forgery, strethes beyond FDH and an begeneralized and applied to any signature sheme. However, the tehnique works only forsignature shemes in whih eah message has a unique signature, beause otherwise theforger annot be simulated. Namely if M has many possible signatures, our simulationsends as a forgery for M a signature s that was reeived from R, whereas a real forger hasno information about s (sine it has not queried M for signature to R) and an outputany signature s0 6= s for M . For signature shemes with unique signature, our tehniqueshows that the redution annot sueed with probability greater than roughly "F =qsig,using a forger whih outputs a forgery with probability "F . Signature shemes with uniquesignature inlude FDH, Gennaro-Halevi-Rabin's signature sheme and Paillier's signaturesheme. Note that PSS is not a signature sheme with unique signature.However, we have so far onsidered redutions running a forger only one. If the redutionof theorem 1 for FDH runs the forger r times, its suess probability will be roughly r �"F =qsig, and the total running time will be roughly r times the running time of the forger.But there might be a better redution whih would yield a better time/probability trade-o�. For example, a redution for FDH ould sueed with probability almost "F whenrunning a forger only twie. In this ase, FDH would be almost as seure as inverting RSA.Additionally, the redution might rewind the forger with di�erent inputs, as for proof-of-knowledge based signature shemes [15, 18℄.The following theorem shows that there is no better time/probability trade-o�: for ahash-and-sign signature sheme with unique signature, a redution allowed to run or rewinda forger at most r times annot sueed with probability greater than roughly r � "F =qsig.The de�nitions are in appendix E and the proof of the theorem is given in appendix F.Theorem 6. Let R be a redution whih (tR; qhash; qsig; "F ; "R)-redues solving a problem �to breaking a hash-and-sign signature sheme with unique signature. R is allowed to run orrewind a forger at most r times. From R we an onstrut an algorithm whih (tA; "A)-solves�, with: tA = (r + 1) � tR (15)"A = "R � "F � exp(�1) � rqsig ��1� qsigqhash��1 (16)6 Seurity proofs for signature shemes in the standard modelThe same tehnique an be applied for seurity redutions in the standard model, and weobtain the same upper bound in 1=qsig for signature shemes with unique signature. Thede�nitions of seurity against adaptive hosen message attaks are analogous in the standardmodel and an be found in appendix G.The following theorem is analogous to theorem 6. It proves that for any signature shemewith unique signature, assuming the hardness of a given problem �, any seurity redutionrunning or rewinding a forger at most r times annot be tighter than roughly r � "F =qsig.



13Namely a better redution an be onverted into an algorithm for solving �, in approxi-mately the same time bound. The proof is similar to the proof of theorem 6 and is given inappendix HTheorem 7. Let R be a redution whih (tR; qsig; "F ; "R)-redues solving � to breaking asignature sheme with unique signature. R an run or rewind the forger at most r times.Assume that the size of the message spae is at least 2`. From R we an onstrut analgorithm whih (tA; "A)-solves �, with:tA = (r + 1) � tR (17)"A = "R � "F � exp(�1) � rqsig � �1� qsig2` ��1 (18)Gennaro-Halevi-Rabin's signature sheme has a tight ("F ' "R) seurity redution in thestandard model, but the above theorem does not apply here beause the redution of [11℄requires that a message has many possible signatures. This is also the ase for the Cramer-Shoup signature sheme [7℄. However, we show in appendix I that the above bound in 1=qsigis reahed for a variant of Gennaro-Halevi-Rabin's sheme with unique signature, provablyseure in the standard model. The variant is provably seure for short messages only (say,less than 40 bits). We do not know if there exists a pratial signature sheme with uniquesignature, provably seure in the standard model and reahing the above bound.7 Optimal seurity proof for PSSIn setion 3.2 we have seen that k0 = log2 qsig bits of random salt are suÆient for PSS tohave a seurity level equivalent to RSA, and taking a larger salt does not further improvethe seurity. An interesting question is that of knowing whether this size is optimal or not.For k1, the output size of the hash funtion H, the minimum value kmin given by equation(8) is learly optimal, beause an attaker making qhash hash queries an �nd a ollisionH(M jj0) = H(M 0jj0) with probability roughly (qhash)2 �2�k1=2 and then forge the signatureof M 0 using the signature of M . However, there might be a better seurity proof for PSSwhih would be tight for a shorter size k0 of the random salt. Atually, if this size is equalto zero, the sheme beomes with unique signature, and we know from setion 5 that onemust loose log2 qsig bits of seurity ompared to the seurity of RSA. So it seems natural tothink that we need at least log2 qsig bits of random to make PSS as seure as RSA, beausenormally we should gain at most one bit of seurity for eah added bit of random salt.In this setion, we show that this is indeed the ase: if a shorter random salt is used,the seurity of PSS annot be proven equivalent to RSA. Our tehnique desribed in setion4 does not apply diretly beause PSS is not a signature sheme with unique signature.However, we show in appendix J how to extend to PSS the previous upper bound forFDH. More preisely, we show that from a redution R whih inverts RSA in time tRwith probability "R when running at most r times a forger whih breaks PSS[k0; k1℄ withprobability "F , one an invert RSA without using the forger, with probability "I = "R � r �"F � 2k0+2=qsig, in time tI = (r + 1) � tR.Theorem 8. Let R a redution whih (t; qhash; qsig; "F ; "R)-redues inverting RSA to break-ing PSS[k0; k1℄, with qhash � 2 � qsig. The redution an run or rewind the forger at most rtimes. From R we an onstrut an inverting algorithm for RSA whih (tI ; "I)-inverts RSA,



14with: tI = (r + 1) � tR (19)"I = "R � r � "F � 2k0+2qsig (20)Proof. The proof is given in appendix J.7.1 DisussionLet onsider as in setion 4.1 a forger for PSS[k0; k1℄ whih makes qsig signature queries andoutputs a forgery with probability "F = 1=2. Then, from a polynomial time redution Rwhih sueeds with probability "R when running one this forger, we obtain a polynomialtime inverter whih sueeds with probability "I = "R�2k0+1=qsig, without using the forger.If inverting RSA is hard, the suess probability "I of the polynomial time inverter mustbe negligible, and therefore the suess probability "R of the redution must be less than2k0+1=qsig + negl. Consequently, in order to have a tight seurity redution ("R ' "R), wemust have k0 ' log2 qsig. The redution of theorem 3.2 is onsequently optimal.Let us illustrate the theorem with onrete values. Using the previous forger, the redu-tion for PSS of setion 3.2 inverts RSA with probability (we assume that k1 > kmin):"R = "F1 + 6 � qsig � 2�k0Taking k0 = log2 qsig, we obtain that the redution inverts RSA with probability at least1=14. Assuming as in setion 4.1 that the modular exponentiations are performed in unittime for a 1024-bit modulus, the running time of the redution is less than 250.Let us onsider another redution R from inverting RSA to braking PSS[k0; k1℄, with thesame running time 250, and whih sueeds with probability at least "R using the previousforger. From theorem 8 we an onstrut an algorithm whih inverts RSA in time 251 withprobability "I = "R � 2k0+1=qsig. Assuming as in setion 4.1 that RSA is (251; 2�35)-seure,the suess probability of the redution annot be greater than 2k0+1=qsig + 2�35. Conse-quently, to obtain the same suess probability as the redution of setion 3.2, we must have2k0+1=qsig + 2�35 � 1=14, whih gives k0 � log2 qsig � 5. With k0 = log2 qsig, the redutionof setion 3.2 is onsequently optimal, up to a onstant fator. To summarize, if the size k0of the random salt is smaller than log2 qsig, PSS is still provably seure as shown in setion3.2, but the seurity level of PSS an not be proven equivalent to RSA.8 ConlusionWe have desribed a new tehnique for analyzing the seurity proofs of signature shemes.The tehnique is both general and very simple and allows to derive upper bounds for seurityredutions using a forger as a blak box, both in the random orale model and in the standardmodel, for signature shemes with unique signature. We have also obtained a new riterionfor a seurity redution to be optimal, whih may be of independent interest: we say thata seurity redution is optimal if from a better redution one an solve a diÆult problem,suh as inverting RSA. Our tehnique enables to show that the Full Domain Hash sheme,Gennaro-Halevi-Rabin's sheme and Paillier's signature sheme have an optimal seurityredution in that sense. In other words, we have a mathing lower and upper bound for theseurity redution of those signature shemes: one annot do better than losing a fator ofqsig in the seurity redution.
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16A Proof of theorem 1We onstrut an algorithm R whih inverts RSA using a forger F . The redution R willanswer by itself the hash queries and signature queries of F . We assume that when theforger makes a signature query he has already made the orresponding hash query. If not,the redution goes ahead and makes the orresponding hash query. Similarly, we assumethat the message M whih signature is forged by the forger, has already been queried forhashing. Otherwise the redution makes the orresponding hash query and proeeds.Algorithm for R:Input: (N; e; y) and (qhash; qsig), where (N; e) RSA(1k) and y R Z�N.Output: yd mod N .1. Set i 02. Send (N; e) to F .3. If F makes a hash query for M :i i+ 1; Mi  M ; ri R Z�NFlip a oin i with bias .i = 0 with probability  and i = 1 with probability 1� .Return H(M) = yi � rei mod N4. If F makes a signature query for Mi:Return ri if H(Mi) = rei mod N . Otherwise stop.5. If F outputs a forgery (M;x):If H(M) = y � rei mod N then output yd = x=ri mod N . Otherwise stop.6. Go to step 3R answers a signature query at step 4 with probability ; the probability that R answersall the signature queries is greater than qsig . Eventually F outputs a forgery with probability"F ;R an use this forgery at step 5 with probability 1� to output yd mod N . ConsequentlyR outputs yd mod N with probability qsig � (1 � ) � "F , whih is maximal for  = 1 �1=(qsig + 1) and gives (2).B Proof of inequality (7)Let g(�) = �qsig � qsigXj=0 Pr[ai = j℄ � �1� 2�k0�j (21)with Pr[ai = j℄ = � (1� �) � �j if j < qsig�qsig if j = qsig (22)We denote g0 = maxfg(�);� 2 [0; 1℄g and want to prove thatg0 � 11 + 6 � qsig � 2�k0Denoting  = 2�k0 , we obtain from (21) and (22):g(�) = �qsig1� (1� ) � � � �1� � +  � (1� )qsig � �qsig+1� (23)



17from whih we derive: g(�) � �qsig � 1� �1� � + If  � qsig � 1=2, we take � = 1� 1=(2 � qsig) and obtain:g0 � �1� 12 � qsig�qsig � 11 + 2 �  � qsigFor qsig � 1 we have �1� 12 � qsig�qsig � 12Using  � qsig � 1=2, we obtaing0 � 12 � (1 + 2 �  � qsig) � 11 + 6 �  � qsigFor  � qsig � 1=2, we take � = 1 and obtain using (23):g0 � (1� )qsig � 1�  � qsig � 11 + 6 �  � qsig for  � qsig � 1=2C Proof of theorem 4Let F be a forger whih (t; qsig; qhash; ")-breaks PSS. We onstrut an inverter I whih(t0; "0)-breaks RSA. The inverter reeives as input (N; e; �) and must output �d mod N . Theinverter I maintains a ounter i, initially 0.The proof is very similar to the proof of theorem 2 and to the original seurity proof ofPSS in [2℄. To answer a hash query M jjr in theorem 2, we generated a random x 2 ZN andy = xe � �b with b = 0 or b = 1, and de�ned H(M jjr) = y. The only di�erene here is thatwe write y as 0jj!jjr�jj, where the size of ! is k1 bits, the size of r� is k0 bits and the sizeof  is the remaining k � k0 � k1 � 1 bits. We de�ne H(M jjr) = ! and G(!) = r� � rjj.Moreover we must make sure that the same ! never appears twie otherwise we would bere-de�ning G(!).When a message M appears for the �rst time in a hash query or a signature query, theinverter inrements the ounter i and sets Mi  M . Then, the inverter generates a list Liof qsig random integers in f0; 1gk0 .When the forger makes a H-orale query for Mikr, we distinguish two ases. If r belongsto the list Li, the inverter sets b = 0, else it sets b = 1. Then the inverter generates a randomx 2 Z�N until the �rst bit of y = xe � �b mod N is 0. Then it writes y as 0k!kr�k and setsH(Mikr) = !. The inverter aborts if ! has already appeared before. Eventually the invertersets G(!) = r� � rk and returns ! as the answer to the H-orale query Mikr.When the forger makes a G-orale query for !, the inverter returns G(!) if ! appearedbefore. Otherwise it generates a random string � f0; 1gk�k1�1, sets G(!) = �, and returns�. When the forger makes a signature query for Mi, the inverter piks up a random r in Liand disards it from the list. If there was already a H-orale query for Mikr, the inverterknows x, y, !, r� and  suh that y = xe mod N and y = 0k!kr�k where H(Mijjr) = !and G(!) = r��rk, so the inverter returns x as a signature forMi. Otherwise, the invertergenerates a random x 2 Z�N until the �rst bit of y = xe mod N is 0. Then it writes y as



180k!kr�k and sets H(Mikr) = !. The inverter aborts if ! has already appeared before.Then the inverter sets G(!) = r� � rk, and returns x as a signature for Mi.Sine there are at most qhash hash queries and qsig signature queries, the number ofdistint ! whih an appear is less than qhash + qsig. The probability that the inverteraborts after generating a random ! is then less than (qhash + qsig) � 2�k1 . Therefore, theinverter aborts when answering the hash and signature queries with probability less thanÆ = (qhash+qsig)2 �2�k1 . Consequently, the forger outputs a forgery with probability at least"� Æ.When the forger outputs a forgery (M; s), we ompute y = se mod N and write y as0k!kr�k. Let r = r� �G1(!), where G1 denotes the �rst k0 bits of G. If there was no H-orale query for Mkr before, the probability that ! = H(Mkr) is at most 2�k1 . Therefore,with probability at least "�Æ�2�k1 , the forger outputs a forgery and there exists an integeri suh that there has been a H-orale query for Mikr. Then if r does not belong to the listLi, the inverter knows x suh that y = xe � �, whih gives �d = s=x mod N and the invertersueeds in outputting �d mod N .As in theorem 2, the probability that r does not belong to the list Li of qsig randomintegers is (1� 2�k0)qsig . If k0 � log2 qsig and for qsig � 2, this gives�1� 2�k0�qsig � �1� 1qsig�qsig � 14Consequently, the suess probability "0 of the inverter is at least (" � Æ � 2�k1)=4, whihshows that for k0 � log2 qsig the probability of breaking PSS[k0; k1℄ is almost the same asthe probability of inverting RSA.For smaller values of k0, we apply the same trik as in theorem 2: we generate fewerthan qsig random integer in the lists Li, aording to the same distribution with parameter�. As in theorem 2, the suess probability of the inverter is at least:�"� Æ � 2�k1� � �qsig � f(�)where f(�) is given by equation (6). As in theorem 2, we selet a value of � whih maximizesthis suess probability; we obtain that the inverter sueeds with probability at least:"� Æ � 2�k11 + 6 � qsig � 2�k0Moreover, when answering the hash and signature queries, the probability that the �rstbit of xe � �b mod N is 0 for a random x 2 ZN is at least 1=2. Therefore we stop the loopafter 1 + k1 steps3, whih adds a failure probability of 2�k1 per hash or signature query.Eventually, the suess probability "0 of the inverter is at least:"0 = "� 2 � (qhash + qsig)2 � 2�k11 + 6 � qsig � 2�k0whih gives equation (10). The running time of the inverter is the running time of the forgerplus the time to generate the xe � �b mod N , whih gives (9).3 otherwise the running time ould not be bounded.



19D Proof of lemma 1We show indutively over n that, letting Dn be the following distributionDn = 8<: i [1; n℄(�1; : : : ; �n) [1; k℄n�  [1; k℄and denoting for any j 2 [1; n℄ the events:Aj : (�1; : : : ; �j�1; �j) 2 QBj : (�1; : : : ; �j�1; �) 2 Qwith Aj ) Aj�1 for all j 2 [2; n℄, then the following holds:PrDn[An ^Bi℄ � PrDn[An℄1+ 1n (24)Inequality (24) learly holds for n = 1. Assuming that inequality (24) holds for n � 1, weshow that it holds for n. In the following, unless spei�ed otherwise, probabilities are takenaording to the distribution Dn. Sine i is randomly seleted in [1; n℄, we have:Pr[An ^Bi℄ = 1n Pr[An ^B1℄ + n� 1n Pr[An ^Biji � 2℄ (25)The events An and B1 are independent, whih gives:Pr[An ^B1℄ = Pr[An℄ � Pr[B1℄ = Pr[An℄ � Pr[A1℄ (26)We have: Pr[An℄ = 1k Xa12[1;k℄Pr[Anj�1 = a1℄and Pr[An ^Biji � 2℄ = 1k Xa12[1;k℄Pr [An ^Bij(�1 = a1) ^ (i � 2)℄Letting L1 = fa1 2 [1; k℄ j (a1) 2 Qg, we have using Pr[A1℄ = #L1=k and An ) A1:Pr[AnjA1℄ = Pr[An ^A1℄Pr[A1℄ = Pr[An℄Pr[A1℄ = 1#L1 Xa12L1 Pr[Anj�1 = a1℄ (27)and Pr[An ^Biji � 2℄ = Pr[A1℄ � 1#L1 Xa12L1 Pr [An ^Bij(�1 = a1) ^ (i � 2)℄ (28)For all j 2 [2; n℄, let A0j�1 = Aj ^ (�1 = a1) and B0j�1 = Bj ^ (�1 = a1), and let D0n�1 bethe following distribution: D0n�1 = 8<: i0  [1; n� 1℄(�2; : : : ; �n) [1; k℄n�1�  [1; k℄We have: PrD0n�1[A0n�1℄ = Pr[Anj�1 = a1℄ (29)



20and Pr [An ^Bij(�1 = a1) ^ (i � 2)℄ = PrD0n�1[A0n�1 ^B0i0 ℄ (30)Applying inequality (24) for n� 1, we obtain:PrD0n�1[A0n�1 ^B0i0 ℄ � PrD0n�1[A0n�1℄ nn�1whih gives using equations (28), (29) and (30):Pr [An ^Biji � 2℄ � Pr[A1℄ � 1#L1 Xa12L1 Pr[Anj�1 = a1℄ nn�1 (31)From the inequality 1t tXi=1 xri �  1t tXi=1 xi!r for r � 1we obtain: Pr[An ^Biji � 2℄ � Pr[A1℄ �0� 1#L1 Xa12L1 Pr[Anj�1 = a1℄1A nn�1whih gives using (27):Pr[An ^Biji � 2℄ � Pr[A1℄ � Pr[AnjA1℄ nn�1 = Pr[An℄ � Pr[AnjA1℄ 1n�1Then using equations (25) and (26), we obtain:Pr[An ^Bi℄ � Pr[An℄�Pr[A1℄n + n� 1n Pr[AnjA1℄ 1n�1�Using the well known inequality S � P between the arithmeti mean S and the geometrimean P , we obtain:1n �Pr[A1℄ + (n� 1) � Pr[AnjA1℄ 1n�1� � (Pr[A1℄ � Pr[AnjA1℄) 1n = Pr[An℄ 1nand eventually Pr[An ^Bi℄ � Pr[An℄1+ 1nwhih shows that equation (24) holds for n and terminates the proof by indution.Inequality (24) gives:Pr[An ^ :Bi℄ = Pr[An℄� Pr[An ^Bi℄ � Pr[An℄ � �1� Pr[An℄1=n�Denoting x = Pr[An℄1=n and using the inequality xn � (1� x) � exp(�1)=n for x 2 [0; 1℄, weobtain: Pr[An ^ :Bi℄ � exp(�1)n



21E De�nitions for seurity proofs in the random oraleIn this setion, we onsider a signature sheme provably seure in the random orale model.In the random orale model, the hash funtion is replaed by a random funtion.De�nition 8 (random orale). For any onstant k, a random orale is a funtion Hseleted uniformly at random in the set Hk of the funtions from f0; 1g� to f0; 1gk.We say that a signature sheme is a hash-and-sign signature sheme if the signaturegeneration algorithm �rst hashes the message and then signs the hash value using the privatekey.De�nition 9 (hash-and-sign sheme). A signature sheme (Gen; Sign; Verify) is saidto be a hash-and-sign signature sheme if Sign takes as input the message M , the publikey pk and the private key sk, runs Hashing with M and pk, obtains h, then runs Signingwith h and sk, obtains and returns the signature x, where:- Hashing is an algorithm taking as input the message M to be signed and the publi key pkand returning a string h. Hashing may have aess to a random orale.- Signing is an algorithm taking as input h and the private key sk and returning the sig-nature x. Signing does not have aess to a random orale.Examples of hash-and-sign signature shemes inlude the FDH sheme, PSS, Gennaro-Halevi-Rabin's sheme (GHR) in the random orale model [11℄, Paillier's signature sheme[16℄ and DSA [10℄.The hashing algorithm may require multiple hash orale queries, for example two hashqueries as in PSS. For simpliity, we say in the following that a forger an make qhash hashqueries if he an apply Hashing to qhash messages. The atual number of hash queries q0hashwill then be a multiple of qhash (for PSS, we have q0hash = 2 � qhash).We say that a signature sheme is with unique signature if eah message has a uniquesignature, given the random orale H 2 Hk; formally:De�nition 10 (signature sheme with unique signature). A signature sheme is saidto be with unique signature if for any publi key pk, any message M and any random oraleH in Hk, there is a unique x suh that Verifypk(M;x) = 1.Hash-and-sign signature shemes with unique signature inlude FDH, GHR in the ran-dom orale model and Paillier's signature sheme. PSS and DSA are not signature shemeswith unique signature.Lemma 2. Let S be a hash-and-sign signature sheme with unique signature. Let h  Hashingpk(M). The signature x of M is then a funtion of h and the publi key pk only.Proof. We denote SignHpk;sk, HashingHpk and VerifyHpk the algorithms Sign, Hashing andVerify with orale aess to H 2 Hk.Let x be the signature of M with random orale H 2 Hk and publi key pk. Let(pk0; sk0) be another publi/private key pair, M 0 another message, and H 0 2 Hk anotherrandom orale. Let h0  HashingH0pk0(M 0) and x0  Signingpk0;sk0(h0). We must show thatif pk = pk0 and h = h0, then x = x0.From pk = pk0 and h = h0, we dedue h0  HashingHpk(M) and x0  Signingpk;sk0(h0),whih implies that x0 is a signature of M under the publi key pk with random orale H.Sine S is a signature sheme with unique signature, we must have x = x0. ut



22 The seurity of the signature sheme that we onsider is not neessarily based on thehardness of inverting RSA; it an be based on the hardness of any searh problem �, de�nedas follows:De�nition 11. A searh problem � is a triple (Gen�;D; S) where D is a set of �niteobjets alled instanes, and for eah instane I 2 D, S[I℄ is a set of �nite objets alledsolutions for I. Gen� is an algorithm whih, on input 1k, randomly selets an instaneI 2 D suh that jIj = k.De�nition 12. An algorithm A is said to (tA; "A)-solve � if after reeiving an instaneI generated using Gen�(1k) and tA(k) proessing time it outputs a solution z for I withprobability greater than "A(k) for all k 2 N.De�nition 13. A problem � is said to be (tA; "A)-hard if there is no algorithm A whih(tA; "A)-solves �.In the following we onsider a hash-and-sign signature sheme with unique signatureprovably seure in the random orale model, assuming that solving a given problem � ishard. This means that there exists a redution from solving the hard problem � to breakingthe signature sheme S. A redution from solving � to breaking S is an algorithm whihuses a forger for S in order to solve �. Resistane against adaptive hosen message attaksis onsidered, so the forger is allowed to make signature queries for messages of his hoie.Moreover, in the random orale model, the forger annot ompute the hash funtion byitself: the forger must make a hash query. Consequently, when interating with the forger,the redution algorithm must answer the hash queries and the signature queries made bythe forger.De�nition 14. A redution R in the random orale model from solving (Gen�;D; S) tobreaking (Gen; Sign; Verify) is a probabilisti algorithm taking as input an instane Iand (qhash; qsig), where I  Gen�(1k), and outputting a solution z for I. The redutionalgorithm interats with a forger F for (Gen; Sign; Verify) whih outputs a forgery afterat most qhash hash queries and qsig signature queries. The redution algorithm answers thehash queries and the signature queries made by F .We quantify the eÆieny of the redution by giving the probability that the redutionalgorithm outputs a solution of the problem � using a forger that (tF ; qhash,qsig,"F )-breaksthe signature sheme, within an additional running time of tR.De�nition 15. We say that a redution algorithm R (tR; qhash; qsig; "F ; "R)-redues solving(Gen�;D; S) to breaking the signature sheme (Gen; Sign; Verify) if after running anyforger that (tF ; qhash; qsig,"F )-breaks (Gen; Sign; Verify), the redution outputs a solutionof � with probability greater than "R, within an additional running time of tR.In this setion we onsider redutions running a forger only one, as the redution oftheorem 1 for FDH. Redutions running a forger more than one will be onsidered in thenext setion. The following theorem shows that for any hash-and-sign signature sheme withunique signature provably seure in the random orale model, assuming the hardness of agiven problem �, the seurity redution annot be tighter than roughly "F =qsig. Namelywe show that from R we an solve the problem � with probability greater than roughly"R � "F =qsig, in roughly the same time bound. Thus, if solving � is hard, the suessprobability "R of R annot be greater than roughly "F =qsig.



23Theorem 9. Let R be a redution whih (tR; qhash; qsig; "R; "F )-redues solving � to break-ing a hash-and-sign signature sheme with unique signature. R runs the forger only one.From R we an onstrut an algorithm whih (tA; "A)-solves �, with:tA = 2 � tR (32)"A = "R � "F � exp(�1)qsig � �1� qsigqhash��1 (33)Proof. From a redution R that (tR; qhash; qsig; "F ; "R)-redues solving � to breaking thesignature sheme (Gen; Sign; Verify), we build an algorithm A that (tA; "A)-solves � usingR. The algorithm A reeives as input an instane I of the problem � and must output asolution z of I using R. As in the proof of theorem 5, the algorithm A will simulate a forgerwith respet to R. A arbitrarily selets qhash distint messages M1; : : : ;Mqhash of lengthO(k).First A reeives from R the publi key pk. Then A runs Hashing for the qhash messagesM1; : : : ;Mqhash , performs the orresponding hash queries toR, and obtain the orrespondingstrings h1; : : : ; hqhash . A selets a random integer � 2 [1; qhash℄ and a random sequene � ofqsig integers in [1; qhash℄nf�g, whih we denote � = (�1; : : : ; �qsig ).A selets a random integeri 2 [1; qsig℄ and de�ne the sequene of i integers �0 = (�1; : : : ; �i�1; �). Then A makes the isignature queries orresponding to �0 to R and reeive from R the orresponding signatures,the last one being the signature s� of M�.Then the redution R is rewound to the state in whih it was after the hash queries,and this time, A makes the qsig signature queries orresponding to �. If R has answered allthe signature queries, then with probability "F , A sends (M�; s�) as a forgery to R. Fromlemma 2 the signature s� ofM� is a funtion of h� and pk only, so s� is still a valid signatureof M� after R has been rewound. This is a true forgery for R beause after the rewind ofR, there was no signature query for M�. Eventually R outputs a solution z of instane I.We denote by Q the set of sequenes of signature queries whih are orretly answered byR after the hash queries, in time less than tR. If a sequene of signature queries is orretlyanswered by R, then the same sequene without the last signature query is also orretlyanswered, so for any (�1; : : : ; �j) 2 Q, we have (�1; : : : ; �j�1) 2 Q. Let denote by ans theevent � 2 Q, whih orresponds to R answering all the signature queries after the rewind,and by ans' the event �0 2 Q, whih orresponds to R answering all the signature queriesbefore the rewind.Let onsider a forger whih makes the same hash queries, the same signature queriesorresponding to �, and outputs a forgery for M� with probability "F . By de�nition, wheninterating with suh a forger, R would output yd mod N with probability at least "R. Afterthe rewind,R sees exatly the same transript as when interating with this forger, exept ifevent ans is true and ans' is false: in this ase, the forger outputs a forgery with probability"F , whereas our simulation does not output a forgery. Consequently, when interating withour simulation of a forger, R outputs yd mod N with probability at least:"R � "F � Pr[ans ^ :ans'℄ (34)Using lemma 1 with n = qsig and k = qhash, we obtain:Pr[ans ^ :ans'℄ � exp(�1)qsig �1� qsigqhash��1 (35)The term (1 � qsig=qhash) in equation (35) is due to the fat that we selet �1; : : : ; �qsig in[1; qhash℄nf�g whereas in lemma 1 the integers are seleted in [1; qhash℄. From equations (34)



24and (35) we obtain that I sueeds with probability greater than "I given by (33). Beauseof the rewind, the running time of I is at most twie the running time of R, whih gives(32).F Proof of theorem 6In this setion, we onsider redutions running a forger more than one, as opposed tosetion E in whih the forger was run only one. The redution an run or rewind the forgerat most r times. Using the same tehnique as previously, we show that from a redutionR allowed to run or rewind the forger at most r times, we an solve the problem � withprobability greater than roughly "R � "F � r=qsig in roughly the same time bound. Thus, ifsolving � is hard, the suess probability of R annot be greater than roughly "F � r=qsig.The proof is very similar to the proof of theorem 9. Assume �rst that the redution isnot allowed to rewind the forger. The redution is only allowed to run the forger at most rtimes. We say that the redution is in the j-th round if the redution has already run theforger j � 1 times. Thus there are at most r rounds.In the �rst round of the redution, we apply exatly the same tehnique as previously: wemake the qhash hash queries, then we selet a random �1 2 [1; qhash℄ and a random sequene�1 of qsig integers in [1; qhash℄ n f�1g. We selet a random integer i1 2 [1; qsig℄ and de�nethe sequene �01 as the �rst i1 � 1 integers of �1 plus the integer �1. Then we make thei1 signature queries orresponding to �01 to R and obtain the signature s�1 of M�1 . Thenwe rewind R to the state it was after the hash queries, and this time, we make the qsigsignature queries orresponding to �1. If R has answered all the signature queries, thenwith probability "F , we send (M�1 ; s�1) as a forgery to R.Then the redution is in the seond round, and starts interating with a forger for theseond time. We proeed reursively for the remaining rounds: at the j-th round, we makethe same qhash hash queries and selet �j , �j and ij as previously. We obtain the signature ofM�j , then we rewind R to the state it was after the hash queries, then make the signaturequeries orresponding to �j , and with probability "R output the signature of M�j as aforgery. Using this tehnique, we are able to simulate a forger being run at most r times bythe redution.Let us denote ans0j the event in whih the redution in the j-th round answers thesignature queries before it is rewound and ansj the event in whih the redution answersthe signature queries after it is has been rewound.Let onsider a forger whih at eah round makes the same hash queries and signaturequeries orresponding to �j, and outputs a forgery forM�j with probability "F . By de�nition,when running at most r times this forger, R sueeds with probability at least "R.After the rewind of the j-th round,R sees exatly the same transript as when interatingwith this forger, exept if event ansj is true and ans0j is false: in this ase, this forger outputs aforgery with probability "F , whereas our simulation does not output a forgery. This happenswith probability: "F � Pr[ansj ^ :ans0j ℄Sine there are at most r rounds, A sueeds with probability greater than:"R � rXj=1 "F � Pr[ansj ^ :ans0j ℄



25Using lemma 1, we obtain for all j:Pr[ansj ^ :ans0j ℄ � exp(�1)qsig � �1� qsigqhash��1Consequently, A sueeds with probability greater than:"A = "R � "F � exp(�1) � rqsig ��1� qsigqhash��1 (36)The redution R is rewound at most r times, so the running time of A is at most r+1 timesthe running time of R, whih gives: tA = (r + 1) � tR (37)Now assume that the redution R is allowed to rewind the forger to a previous stateS. Equivalently we assume that the redution atually restarts the forger with the samerandom tape and provides the same input to the forger until the same state S is reahed.If R restarts the forger at the j � 1-th round, the redution is now in the j-th round. Wedistinguish two ases: if the redution sends the same publi key and provides the sameanswer to the hash queries, the forger will make the same signature queries and forgery asin the j � 1-th round. Therefore our simulation will make the same signature queries andforgery as in the j � 1-th round. At the j-th round the redution sees exatly the sametransript when interating with the forger as when interating with our simulation, exeptwith probability: "F � Pr[ansj ^ :ans0j ℄Otherwise if the redution sends a di�erent publi key or provides a di�erent answer to thehash queries, the forger makes signature queries for random messages and forge the signatureof a randomly hosen message, and so our simulation makes signature queries for randommessages and forge the signature of a randomly hosen message. Consequently, at the j-thround the redution sees exatly the same transript when interating with the forger aswhen interating with our simulation, exept with probability:"F � Pr[ansj ^ :ans0j ℄Consequently, we obtain the same result as previously: A sueeds with probability at least"A given by equation (36).G Seurity de�nitions in the standard modelDe�nition 16. A forger F is said to (t; qsig; ")-break the signature sheme (Gen; Sign;Verify) if after at most qsig(k) signature queries and t(k) proessing time, it outputs aforgery with probability at least "(k) for all k 2 N.De�nition 17. A signature sheme (Gen; Sign; Verify) is (t; qsig; ")-seure if there is noforger who (t; qsig; ")-breaks the sheme.De�nition 18 (signature sheme with unique signature). A signature sheme is saidto be with unique signature if for any publi key pk and any message M , there is a uniquesignature x suh that Verifypk(M;x) = 1.



26 Note that a signature sheme with unique signature is neessarily state-free: the signatureof a message does not depend on previously signed messages.We assume that the seurity of (Gen; Sign; Verify) is based on the hardness of theproblem �, so there exists a redution from solving � to breaking the signature sheme inthe standard model.De�nition 19. A redution algorithm R in the standard model from solving (Gen�;D; S)to breaking (Gen; Sign; Verify) is a probabilisti algorithm taking as input an instane Iand qsig, where I  Gen�(1k), and outputting a solution z for I. The redution algorithminterats with a forger F for (Gen; Sign; Verify) whih outputs a forgery after at most qsigsignature queries. The redution algorithm answers the signature queries made by F .De�nition 20. A redution algorithm R is said to (tR; qsig; "F ; "R)-redue solving � tobreaking the signature sheme (Gen; Sign; Verify) if after reeiving an instane I suh thatI  Gen�(1k) and running any forger that (tF ; qsig; "F )-breaks the signature sheme, theredution R outputs a solution z for I with probability at least "R(k) after at most tR(k)additional proessing time for all k 2 N.H Proof of theorem 7The proof is very similar to the proof of theorem 6. The only di�erene is that there are nohash queries. Moreover, we replae in algorithm A the number of hash queries qhash by thelower bound 2` on the size of the message spae; instead of seleting qhash distint messages,we selet 2` distint messages M1; : : : ;M2` . The rest of algorithm A is the same, and thesame analysis shows that from a redution with running time of tR, whih sueeds withprobability at least "R after running or rewinding at most r times a forger that breaks thesignature sheme with probability at least "F , we an build an algorithm whih (tA; "A)-solves the problem �, with:tA = (r + 1) � tR"A = "R � "F � exp(�1) � rqsig � �1� qsig2` ��1I A variant of GHR's sheme provably seure in the standard modelLet us onsider Gennaro-Halevi-Rabin's signature sheme [11℄. The publi key is N = p � qand a random y 2 Z�N, where p and q are random k=2-bit primes and (p�1)=2 and (q�1)=2are also primes. The private key is (p; q). The sheme uses a hash funtion H whih outputsodd integers of length k0 bits. To sign a message m, the signer obtains e = H(m) andomputes the signature � as the e-th root of y modulo N , using p; q. To verify a signature�, one omputes e = H(m) and heks that �e = y mod N .The seurity of Gennaro-Halevi-Rabin's signature sheme is based on the hardness ofthe strong RSA problem.De�nition 21 (Strong RSA problem). Given a randomly hosen RSA modulus N anda random element s 2 Z�N, �nd a pair (e; r) with e > 1 suh that re = s mod N .In this setion we illustrate theorem 7 with a variant of GHR's sheme provably seure inthe standard model, with unique signature. The hash funtion H is replaed by an injetivefuntion 	 whih maps any string from f0; 1g` to the set of prime integers, so that 	 is



27easy to ompute. Suh a funtion is onstruted in [11℄. We obtain a signature sheme withunique signature provably seure in the standard model. However the sheme is provablyseure for short messages only (say, less than 40 bits); this is due to the 2` fator in the timebound tF of the forger. We denote by t(`) the time neessary to ompute 	 .Theorem 10. Assume that the strong RSA problem is (tI ; "I)-hard. Then the previous GHRvariant is (tF ; qsig; "F )-seure, where:tI = tF + poly�2`; k; t(`)� (38)"I = "Fqsig � �1� 1qsig + 1�qsig+1 (39)Proof. Assume that there exists a forger F that (tF ; qsig; "F )-breaks the signature sheme(Gen; Sign, Verify). We onstrut an algorithmA that solves the strong RSA problem usingF . A will answer the signature queries of the forger itself. The message spae is f0; 1g`.Algorithm for A.Input: (N; s) and (`; qsig), where N  RSA(1k) and s R Z�N.Output: (r; e) with e > 1 suh that re = s mod N .1. Let E  1.2. For all messages Mi 2 f0; 1g`, do the following:Flip a oin i with bias .i = 0 with probability  and i = 1 with probability 1� .If i = 0 then ompute E  E � 	(Mi).3. Let y  sE mod N .4. Send the publi key (N; y) to F .5. If F makes a signature query for Mi:If i = 0 then return sE=	(Mi) mod N . Otherwise stop.6. If F outputs a forgery (Mi; x):If i = 0 then stop.Otherwise 	(Mi) ^E = 1 so let a; b 2 Z suh that a � 	(Mi) + b �E = 1.Let r  xb � sa mod N and e 	(Mi) and output (r; e).The probability that A answers to all the signature queries is greater than qsig . Even-tually F outputs a forgery with probability "F whih A an use with probability 1 �  tooutput (r; e). Consequently A outputs (r; e) with probability qsig � (1 � ) � "F , whih ismaximal for  = 1� 1=(qsig + 1) and gives (39). utJ Proof of theorem 8We use the following method: we onsider PSS in whih the random salt is �xed to 0k0 ,and we denote this signature sheme PSS0[k0; k1℄. Consequently, PSS0[k0; k1℄ is a signaturesheme with unique signature. First, we show how to onvert a forger for PSS0[k0; k1℄ intoa forger for PSS[k0; k1℄. Then, any redution R from inverting RSA to breaking PSS[k0; k1℄will use this forger for PSS[k0; k1℄ in order to invert RSA. Consequently, from a forger forPSS0[k0; k1℄, we an invert RSA using the redution R. In other words, from R we anonstrut a redution R0 from inverting RSA to breaking PSS0[k0; k1℄. Sine PSS0[k0; k1℄ isa signature sheme with unique signature, theorem 6 gives an upper bound for the suessprobability of R0, from whih we derive an upper bound for the suess probability of R.



28This upper bound shows that the size k0 of the random salt must be at least log2 qsig forPSS[k0; k1℄ to have a seurity level equivalent to RSA, and so our seurity proof of setion3.2 is optimal.Lemma 3. Let F0 be a forger whih (t0F ; q0hash; q0sig; "0F )-breaks PSS0[k0; k1℄. From F0 we anonstrut a forger F whih (tF ; qhash; qsig; "F )-breaks PSS[k0; k1℄, with:qhash = q0hash qsig = 2k0+1 � q0sig "F = "0F =2Proof. From F0 we onstrut a forger F for PSS[k0; k1℄. When the forger F0 makes a hashquery, the forger F makes the same hash query and forwards the result to F0. When theforger F0 makes a signature query for a message M , the forger F makes signature queriesfor M until the random salt used to generate the signature is 0k0 . Then it forwards thesignature to F0. Eventually the forger F0 outputs a forgery for PSS0[k0; k1℄, whih is also aforgery for PSS[k0; k1℄.When F makes a signature query, the random salt used to generate the signature is equalto 0k0 with probability 2�k0 . Therefore F must perform on average 2k0 signature queries foreah signature query of F0. More preisely, let Yi be the number of signature queries madeby F for the i-th signature query of F0, and let Y be the total number of signature queriesmade by F . Sine F is limited to qsig signature queries, the probability that all the signaturequeries of F0 are answered is Pr[Y � qsig℄. In this ase, the forger F0 outputs a forgery withprobability at least "0F . Therefore, the forger F outputs a forgery with probability at least"0F � Pr[Y � qsig℄.The distribution of Yi follows a geometri law of parameter 1� 2�k0 :Pr[Yi = j℄ = 2�k0 � (1� 2�k0)j�1 for j � 1The expetany and variane of Yi are given by:E[Yi℄ = 2k0 Var[Yi℄ = 2k0 � �2k0 � 1�We assume that F0 makes exatly q0sig signature queries4. Sine Y is the sum of q0sig inde-pendent random variables, we obtain:E[Y ℄ = 2k0 � q0sig Var[Y ℄ = q0sig � 2k0 �2k0 � 1�Then, using Chebyshev's inequality, we have for any Æ:Pr [jY � E[Y ℄j � Æ℄ � Var[Y ℄Æ2and taking Æ = E[Y ℄, we obtain for q0sig � 2:Pr [Y � 2 � E[Y ℄℄ � 1q0sig � 12If q0sig = 1, then Y = Y1 andPr[Y � 2 � E[Y ℄℄ = Pr[Y1 � 2k0+1℄ = �1� 2�k0�2k0+1�14 Otherwise we an simulate the remaining signature queries with previously queried messages. If F0 makesno signature queries, then F outputs a forgery with the same probability as F0.



29Using the inequality (1� 1=x)x � 1=2 for x � 1, we obtain as previously:Pr[Y � 2 � E[Y ℄℄ � �1� 2�k0�2k0 � 12So letting qsig = 2k0+1 � q0sigthis gives Pr[Y � qsig℄ � 1=2 and thus Pr[Y � qsig℄ � 1=2. Consequently, the forger Foutputs a forgery for PSS[k0; k1℄ with probability at least"F = "0F =2after at most qsig signature queries. utLemma 4. Let R be a redution whih (tR; qhash; qsig; "F ; "R)-redues inverting RSA tobreaking PSS[k0; k1℄. From R we an onstrut a redution R0 whih (t0R; q0hash; q0sig; "0F ; "0R)-redues inverting RSA to breaking PSS0[k0; k1℄, with:qsig = q0sig � 2k0+1 qhash = q0hash"F = "0F =2 "R = "0R (40)t0R = tR (41)Proof. Let F0 be a forger whih (t0F ; q0hash; q0sig; "0F )-breaks PSS0[k0; k1℄. Using the previouslemma we onstrut from F0 a forger F whih (tF ; qhash; qsig; "F )-breaks PSS[k0; k1℄, whereqhash, qsig and "F are given by equation (40). Then from F using R we an invert RSA withprobability at least "R.Therefore, from F0 whih (t0F ; q0hash; q0sig; "0F )-breaks PSS0[k0; k1℄, and using R, we aninvert RSA with probability at least "R. Consequently, from R we an onstrut a redu-tion R0 whih (t0R; q0hash; q0sig; "0F ; "0R)-redues inverting RSA to breaking PSS0[k0; k1℄, where"0R = "R and t0R = tR. utLet R be a redution whih (tR; qhash; qsig; "F ; "R)-redues inverting RSA to breakingPSS[k0; k1℄. From lemma 4, we onstrut from R an algorithm R0 whih (t0R, q0hash, q0sig ,"0F , "0R)-redues inverting RSA to breaking PSS0[k0; k1℄, where t0R, q0hash, q0sig, "0F and "0R aregiven by equations (40) and (41). The redution R an run or rewind the forger at most rtimes, so R0 runs or rewinds the forger at most r times. Then from R0 using theorem 6 weonstrut an algorithm I whih (tI ; "I)-inverts RSA, with:tI = (r + 1) � t0R"I = "0R � r � "0F � exp(�1)q0sig � 1� q0sigq0hash!�1Using equations (40) and (41) with qhash � 2 � qsig and exp(�1) � 1=2, we obtain:r � "0F � exp(�1)q0sig � 1� q0sigq0hash!�1 � r � "F � 2k0+2qsigwhih shows that the inverter sueeds with probability at least:"R � r � "F � 2k0+2qsigand gives equations (19) and (20).


