
Optimal se
urity proofs for PSS and other signature s
hemesJean-S�ebastien CoronGemplus Card International34 rue GuynemerIssy-les-Moulineaux, F-92447, Fran
ejean-sebastien.
oron�gemplus.
omAbstra
t. The Probabilisti
 Signature S
heme (PSS) designed by Bellare and Rogaway is asignature s
heme provably se
ure against
hosen message atta
ks in the random ora
le model,with a se
urity level equivalent to RSA. In this paper, we derive a new se
urity proof for PSSin whi
h a mu
h shorter random salt is used to a
hieve the same se
urity level, namely weshow that log2 qsig bits suÆ
e, where qsig is the number of signature queries made by theatta
ker. When PSS is used with message re
overy, a better bandwidth is obtained be
auselonger messages
an now be re
overed. Moreover, we show that this size is optimal: if less thanlog2 qsig bits of random salt are used, PSS is still provably se
ure but no se
urity proof
an betight. This result is based on a new te
hnique whi
h shows that other signature s
hemes su
has the Full Domain Hash s
heme and Gennaro-Halevi-Rabin's s
heme have optimal se
urityproofs.Key-words: Probabilisti
 Signature S
heme, provable se
urity, random ora
le model.1 Introdu
tionSin
e the invention of publi
 key
ryptography in the seminal DiÆe-Hellman paper [8℄,signi�
ant resear
h endeavors were devoted to the design of pra
ti
al and provably se
ures
hemes. A proof of se
urity is usually a
omputational redu
tion from solving a well estab-lished problem to breaking the
ryptosystem. Well established problems of
ryptographi
relevan
e in
lude fa
toring large integers,
omputing dis
rete logarithms in prime ordergroups, or extra
ting roots modulo a
omposite integer.For digital signature s
hemes, the strongest se
urity notion was de�ned by Goldwasser,Mi
ali and Rivest in [12℄, as existential unforgeability under an adaptive
hosen messageatta
k. This notion
aptures the property that an atta
ker
annot produ
e a valid signature,even after obtaining the signature of (polynomially many) messages of his
hoi
e.Goldwasser, Mi
ali and Rivest proposed in [12℄ a signature s
heme based on signaturetrees whi
h provably meets this de�nition. The eÆ
ien
y of the s
heme was later improvedby Dwork and Naor [9℄, and Cramer and Damg�ard [6℄. A signi�
ant drawba
k of thosesignature s
hemes is that the signature of a message depends on previously signed messages:the signer must thus store information relative to the signatures he generates as time goesby. Gennaro, Halevi and Rabin presented in [11℄ a new hash-and-sign s
heme provably se
ureagainst adaptive
hosen message atta
ks whi
h is both state-free and eÆ
ient. Its se
urityis based on the strong-RSA assumption. Cramer and Shoup presented in [7℄ a signatures
heme provably se
ure against adaptive
hosen message atta
ks, whi
h is also state-free,eÆ
ient, and based on the strong-RSA assumption.The random ora
le model, introdu
ed by Bellare and Rogaway in [1℄, is a theoreti
alframework allowing to prove the se
urity of hash-and-sign signature s
hemes. In this model,the hash fun
tion is seen as an ora
le whi
h outputs a random value for ea
h new query.

2Bellare and Rogaway de�ned in [2℄ the Full Domain Hash (FDH) signature s
heme, whi
his provably se
ure in the random ora
le model assuming that inverting RSA is hard. [2℄ alsointrodu
ed the Probabilisti
 Signature S
heme (PSS), whi
h o�ers better se
urity guaranteesthan FDH. Similarly, Point
heval and Stern [18℄ proved the se
urity of dis
rete-log basedsignature s
hemes in the random ora
le model (see also [15℄ for a
on
rete treatment).However, se
urity proofs in the random ora
le are not real proofs, sin
e the random ora
le isrepla
ed by a well de�ned hash fun
tion in pra
ti
e; a
tually, Canetti, Goldrei
h and Halevi[4℄ showed that a se
urity proof in the random ora
le model does not ne
essarily imply thata s
heme is se
ure in the real world.For pra
ti
al appli
ations of provably se
ure s
hemes, the tightness of the se
urity redu
-tion must be taken into a

ount. A se
urity redu
tion is tight when breaking the signatures
heme leads to solving the well established problem with probability
lose to one. In this
ase, the signature s
heme is almost as se
ure as the well established problem. On the
ontrary, if the above probability is too small, the guarantee on the signature s
heme willbe weak; in whi
h
ase larger se
urity parameters must be used, thereby de
reasing theeÆ
ien
y of the s
heme.The se
urity redu
tion of [2℄ for Full Domain Hash bounds the probability " of breakingFDH in time t by (qhash + qsig) � "0 where "0 is the probability of inverting RSA in time t0
lose to t and where qhash and qsig are the number of hash queries and signature queriesperformed by the forger. This was later improved in [5℄ to " ' qsig � "0, whi
h is a signi�
antimprovement sin
e in pra
ti
e qsig happens to be mu
h smaller than qhash. However, FDH'sse
urity redu
tion is still not tight, and FDH is still not as se
ure as inverting RSA.On the
ontrary, PSS is almost as se
ure as inverting RSA (" ' "0). Additionally, forPSS to have a tight se
urity proof in [2℄, the random salt used to generate the signaturemust be of length at least k0 ' 2 � log2 qhash + log2 1="0, where qhash is the number of hashqueries requested by the atta
ker and "0 the probability of inverting RSA within a giventime bound. Taking qhash = 260 and "0 = 2�60 as in [2℄, we obtain a random salt of sizek0 = 180 bits. In this paper, we show that PSS has a
tually a tight se
urity proof for arandom salt as short as log2 qsig bits, where qsig is the number of signature queries made bythe atta
ker. For example, for an appli
ation in whi
h at most one billion signatures will begenerated, k0 = 30 bits of random salt are a
tually suÆ
ient to guarantee the same level ofse
urity as RSA, and taking a longer salt does not in
rease the se
urity level. When PSSis used with message re
overy, we obtain a better bandwidth be
ause a larger message
annow be re
overed when verifying the signature.Moreover, we show that this size is optimal: if less than log2 qsig bits of random saltare used, PSS is still provably se
ure, but PSS
annot have exa
tly the same se
urity levelas RSA. First, using a new te
hnique, we derive an upper bound for the se
urity of FDH,whi
h shows that the se
urity proof in [5℄ with " ' qsig � "0 is optimal. In other words, itis not possible to further improve the se
urity proof of FDH in order to obtain a se
uritylevel equivalent to RSA. This answers the open question raised by Bellare and Rogawayin [2℄, about the existen
e of a better se
urity proof for FDH: as opposed to PSS, FDH
annot be proven as se
ure as inverting RSA. The te
hnique also applies to other signatures
hemes su
h as Gennaro-Halevi-Rabin's s
heme [11℄ and Paillier's signature s
heme [16℄.To our knowledge, this is the �rst result
on
erning optimal se
urity proofs. Then, using theupper bound for the se
urity of FDH, we show that our size k0 for the random salt in PSSis optimal: if less than log2 qsig bits are used, no se
urity proof for PSS
an be tight.

32 De�nitionsIn this se
tion we brie
y present some notations and de�nitions used throughout the paper.We start by re
alling the de�nition of a signature s
heme.De�nition 1 (signature s
heme). A signature s
heme (Gen; Sign; Verify) is de�ned asfollows:- The key generation algorithm Gen is a probabilisti
 algorithm whi
h given 1k, outputsa pair of mat
hing publi
 and private keys, (pk; sk).- The signing algorithm Sign takes the message M to be signed, the publi
 key pk andthe private key sk, and returns a signature x = Signpk;sk(M). The signing algorithm maybe probabilisti
.- The veri�
ation algorithm Verify takes a message M , a
andidate signature x0 and pk.It returns a bit Verifypk(M;x0), equal to one if the signature is a

epted, and zero otherwise.We require that if x Signpk;sk(M), then Verifypk(M;x) = 1.In the previously introdu
ed existential unforgeability under an adaptive
hosen messageatta
k s
enario, the forger
an dynami
ally obtain signatures of messages of his
hoi
e andattempts to output a valid forgery. A valid forgery is a message/signature pair (M;x) su
hthat Verifypk(M;x) = 1 whereas the signature of M was never requested by the forger.A signi�
ant line of resear
h for proving the se
urity of signature s
hemes is the previ-ously introdu
ed random ora
le model, where resistan
e against adaptive
hosen messageatta
ks is de�ned as follows [1℄:De�nition 2. A forger F is said to (t; qhash; qsig; ")-break the signature s
heme (Gen; Sign;Verify) if after at most qhash(k) queries to the hash ora
le, qsig(k) signatures queries andt(k) pro
essing time, it outputs a valid forgery with probability at least "(k) for all k 2 N.and quite naturally:De�nition 3. A signature s
heme (Gen; Sign; Verify) is (t; qsig; qhash, ")-se
ure if thereis no forger who (t; qhash; qsig; ")-breaks the s
heme.The RSA
ryptosystem, invented by Rivest, Shamir and Adleman [19℄, is the most widelyused
ryptosystem today:De�nition 4 (The RSA
ryptosystem). The RSA
ryptosystem is a family of trapdoorpermutations, spe
i�ed by:- The RSA generator RSA, whi
h on input 1k, randomly sele
ts two distin
t k=2-bitprimes p and q and
omputes the modulus N = p � q. It randomly pi
ks an en
ryptionexponent e 2 Z��(N) and
omputes the
orresponding de
ryption exponent d su
h that e � d =1 mod �(N). The generator returns (N; e; d).- The en
ryption fun
tion f : Z�N ! Z�N de�ned by f(x) = xe mod N .- The de
ryption fun
tion f�1 : Z�N ! Z�N de�ned by f�1(y) = yd mod N .FDH was the �rst pra
ti
al and provably se
ure signature s
heme based on RSA. Itis de�ned as follows: the key generation algorithm, on input 1k, runs RSA(1k) to obtain(N; e; d). It outputs (pk; sk), where the publi
 key pk is (N; e) and the private key sk is(N; d). The signing and verifying algorithms use a hash fun
tion H : f0; 1g� ! Z�N whi
hmaps bit strings of arbitrary length to the set of invertible integers modulo N .SignFDHN;d(M) VerifyFDHN;e(M;x)y H(M) y xe mod Nreturn yd mod N if y = H(M) then return 1 else return 0.

4 FDH is provably se
ure in the random ora
le model, assuming that inverting RSA ishard. An inverting algorithm I for RSA gets as input (N; e; y) and tries to �nd yd mod N .Its su

ess probability is the probability to output yd mod N when (N; e; d) are obtained byrunning RSA(1k) and y is set to xe mod N for some x
hosen at random in Z�N.De�nition 5. An inverting algorithm I is said to (t; ")-break RSA if after at most t(k)pro
essing time its su

ess probability is at least "(k) for all k 2 N.De�nition 6. RSA is said to be (t; ")-se
ure if there is no inverter whi
h (t; ")-breaks RSA.The following theorem [5℄ proves the se
urity of FDH in the random ora
le model. Wein
lude the proof in appendix A for further referen
e in the paper.Theorem 1. Assuming that RSA is (tI ; "I)-se
ure, FDH is (tF ; qhash; qsig; "F)-se
ure,with: tI = tF + (qhash + qsig + 1) � O(k3) (1)"I = "Fqsig ��1� 1qsig + 1�qsig+1 (2)The same method
an be used to obtain an improved se
urity proof for Gennaro-Halevi-Rabin's signature s
heme [11℄ in the random ora
le model and for Paillier's signature s
heme[16℄. From a forger whi
h outputs a forgery with probability "F , the redu
tion su

eeds insolving the hard problem with probability roughly "F =qsig, in approximately the same timebound.For example, if we assume that, for a given se
urity parameter k, the probability ofinverting RSA is less than 2�60 for a given time bound t, and if the forger is allowed tomake at most 260 hash queries and 230 signature queries, then the probability of breakingFDH is less than 2�28 for a time bound
lose to t.The se
urity redu
tion of FDH is not tight: the probability "F of breaking FDH issmaller than roughly qsig � "I where "I is the probability of inverting RSA, whereas these
urity redu
tion of PSS is tight: the probability of breaking PSS is almost the same as theprobability of inverting RSA ("F ' "I).3 New se
urity proof for PSSSeveral standards in
lude PSS, among these are IEEE P1363a [13℄, a revision of ISO/IEC9796-2, and the up
oming PKCS#1 v2.1 [17℄. In this se
tion we obtain a better se
urityproof for PSS, in whi
h a shorter random salt is used to generate the signature. We
onsider�rst a variant of PSS for whi
h the se
urity proof is simpler.3.1 A variant of PSSIn this se
tion we des
ribe a variant of PSS, whi
h we
all PFDH, for Probabilisti
 FullDomain Hash. The s
heme is similar to Full Domain Hash ex
ept that a random salt of k0bits is
on
atenated to the message M before hashing it. The di�eren
e with PSS is thatthe random salt is not re
overed when verifying the signature; instead the random salt istransmitted separately. As FDH, the s
heme uses a hash fun
tion H : f0; 1g� ! Z�N.

5SignPFDH(M) : VerifyPFDH(M; s; r) :r R f0; 1gk0 y se mod Ny H(Mkr) if y = H(Mkr) then return 1return (yd mod N; r) else return 0The following theorem proves the se
urity of PFDH in the random ora
le model, assum-ing that inverting RSA is hard. It shows that PFDH has a tight se
urity proof for a randomsalt of length k0 = log2 qsig bits.Theorem 2. Suppose that RSA is (t0; "0)-se
ure. Then the signature s
heme PFDH[k0℄ is(t; qhash; qsig; ")-se
ure, where: t = t0 � (qhash + qsig) � O(k3) (3)" = "0 � �1 + 6 � qsig � 2�k0� (4)Proof. Let F be a forger whi
h (t; qsig; qhash; ")-breaks PFDH. We
onstru
t an inverter Iwhi
h (t0; "0)-breaks RSA. The inverter re
eives as input (N; e; �) and must output �d mod N .We assume that the forger never repeats a hash query. However, the forger may repeat asignature query, in order to obtain the signature of M with distin
t integers r. The inverterI maintains a
ounter i, initially set to zero.When a message M appears for the �rst time in a hash query or a signature query, theinverter in
rements the
ounter i and sets Mi M . Then, the inverter generates a list Liof qsig random integers in f0; 1gk0 .When the forger makes a hash query for Mikr, we distinguish two
ases. If r belongsto the list Li, the inverter generates a random x 2 Z�N and returns H(Mikr) = xe mod N .Otherwise, the inverter generates a random x 2 Z�N and returns � �xe mod N . Consequently,for ea
h message Mi, the list Li
ontains the integers r 2 f0; 1gk0 su
h that the inverterknows the signature x
orresponding to Mikr.When the forger makes a signature query forMi, the inverter pi
ks a random r in Li anddis
ards it from the list. Sin
e the list
ontains initially qsig integers and there are at mostqsig signature queries, this is always possible. If there was already a hash query forMikr, wehave H(Mikr) = xe mod N and the inverter returns the signature x. Otherwise the invertergenerates a random x 2 Z�N, sets H(Mikr) = xe mod N and returns the signature x.When the forger outputs a forgery (M; s; r), we assume that it has already made a hashquery forM , soM =Mi for a given i. Otherwise, the inverter goes ahead and makes the hashquery for Mkr. Then if r does not belong to the list Li, we have H(Mikr) = � � xe mod N .From s = H(Mikr)d = �d � x mod N , we obtain �d = s=x mod N and the inverter su

eedsin outputting �d mod N .Sin
e the forger has not made any signature query for the message Mi in the forgery(Mi; s; r), the forger has no information about the qsig random integers in the list Li. There-fore, the probability that r does not belong to Li is (1�2�k0)qsig . If the size k0 of the randomsalt is greater than log2 qsig, we obtain if qsig � 2:�1� 2�k0�qsig � �1� 1qsig�qsig � 14Sin
e the forger outputs a forgery with probability ", the su

ess probability "0 of the inverteris then at least "=4, whi
h shows that for k0 � log2 qsig the probability of breaking PFDHis almost the same as the probability of inverting RSA.

6
2G

2G

G1

0 ω (ω)r*

H

M r

2G

G1

0 ω r*

H

M r

Μ∗Fig. 1. PSS (left) and PSS-R (right)For the general
ase, i.e. if we do not assume k0 � log2 qsig, we generate fewer than qsigrandom integers in the list Li, so that the salt r in the forgery (Mi; s; r) belongs to Li withlower probability. More pre
isely, starting from an empty list Li, the inverter generates withprobability � a random r f0; 1gk0 , adds it to Li, and starts again until the list Li
ontainsqsig elements. Otherwise (so with probability 1��) the inverter stops adding integers to thelist. The number ai of integers in Li is then a random variable following a geometri
 law ofparameter �: Pr[ai = j℄ = � (1� �) � �j if j < qsig�qsig if j = qsig (5)The inverter answers a signature query for Mi if the
orresponding list Li
ontainsone more integer, whi
h happens with probability � (otherwise the inverter must abort).Consequently, the inverter answers all the signature queries with probability greater than�qsig . Note that if � = 1, the setting boils down to the previous
ase: all the lists Li
ontainexa
tly qsig integers, and the inverter answers all the signature queries with probability one.The probability that r in the forgery (Mi; s; r) does not belong to the list Li is then(1 � 2�k0)j , when the length ai of Li is equal to j. The probability that r does not belongto Li is then: f(�) = qsigXj=0 Pr[ai = j℄ � �1� 2�k0�j (6)Sin
e the forger outputs a forgery with probability ", the su

ess probability of the inverteris at least " � �qsig � f(�). We sele
t a value of � whi
h maximizes this su

ess probability; inappendix B we show that for any (qsig; k0), there exists �0 su
h that:�qsig0 � f(�0) � 11 + 6 � qsig � 2�k0 (7)whi
h gives (4). The running time of I is the running time of F plus the time ne
essary to
ompute the integers xe mod N , whi
h gives (3).3.2 Appli
ation to PSSThe signature s
heme PSS is parameterized by the integers k0 and k1. The key generation isidenti
al to FDH. The signing and verifying algorithms use two hash fun
tion H : f0; 1g� !f0; 1gk1 and G : f0; 1gk1 ! f0; 1gk�k1�1. Let G1 be the fun
tion whi
h on input ! 2f0; 1gk1 returns the �rst k0 bits of G(!), whereas G2 is the fun
tion returning the remainingk � k0 � k1 � 1 bits of G(!). The s
heme is illustrated in �gure 1.

7SignPSS(M) : VerifyPSS(M;x) :r R f0; 1gk0 y xe mod N! H(Mkr) Break up y as bk!kr�k
r� G1(!)� r Let r r� �G1(!)y 0k!kr�kG2(!) if H(Mkr) = ! and G2(!) =
 and b = 1return yd mod N then return 1 else return 0The following theorem [2℄ proves the se
urity of PSS in the random ora
le model:Theorem 3. Assuming that RSA is (t0; "0)-se
ure, the signature s
heme PSS[k0; k1℄ is (t;qsig, qhash; ")-se
ure, where :t = t0 � (qhash + qsig + 1) � k0 � O(k3)" = "0 + 3 � (qsig + qhash)2 � �2�k0 + 2�k1�Theorem 3 shows that for PSS to be as se
ure as RSA (i.e. "0 ' "), it must be the
asethat (qsig + qhash)2 � �2�k0 + 2�k1� < "0, whi
h gives k0 � kmin and k1 � kmin, where:kmin = 2 � log2(qhash + qsig) + log2 1"0 (8)Taking qhash = 260, qsig = 230 and "0 = 2�60 as in [2℄, we obtain that k0 and k1 must begreater than kmin = 180 bits.The following theorem shows that PSS
an be proven as se
ure as RSA for a mu
hshorter random salt, namely k0 = log2 qsig bits, whi
h for qsig = 230 gives k0 = 30 bits. Theminimum value for k1 remains un
hanged. The proof is very similar to the proof of theorem2 for PFDH and is given in appendix C.Theorem 4. Assuming that RSA is (t0; "0)-se
ure, the signature s
heme PSS[k0; k1℄ is (t;qsig, qhash; ")-se
ure, where :t = t0 � (qhash + qsig) � k1 � O(k3) (9)" = "0 � �1 + 6 � qsig � 2�k0�+ 2 � (qhash + qsig)2 � 2�k1 (10)3.3 Dis
ussionIn �gure 2 we plot log2 "0=" as a fun
tion of the size k0 of the salt, whi
h depi
ts the relativese
urity of PSS
ompared to RSA, for qsig = 230, and k1 > kmin. For k0 = 0, we rea
hthe se
urity level of FDH, where approximately log2 qsig bits of se
urity are lost
omparedto RSA. For k0
omprised between zero and log2 qsig, we gain one bit of se
urity when k0in
reases by one bit. And for k0 greater than log2 qsig, the se
urity level of PSS is almostthe same as inverting RSA. This shows that PSS has a tight se
urity proof as soon as thesalt size rea
hes log2 qsig, and using larger salts does not further improve se
urity. For thesigner, qsig represents the maximal number of signatures whi
h
an be generated for a givenpubli
-key. For example, for an appli
ation in whi
h at most one billion signatures will begenerated, k0 = 30 bits of random salt are a
tually suÆ
ient to guarantee the same level ofse
urity as RSA, and taking a larger salt does not in
rease the se
urity level.More pre
isely, taking k0 = log2 qsig and k1 = kmin where kmin is given by (8), we obtainthat the probability of breaking PSS in time less than t, is less than " = 9 � "0, where "0 isthe probability of inverting RSA in time
lose to t. Therefore with those parameters PSS

8

-35-30-25-20-15-10-50
5

0 10 20 30 40 50 60
log2 "0="

Salt size k0 in bits

Se
urity gap between PSS and RSA

Fig. 2. Se
urity gap between PSS and RSA: log2 "0=" as a fun
tion of the salt size k0 for qsig = 230 signaturequeries.is almost as se
ure as inverting RSA1. Taking qhash = 260, qsig = 230 and "0 = 2�60 for a1024-bit modulus as in [2℄, we
an take k1 = kmin = 180 bits and k0 = log2 qsig = 30 bits.PSS-R is a variant of PSS whi
h provides message re
overy; the s
heme is illustrated in�gure 1. The goal is to save on the bandwidth: instead of transmitting the message separately,the message is re
overed when verifying the signature.The se
urity proof for PSS-R is almostidenti
al to the se
urity proof of PSS, and PSS-R a
hieves the same se
urity level as PSS.Consequently, using the same parameters as for PSS with a 1024-bits RSA modulus, 813bits of message
an now be re
overed when verifying the signature (instead of 663 bits withthe previous se
urity proof).4 Optimal se
urity proof for FDHIn se
tion 2 we have seen that the se
urity proof of theorem 1 for FDH is still not tight: theprobability "F of breaking FDH is smaller than roughly qsig � "I where "I is the probabilityof inverting RSA, whereas the se
urity redu
tion of PSS is tight: the probability of breakingPSS is almost the same as the probability of inverting RSA ("F ' "I). An interestingquestion is whether it is possible to obtain a better se
urity bound for FDH. In parti
ular,is it possible to show that FDH is as se
ure as inverting RSA ?In this se
tion we show that the se
urity proof of theorem 1 for FDH is optimal, i.e. thereis no better redu
tion from inverting RSA to breaking FDH, and one
annot avoid loosingthe qsig fa
tor in the probability bound. A possible dire
tion would be to demonstrate anatta
k against FDH whi
h would not apply to inverting RSA. More pre
isely, if we
ouldprove that the best possible atta
k against FDH is qsig times faster than the best possibleatta
k against RSA, this would show that FDH is indeed less se
ure than RSA and thatthe previous se
urity proof for FDH is optimal. But a
tually we don't know any atta
k onFDH, faster than fa
toring N .1 The fa
tor 9 is not relevant here, be
ause it represents less than 4 bits of se
urity. To obtain "0 ' ", we
an take k0 = log2 qsig + 8 and k1 = kmin + 8, whi
h gives "0 = 1:04 � ".

9Instead, in order to show that there is no better redu
tion from inverting RSA to breakingFDH, we will use a similar approa
h as Boneh and Venkatesan in [3℄ for disproving theequivalen
e between inverting low-exponent RSA and fa
toring. They show that any eÆ
ientalgebrai
 redu
tion from fa
toring to inverting low-exponent RSA
an be
onverted into aneÆ
ient fa
toring algorithm. Su
h redu
tion is an algorithm A whi
h fa
tors N using ane-th root ora
le for N . They show how to
onvert algorithm A into an algorithm B thatfa
tors integers without using the e-th root ora
le. Thus, unless fa
toring is easy, invertinglow-exponent RSA
annot be equivalent to fa
toring under algebrai
 redu
tions.Similarly, we show that any better redu
tion from inverting RSA to breaking FDH
anbe
onverted into an eÆ
ient RSA inverting algorithm. Su
h redu
tion is an algorithm Rwhi
h uses a forger as an ora
le in order to invert RSA. We show how to
onvert R into analgorithm I whi
h inverts RSA without using the ora
le forger. Consequently, if invertingRSA is hard, there is no su
h better redu
tion for FDH, and the redu
tion of theorem 1must be optimal.Our te
hnique is the following. Re
all that resistan
e against adaptive
hosen messageatta
ks is
onsidered, so the forger is allowed to make signature queries for messages of its
hoi
e, whi
h must be answered by the redu
tion R. Eventually the forger outputs a forgery,and the redu
tion must invert RSA. Therefore we �rst ask the redu
tion to sign a messageM and re
eive its signature s, then we rewind the redu
tion to the state in whi
h it wasbefore the signature query, and we send s as a forgery for M . This is a true forgery for theredu
tion, be
ause after the rewind there was no signature query for M , so eventually theredu
tion inverts RSA. Consequently, we have
onstru
ted from R an algorithm I whi
hinverts RSA without using any forger. A
tually, this te
hnique allows to simulate a forgerwith respe
t to R, without being able to break FDH. However, the simulation is not perfe
t,be
ause it outputs a forgery only for messages whi
h
an be signed by the redu
tion, whereasa real forger outputs the forgery of a message whi
h the redu
tion may or may not be ableto sign.We quantify the eÆ
ien
y of the redu
tion by giving the probability that the redu
tioninverts RSA using a forger that (tF ; qhash,qsig,"F)-breaks the signature s
heme, within anadditional running time of tR:De�nition 7. We say that a redu
tion algorithm R (tR; qhash; qsig; "F ; "R)-redu
es invertingRSA to breaking FDH if upon input (N; e; y) and after running any forger that (tF , qhash,qsig,"F)-breaks FDH, the redu
tion outputs yd mod N with probability greater than "R, withinan additional running time of tR.In the above de�nition, tR is the running time of the redu
tion algorithm only anddoes not in
lude the running time of the forger. Eventually, the time needed to invertRSA is tF + tR, where tF is the running time of the forger. For example, the redu
tionof theorem 1 for FDH (tR; qhash; qsig; "F ; "R)-redu
es inverting RSA to breaking FDH withtR(k) = (qhash + qsig) � O(k3) and "R = "F =(4 � qsig).The following theorem shows that from any su
h redu
tion R we
an invert RSA withprobability greater than roughly "R � "F =qsig, in roughly the same time bound. The term"F =qsig is due to the fa
t that our simulation of a forger is not perfe
t. This also
orrespondsto the su

ess probability of the redu
tion in theorem 1. This means that if the su

essprobability "R of the redu
tion is greater than "F =qsig, we obtain an algorithm whi
h invertsRSA without using the forger. Therefore, if inverting RSA is hard, the su

ess probabilityof the redu
tion
annot be greater than roughly "F =qsig, and the redu
tion of theorem 1must be optimal.

10Theorem 5. Let R be a redu
tion whi
h (tR; qhash; qsig; "R; "F)-redu
es inverting RSA tobreaking FDH. R runs the forger only on
e. From R we
an
onstru
t an algorithm whi
h(tI ; "I)-inverts RSA, with:tI = 2 � tR (11)"I = "R � "F � exp(�1)qsig ��1� qsigqhash��1 (12)Proof. From R we build an algorithm I whi
h inverts RSA, without using a forger for FDH.We re
eive as input (N; e; y) and our goal is to output yd mod N using R. We sele
t qhashdistin
t messages M1; : : : ;Mqhash of length O(k) and starts running R with (N; e; y).First we ask R to hash the qhash messages M1; : : : ;Mqhash , and obtain the hash valuesh1; : : : ; hqhash . We sele
t a random integer � 2 [1; qhash℄ and a random sequen
e � of qsigintegers in [1; qhash℄ n f�g, whi
h we denote � = (�1; : : : ; �qsig). We sele
t a random integeri 2 [1; qsig℄ and de�ne the sequen
e of i integers �0 = (�1; : : : ; �i�1; �). Then we make the isignature queries
orresponding to �0 to R and re
eive from R the
orresponding signatures,the last one being the signature s� of M�. For example, if �0 = (3; 2), this
orresponds tomaking a signature query for M3 �rst, and then for M2.Then we rewind R to the state it was after the hash queries, and this time, we makethe qsig signature queries
orresponding to �. If R has answered all the signature queries,then with probability "F , we send (M� ; s�) as a forgery to R. This is a true forgery for Rbe
ause after the rewind of R, there was no signature query for M�. Eventually R invertsRSA and outputs yd mod N .We denote by Q the set of sequen
es of signature queries whi
h are
orre
tly answered byR after the hash queries, in time less than tR. If a sequen
e of signature queries is
orre
tlyanswered by R, then the same sequen
e without the last signature query is also
orre
tlyanswered, so for any (�1; : : : ; �j) 2 Q, we have (�1; : : : ; �j�1) 2 Q. Let us denote by ans theevent � 2 Q, whi
h
orresponds to R answering all the signature queries after the rewind,and by ans' the event �0 2 Q, whi
h
orresponds to R answering all the signature queriesbefore the rewind.Let us
onsider a forger whi
h makes the same hash queries, the same signature queries
orresponding to �, and outputs a forgery for M� with probability "F . By de�nition, whenintera
ting with su
h a forger, R would output yd mod N with probability at least "R. Afterthe rewind,R sees exa
tly the same trans
ript as when intera
ting with this forger, ex
ept ifevent ans is true and ans' is false: in this
ase, the forger outputs a forgery with probability"F , whereas our simulation does not output a forgery. Consequently, when intera
ting withour simulation of a forger, R outputs yd mod N with probability at least:"R � "F � Pr[ans ^ :ans'℄ (13)Lemma 1. Let Q be a set of sequen
es of at most n integers in [1; k℄, su
h that for anysequen
e (�1; : : : ; �j) 2 Q, we have (�1; : : : ; �j�1) 2 Q. Then the following holds:Pri [1;n℄(�1;:::;�n;�) [1;k℄n+1 [(�1; : : : ; �n) 2 Q ^ (�1; : : : ; �i�1; �) =2 Q℄ � exp(�1)nProof. The proof is given in appendix D.Using lemma 1 with n = qsig and k = qhash, we obtain:Pr[ans ^ :ans'℄ � exp(�1)qsig �1� qsigqhash��1 (14)

11The term (1 � qsig=qhash) in equation (14) is due to the fa
t that we sele
t �1; : : : ; �qsig in[1; qhash℄nf�g whereas in lemma 1 the integers are sele
ted in [1; qhash℄. From equations (13)and (14) we obtain that I su

eeds with probability greater than "I given by (12). Be
auseof the rewind, the running time of I is at most twi
e the running time of R, whi
h gives(11).4.1 Dis
ussionThe previous theorem shows that from any redu
tion R whi
h inverts RSA with probability"R when intera
ting with a forger whi
h outputs a forgery with probability "F , we
an invertRSA with probability roughly "R�"F =qsig, in roughly the same time bound, without using aforger. For simpli
ity, we negle
t here the fa
tors exp(�1) and (1� qsig=qhash). Moreover we
onsider a forger whi
h makes qsig signature queries, and with probability "F = 1 outputs aforgery2. We begin by providing an asymptoti
 analysis, and then we illustrate the theoremwith a
on
rete analysis, i.e. for a �xed size of the modulus.Theorem 5 implies that from a polynomial time redu
tion R whi
h su

eeds with prob-ability "R when intera
ting with this forger, we obtain a polynomial time RSA inverterI whi
h su

eed with probability "I = "R � 1=qsig, without using the forger. If invertingRSA is hard, the su

ess probability "I of the polynomial time inverter must be negligible.Consequently, the su

ess probability "R of the redu
tion must be less than 1=qsig + negl.This shows that from a forger whi
h outputs a forgery with probability one, a polynomialtime redu
tion
annot su

eed with probability greater than 1=qsig+negl. On the
ontrary,a tight se
urity redu
tion would invert RSA with probability
lose to one. Here we
an-not avoid the qsig fa
tor in the se
urity proof: the se
urity level of FDH
annot be provenequivalent to RSA.For the
on
rete analysis, we need to assume a lower bound for the
omplexity of breakingRSA for a given key size. The running time of the best fa
toring algorithm known (NFS[14℄) for fa
toring a modulus N is aboutTNFS(k) = exp(C � (logN)1=3 � (log logN)2=3)where C ' 1:923. Therefore we might assume that RSA is (t; ")-se
ure for any (t; ") satisfyingt(k)="(k) < TNFS(k). For a 1024-bit modulus, we obtain that RSA is (t; t � 2�86)-se
ure forall t � 286. For example, the probability of inverting RSA in time 226 is less than 2�60.Using the previous forger, the redu
tion of theorem 1 outputs yd mod N with probabilityabout 1=qsig = 2�20 in additional time (qhash+qsig)�O(k3). Taking qhash = 240 and qsig = 220,and assuming that the modular exponentiations
orresponding to the term O(k3) are donein unit time for a 1024-bit modulus, we get an additional running time of 240.Let us
onsider another redu
tion R whi
h, using the same forger, outputs yd mod Nwith probability "R in additional time tR. Theorem 5 shows that from R and without usingthe forger, we
an invert RSA in time tI = 2 � tR, with probability at least "R � 1=qsig.Conversely, if RSA is (tI ; "I)-se
ure, the redu
tion R
annot invert RSA with probabilitygreater than 1=qsig + "I . Assume that R is as eÆ
ient as the redu
tion of theorem 1, i.e.its running time tR is less than 240. This gives tI = 241, and sin
e RSA is (241; 2�45)-se
urefor a 1024-bit modulus, the probability that R outputs yd mod N using the previous forger
annot be greater than 1=qsig + 2�45 ' 2�20. From a forger whi
h outputs a forgery withprobability one, the redu
tion
annot invert RSA with probability greater than roughly2 Su
h forger
an be
onstru
ted by �rst fa
toring the modulus N , then
omputing a forgery using thefa
torisation of N .

121=qsig = 2�20, if the running time of the redu
tion is less than 240. Again, this shows thatwe
annot avoid the qsig fa
tor in the se
urity proof: the se
urity proof of theorem 1 forFDH is optimal and the se
urity level of FDH
annot be proven equivalent to RSA.5 Extension to any signature s
heme with unique signatureA
tually, our te
hnique whi
h
onsists in making a signature query for M , rewinding theforger, then sending the signature of M as a forgery, stret
hes beyond FDH and
an begeneralized and applied to any signature s
heme. However, the te
hnique works only forsignature s
hemes in whi
h ea
h message has a unique signature, be
ause otherwise theforger
annot be simulated. Namely if M has many possible signatures, our simulationsends as a forgery for M a signature s that was re
eived from R, whereas a real forger hasno information about s (sin
e it has not queried M for signature to R) and
an outputany signature s0 6= s for M . For signature s
hemes with unique signature, our te
hniqueshows that the redu
tion
annot su

eed with probability greater than roughly "F =qsig,using a forger whi
h outputs a forgery with probability "F . Signature s
hemes with uniquesignature in
lude FDH, Gennaro-Halevi-Rabin's signature s
heme and Paillier's signatures
heme. Note that PSS is not a signature s
heme with unique signature.However, we have so far
onsidered redu
tions running a forger only on
e. If the redu
tionof theorem 1 for FDH runs the forger r times, its su

ess probability will be roughly r �"F =qsig, and the total running time will be roughly r times the running time of the forger.But there might be a better redu
tion whi
h would yield a better time/probability trade-o�. For example, a redu
tion for FDH
ould su

eed with probability almost "F whenrunning a forger only twi
e. In this
ase, FDH would be almost as se
ure as inverting RSA.Additionally, the redu
tion might rewind the forger with di�erent inputs, as for proof-of-knowledge based signature s
hemes [15, 18℄.The following theorem shows that there is no better time/probability trade-o�: for ahash-and-sign signature s
heme with unique signature, a redu
tion allowed to run or rewinda forger at most r times
annot su

eed with probability greater than roughly r � "F =qsig.The de�nitions are in appendix E and the proof of the theorem is given in appendix F.Theorem 6. Let R be a redu
tion whi
h (tR; qhash; qsig; "F ; "R)-redu
es solving a problem �to breaking a hash-and-sign signature s
heme with unique signature. R is allowed to run orrewind a forger at most r times. From R we
an
onstru
t an algorithm whi
h (tA; "A)-solves�, with: tA = (r + 1) � tR (15)"A = "R � "F � exp(�1) � rqsig ��1� qsigqhash��1 (16)6 Se
urity proofs for signature s
hemes in the standard modelThe same te
hnique
an be applied for se
urity redu
tions in the standard model, and weobtain the same upper bound in 1=qsig for signature s
hemes with unique signature. Thede�nitions of se
urity against adaptive
hosen message atta
ks are analogous in the standardmodel and
an be found in appendix G.The following theorem is analogous to theorem 6. It proves that for any signature s
hemewith unique signature, assuming the hardness of a given problem �, any se
urity redu
tionrunning or rewinding a forger at most r times
annot be tighter than roughly r � "F =qsig.

13Namely a better redu
tion
an be
onverted into an algorithm for solving �, in approxi-mately the same time bound. The proof is similar to the proof of theorem 6 and is given inappendix HTheorem 7. Let R be a redu
tion whi
h (tR; qsig; "F ; "R)-redu
es solving � to breaking asignature s
heme with unique signature. R
an run or rewind the forger at most r times.Assume that the size of the message spa
e is at least 2`. From R we
an
onstru
t analgorithm whi
h (tA; "A)-solves �, with:tA = (r + 1) � tR (17)"A = "R � "F � exp(�1) � rqsig � �1� qsig2` ��1 (18)Gennaro-Halevi-Rabin's signature s
heme has a tight ("F ' "R) se
urity redu
tion in thestandard model, but the above theorem does not apply here be
ause the redu
tion of [11℄requires that a message has many possible signatures. This is also the
ase for the Cramer-Shoup signature s
heme [7℄. However, we show in appendix I that the above bound in 1=qsigis rea
hed for a variant of Gennaro-Halevi-Rabin's s
heme with unique signature, provablyse
ure in the standard model. The variant is provably se
ure for short messages only (say,less than 40 bits). We do not know if there exists a pra
ti
al signature s
heme with uniquesignature, provably se
ure in the standard model and rea
hing the above bound.7 Optimal se
urity proof for PSSIn se
tion 3.2 we have seen that k0 = log2 qsig bits of random salt are suÆ
ient for PSS tohave a se
urity level equivalent to RSA, and taking a larger salt does not further improvethe se
urity. An interesting question is that of knowing whether this size is optimal or not.For k1, the output size of the hash fun
tion H, the minimum value kmin given by equation(8) is
learly optimal, be
ause an atta
ker making qhash hash queries
an �nd a
ollisionH(M jj0) = H(M 0jj0) with probability roughly (qhash)2 �2�k1=2 and then forge the signatureof M 0 using the signature of M . However, there might be a better se
urity proof for PSSwhi
h would be tight for a shorter size k0 of the random salt. A
tually, if this size is equalto zero, the s
heme be
omes with unique signature, and we know from se
tion 5 that onemust loose log2 qsig bits of se
urity
ompared to the se
urity of RSA. So it seems natural tothink that we need at least log2 qsig bits of random to make PSS as se
ure as RSA, be
ausenormally we should gain at most one bit of se
urity for ea
h added bit of random salt.In this se
tion, we show that this is indeed the
ase: if a shorter random salt is used,the se
urity of PSS
annot be proven equivalent to RSA. Our te
hnique des
ribed in se
tion4 does not apply dire
tly be
ause PSS is not a signature s
heme with unique signature.However, we show in appendix J how to extend to PSS the previous upper bound forFDH. More pre
isely, we show that from a redu
tion R whi
h inverts RSA in time tRwith probability "R when running at most r times a forger whi
h breaks PSS[k0; k1℄ withprobability "F , one
an invert RSA without using the forger, with probability "I = "R � r �"F � 2k0+2=qsig, in time tI = (r + 1) � tR.Theorem 8. Let R a redu
tion whi
h (t; qhash; qsig; "F ; "R)-redu
es inverting RSA to break-ing PSS[k0; k1℄, with qhash � 2 � qsig. The redu
tion
an run or rewind the forger at most rtimes. From R we
an
onstru
t an inverting algorithm for RSA whi
h (tI ; "I)-inverts RSA,

14with: tI = (r + 1) � tR (19)"I = "R � r � "F � 2k0+2qsig (20)Proof. The proof is given in appendix J.7.1 Dis
ussionLet
onsider as in se
tion 4.1 a forger for PSS[k0; k1℄ whi
h makes qsig signature queries andoutputs a forgery with probability "F = 1=2. Then, from a polynomial time redu
tion Rwhi
h su

eeds with probability "R when running on
e this forger, we obtain a polynomialtime inverter whi
h su

eeds with probability "I = "R�2k0+1=qsig, without using the forger.If inverting RSA is hard, the su

ess probability "I of the polynomial time inverter mustbe negligible, and therefore the su

ess probability "R of the redu
tion must be less than2k0+1=qsig + negl. Consequently, in order to have a tight se
urity redu
tion ("R ' "R), wemust have k0 ' log2 qsig. The redu
tion of theorem 3.2 is
onsequently optimal.Let us illustrate the theorem with
on
rete values. Using the previous forger, the redu
-tion for PSS of se
tion 3.2 inverts RSA with probability (we assume that k1 > kmin):"R = "F1 + 6 � qsig � 2�k0Taking k0 = log2 qsig, we obtain that the redu
tion inverts RSA with probability at least1=14. Assuming as in se
tion 4.1 that the modular exponentiations are performed in unittime for a 1024-bit modulus, the running time of the redu
tion is less than 250.Let us
onsider another redu
tion R from inverting RSA to braking PSS[k0; k1℄, with thesame running time 250, and whi
h su

eeds with probability at least "R using the previousforger. From theorem 8 we
an
onstru
t an algorithm whi
h inverts RSA in time 251 withprobability "I = "R � 2k0+1=qsig. Assuming as in se
tion 4.1 that RSA is (251; 2�35)-se
ure,the su

ess probability of the redu
tion
annot be greater than 2k0+1=qsig + 2�35. Conse-quently, to obtain the same su

ess probability as the redu
tion of se
tion 3.2, we must have2k0+1=qsig + 2�35 � 1=14, whi
h gives k0 � log2 qsig � 5. With k0 = log2 qsig, the redu
tionof se
tion 3.2 is
onsequently optimal, up to a
onstant fa
tor. To summarize, if the size k0of the random salt is smaller than log2 qsig, PSS is still provably se
ure as shown in se
tion3.2, but the se
urity level of PSS
an not be proven equivalent to RSA.8 Con
lusionWe have des
ribed a new te
hnique for analyzing the se
urity proofs of signature s
hemes.The te
hnique is both general and very simple and allows to derive upper bounds for se
urityredu
tions using a forger as a bla
k box, both in the random ora
le model and in the standardmodel, for signature s
hemes with unique signature. We have also obtained a new
riterionfor a se
urity redu
tion to be optimal, whi
h may be of independent interest: we say thata se
urity redu
tion is optimal if from a better redu
tion one
an solve a diÆ
ult problem,su
h as inverting RSA. Our te
hnique enables to show that the Full Domain Hash s
heme,Gennaro-Halevi-Rabin's s
heme and Paillier's signature s
heme have an optimal se
urityredu
tion in that sense. In other words, we have a mat
hing lower and upper bound for these
urity redu
tion of those signature s
hemes: one
annot do better than losing a fa
tor ofqsig in the se
urity redu
tion.

15Moreover, we have des
ribed a better se
urity proof for PSS, in whi
h a mu
h shorterrandom salt is suÆ
ient to a
hieve the same se
urity level. This is of pra
ti
al interest,sin
e when PSS is used with message re
overy, a better bandwidth is obtained be
auselarger messages
an be embedded inside the signature. Eventually, we have shown that thisse
urity proof for PSS is optimal: if a smaller random salt is used, PSS remains provablyse
ure, but it
annot have the same level of se
urity as RSA.Referen
es1. M. Bellare and P. Rogaway, Random ora
les are pra
ti
al: a paradigm for designing eÆ
ient proto
ols.Pro
eedings of the First Annual Conferen
e on Computer and Commmuni
ations Se
urity, ACM, 1993.2. M. Bellare and P. Rogaway, The exa
t se
urity of digital signatures - How to sign with RSA and Rabin.Pro
eedings of Euro
rypt'96, LNCS vol. 1070, Springer-Verlag, 1996, pp. 399-416.3. D. Boneh and R. Venkatesan, Breaking RSA may not be equivalent to fa
toring. Pro
eedings of Euro-
rypt' 98, LNCS vol. 1403, Springer-Verlag, 1998, pp. 59{71.4. R. Canetti, O. Goldrei
h and S. Halevi, The random ora
le methodology, revisited, STOC' 98, ACM,1998.5. J.S. Coron, On the exa
t se
urity of Full Domain Hash, Pro
eedings of Crypto'2000, LNCS vol. 1880,Springer-Verlag, 2000, pp. 229-235.6. R. Cramer and I. Damg�ard, New generation of se
ure and pra
ti
al RSA-based signatures, Pro
eedingsof Crypto'96, LNCS vol. 1109, Springer-Verlag, 1996, pp. 173-185.7. R. Cramer and V. Shoup, Signature s
hemes based on the Strong RSA Assumption, May 9, 2000,revision of the extended abstra
t in Pro
. 6th ACM Conf. on Computer and Communi
ations Se
urity,1999; To appear, ACM Transa
tions on Information and System Se
urity (ACM TISSEC). Available athttp://www.shoup.net/8. W. DiÆe and M. Hellman, New dire
tions in
ryptography, IEEE Transa
tions on Information Theory,IT-22, 6, pp. 644-654, 1976.9. C. Dwork and M. Naor, An eÆ
ient existentially unforgeable signature s
heme and its appli
ations, InJ. of Cryptology, 11 (3), Summer 1998, pp. 187-208.10. FIPS 186, Digital signature standard, Federal Information Pro
essing Standards Publi
ation 186, U.S.Department of Commer
e/NIST, 1994.11. R. Gennaro, S. Halevi and T. Rabin, Se
ure hash-and-sign signatures without the random ora
le, pro-
eedings of Euro
rypt '99, LNCS vol. 1592, Springer-Verlag, 1999, pp. 123-139.12. S. Goldwasser, S. Mi
ali and R. Rivest,A digital signature s
heme se
ure against adaptive
hosen-messageatta
ks, SIAM Journal of
omputing, 17(2), pp. 281-308, April 1988.13. IEEE P1363a, Standard Spe
i�
ations For Publi
 Key Cryptography: Additional Te
hniques, availableat http://www.manta.ieee.org/groups/136314. A. Lenstra and H. Lenstra (eds.), The development of the number �eld sieve, Le
ture Notes in Mathe-mati
s, vol 1554, Springer-Verlag, 1993.15. K. Ohta and T. Okamoto, On
on
rete se
urity treatment of signatures derived from identi�
ation.Proo
eedings of Crypto '98, Le
ture Notes in Computer S
ien
e vol. 1462, Springer-Verlag, 1998, pp.354-369.16. P. Paillier, Publi
-key
ryptosystems based on
omposite degree residuosity
lasses. Pro
eedings of Eu-ro
rypt'99, LNCS vol. 1592, Springer-Verlag, 1999, pp. 223-238.17. PKCS #1 v2.1, RSA Cryptography Standard (draft), available at http://www.rsase
urity.
om/rsalabs/pk
s.18. D. Point
heval and J. Stern, Se
urity proofs for signature s
hemes. Pro
eedings of Euro
rypt'96, LNCSvol. 1070, Springer-Verlag, pp. 387-398.19. R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and publi
 key
ryp-tosystems, CACM 21, 1978.

16A Proof of theorem 1We
onstru
t an algorithm R whi
h inverts RSA using a forger F . The redu
tion R willanswer by itself the hash queries and signature queries of F . We assume that when theforger makes a signature query he has already made the
orresponding hash query. If not,the redu
tion goes ahead and makes the
orresponding hash query. Similarly, we assumethat the message M whi
h signature is forged by the forger, has already been queried forhashing. Otherwise the redu
tion makes the
orresponding hash query and pro
eeds.Algorithm for R:Input: (N; e; y) and (qhash; qsig), where (N; e) RSA(1k) and y R Z�N.Output: yd mod N .1. Set i 02. Send (N; e) to F .3. If F makes a hash query for M :i i+ 1; Mi M ; ri R Z�NFlip a
oin
i with bias
.
i = 0 with probability
 and
i = 1 with probability 1�
.Return H(M) = y
i � rei mod N4. If F makes a signature query for Mi:Return ri if H(Mi) = rei mod N . Otherwise stop.5. If F outputs a forgery (M;x):If H(M) = y � rei mod N then output yd = x=ri mod N . Otherwise stop.6. Go to step 3R answers a signature query at step 4 with probability
; the probability that R answersall the signature queries is greater than
qsig . Eventually F outputs a forgery with probability"F ;R
an use this forgery at step 5 with probability 1�
 to output yd mod N . ConsequentlyR outputs yd mod N with probability
qsig � (1 �
) � "F , whi
h is maximal for
 = 1 �1=(qsig + 1) and gives (2).B Proof of inequality (7)Let g(�) = �qsig � qsigXj=0 Pr[ai = j℄ � �1� 2�k0�j (21)with Pr[ai = j℄ = � (1� �) � �j if j < qsig�qsig if j = qsig (22)We denote g0 = maxfg(�);� 2 [0; 1℄g and want to prove thatg0 � 11 + 6 � qsig � 2�k0Denoting
 = 2�k0 , we obtain from (21) and (22):g(�) = �qsig1� (1�
) � � � �1� � +
 � (1�
)qsig � �qsig+1� (23)

17from whi
h we derive: g(�) � �qsig � 1� �1� � +
If
 � qsig � 1=2, we take � = 1� 1=(2 � qsig) and obtain:g0 � �1� 12 � qsig�qsig � 11 + 2 �
 � qsigFor qsig � 1 we have �1� 12 � qsig�qsig � 12Using
 � qsig � 1=2, we obtaing0 � 12 � (1 + 2 �
 � qsig) � 11 + 6 �
 � qsigFor
 � qsig � 1=2, we take � = 1 and obtain using (23):g0 � (1�
)qsig � 1�
 � qsig � 11 + 6 �
 � qsig for
 � qsig � 1=2C Proof of theorem 4Let F be a forger whi
h (t; qsig; qhash; ")-breaks PSS. We
onstru
t an inverter I whi
h(t0; "0)-breaks RSA. The inverter re
eives as input (N; e; �) and must output �d mod N . Theinverter I maintains a
ounter i, initially 0.The proof is very similar to the proof of theorem 2 and to the original se
urity proof ofPSS in [2℄. To answer a hash query M jjr in theorem 2, we generated a random x 2 ZN andy = xe � �b with b = 0 or b = 1, and de�ned H(M jjr) = y. The only di�eren
e here is thatwe write y as 0jj!jjr�jj
, where the size of ! is k1 bits, the size of r� is k0 bits and the sizeof
 is the remaining k � k0 � k1 � 1 bits. We de�ne H(M jjr) = ! and G(!) = r� � rjj
.Moreover we must make sure that the same ! never appears twi
e otherwise we would bere-de�ning G(!).When a message M appears for the �rst time in a hash query or a signature query, theinverter in
rements the
ounter i and sets Mi M . Then, the inverter generates a list Liof qsig random integers in f0; 1gk0 .When the forger makes a H-ora
le query for Mikr, we distinguish two
ases. If r belongsto the list Li, the inverter sets b = 0, else it sets b = 1. Then the inverter generates a randomx 2 Z�N until the �rst bit of y = xe � �b mod N is 0. Then it writes y as 0k!kr�k
 and setsH(Mikr) = !. The inverter aborts if ! has already appeared before. Eventually the invertersets G(!) = r� � rk
 and returns ! as the answer to the H-ora
le query Mikr.When the forger makes a G-ora
le query for !, the inverter returns G(!) if ! appearedbefore. Otherwise it generates a random string � f0; 1gk�k1�1, sets G(!) = �, and returns�. When the forger makes a signature query for Mi, the inverter pi
ks up a random r in Liand dis
ards it from the list. If there was already a H-ora
le query for Mikr, the inverterknows x, y, !, r� and
 su
h that y = xe mod N and y = 0k!kr�k
 where H(Mijjr) = !and G(!) = r��rk
, so the inverter returns x as a signature forMi. Otherwise, the invertergenerates a random x 2 Z�N until the �rst bit of y = xe mod N is 0. Then it writes y as

180k!kr�k
 and sets H(Mikr) = !. The inverter aborts if ! has already appeared before.Then the inverter sets G(!) = r� � rk
, and returns x as a signature for Mi.Sin
e there are at most qhash hash queries and qsig signature queries, the number ofdistin
t ! whi
h
an appear is less than qhash + qsig. The probability that the inverteraborts after generating a random ! is then less than (qhash + qsig) � 2�k1 . Therefore, theinverter aborts when answering the hash and signature queries with probability less thanÆ = (qhash+qsig)2 �2�k1 . Consequently, the forger outputs a forgery with probability at least"� Æ.When the forger outputs a forgery (M; s), we
ompute y = se mod N and write y as0k!kr�k
. Let r = r� �G1(!), where G1 denotes the �rst k0 bits of G. If there was no H-ora
le query for Mkr before, the probability that ! = H(Mkr) is at most 2�k1 . Therefore,with probability at least "�Æ�2�k1 , the forger outputs a forgery and there exists an integeri su
h that there has been a H-ora
le query for Mikr. Then if r does not belong to the listLi, the inverter knows x su
h that y = xe � �, whi
h gives �d = s=x mod N and the invertersu

eeds in outputting �d mod N .As in theorem 2, the probability that r does not belong to the list Li of qsig randomintegers is (1� 2�k0)qsig . If k0 � log2 qsig and for qsig � 2, this gives�1� 2�k0�qsig � �1� 1qsig�qsig � 14Consequently, the su

ess probability "0 of the inverter is at least (" � Æ � 2�k1)=4, whi
hshows that for k0 � log2 qsig the probability of breaking PSS[k0; k1℄ is almost the same asthe probability of inverting RSA.For smaller values of k0, we apply the same tri
k as in theorem 2: we generate fewerthan qsig random integer in the lists Li, a

ording to the same distribution with parameter�. As in theorem 2, the su

ess probability of the inverter is at least:�"� Æ � 2�k1� � �qsig � f(�)where f(�) is given by equation (6). As in theorem 2, we sele
t a value of � whi
h maximizesthis su

ess probability; we obtain that the inverter su

eeds with probability at least:"� Æ � 2�k11 + 6 � qsig � 2�k0Moreover, when answering the hash and signature queries, the probability that the �rstbit of xe � �b mod N is 0 for a random x 2 ZN is at least 1=2. Therefore we stop the loopafter 1 + k1 steps3, whi
h adds a failure probability of 2�k1 per hash or signature query.Eventually, the su

ess probability "0 of the inverter is at least:"0 = "� 2 � (qhash + qsig)2 � 2�k11 + 6 � qsig � 2�k0whi
h gives equation (10). The running time of the inverter is the running time of the forgerplus the time to generate the xe � �b mod N , whi
h gives (9).3 otherwise the running time
ould not be bounded.

19D Proof of lemma 1We show indu
tively over n that, letting Dn be the following distributionDn = 8<: i [1; n℄(�1; : : : ; �n) [1; k℄n� [1; k℄and denoting for any j 2 [1; n℄ the events:Aj : (�1; : : : ; �j�1; �j) 2 QBj : (�1; : : : ; �j�1; �) 2 Qwith Aj) Aj�1 for all j 2 [2; n℄, then the following holds:PrDn[An ^Bi℄ � PrDn[An℄1+ 1n (24)Inequality (24)
learly holds for n = 1. Assuming that inequality (24) holds for n � 1, weshow that it holds for n. In the following, unless spe
i�ed otherwise, probabilities are takena

ording to the distribution Dn. Sin
e i is randomly sele
ted in [1; n℄, we have:Pr[An ^Bi℄ = 1n Pr[An ^B1℄ + n� 1n Pr[An ^Biji � 2℄ (25)The events An and B1 are independent, whi
h gives:Pr[An ^B1℄ = Pr[An℄ � Pr[B1℄ = Pr[An℄ � Pr[A1℄ (26)We have: Pr[An℄ = 1k Xa12[1;k℄Pr[Anj�1 = a1℄and Pr[An ^Biji � 2℄ = 1k Xa12[1;k℄Pr [An ^Bij(�1 = a1) ^ (i � 2)℄Letting L1 = fa1 2 [1; k℄ j (a1) 2 Qg, we have using Pr[A1℄ = #L1=k and An) A1:Pr[AnjA1℄ = Pr[An ^A1℄Pr[A1℄ = Pr[An℄Pr[A1℄ = 1#L1 Xa12L1 Pr[Anj�1 = a1℄ (27)and Pr[An ^Biji � 2℄ = Pr[A1℄ � 1#L1 Xa12L1 Pr [An ^Bij(�1 = a1) ^ (i � 2)℄ (28)For all j 2 [2; n℄, let A0j�1 = Aj ^ (�1 = a1) and B0j�1 = Bj ^ (�1 = a1), and let D0n�1 bethe following distribution: D0n�1 = 8<: i0 [1; n� 1℄(�2; : : : ; �n) [1; k℄n�1� [1; k℄We have: PrD0n�1[A0n�1℄ = Pr[Anj�1 = a1℄ (29)

20and Pr [An ^Bij(�1 = a1) ^ (i � 2)℄ = PrD0n�1[A0n�1 ^B0i0 ℄ (30)Applying inequality (24) for n� 1, we obtain:PrD0n�1[A0n�1 ^B0i0 ℄ � PrD0n�1[A0n�1℄ nn�1whi
h gives using equations (28), (29) and (30):Pr [An ^Biji � 2℄ � Pr[A1℄ � 1#L1 Xa12L1 Pr[Anj�1 = a1℄ nn�1 (31)From the inequality 1t tXi=1 xri � 1t tXi=1 xi!r for r � 1we obtain: Pr[An ^Biji � 2℄ � Pr[A1℄ �0� 1#L1 Xa12L1 Pr[Anj�1 = a1℄1A nn�1whi
h gives using (27):Pr[An ^Biji � 2℄ � Pr[A1℄ � Pr[AnjA1℄ nn�1 = Pr[An℄ � Pr[AnjA1℄ 1n�1Then using equations (25) and (26), we obtain:Pr[An ^Bi℄ � Pr[An℄�Pr[A1℄n + n� 1n Pr[AnjA1℄ 1n�1�Using the well known inequality S � P between the arithmeti
 mean S and the geometri
mean P , we obtain:1n �Pr[A1℄ + (n� 1) � Pr[AnjA1℄ 1n�1� � (Pr[A1℄ � Pr[AnjA1℄) 1n = Pr[An℄ 1nand eventually Pr[An ^Bi℄ � Pr[An℄1+ 1nwhi
h shows that equation (24) holds for n and terminates the proof by indu
tion.Inequality (24) gives:Pr[An ^ :Bi℄ = Pr[An℄� Pr[An ^Bi℄ � Pr[An℄ � �1� Pr[An℄1=n�Denoting x = Pr[An℄1=n and using the inequality xn � (1� x) � exp(�1)=n for x 2 [0; 1℄, weobtain: Pr[An ^ :Bi℄ � exp(�1)n

21E De�nitions for se
urity proofs in the random ora
leIn this se
tion, we
onsider a signature s
heme provably se
ure in the random ora
le model.In the random ora
le model, the hash fun
tion is repla
ed by a random fun
tion.De�nition 8 (random ora
le). For any
onstant k, a random ora
le is a fun
tion Hsele
ted uniformly at random in the set Hk of the fun
tions from f0; 1g� to f0; 1gk.We say that a signature s
heme is a hash-and-sign signature s
heme if the signaturegeneration algorithm �rst hashes the message and then signs the hash value using the privatekey.De�nition 9 (hash-and-sign s
heme). A signature s
heme (Gen; Sign; Verify) is saidto be a hash-and-sign signature s
heme if Sign takes as input the message M , the publi
key pk and the private key sk, runs Hashing with M and pk, obtains h, then runs Signingwith h and sk, obtains and returns the signature x, where:- Hashing is an algorithm taking as input the message M to be signed and the publi
 key pkand returning a string h. Hashing may have a

ess to a random ora
le.- Signing is an algorithm taking as input h and the private key sk and returning the sig-nature x. Signing does not have a

ess to a random ora
le.Examples of hash-and-sign signature s
hemes in
lude the FDH s
heme, PSS, Gennaro-Halevi-Rabin's s
heme (GHR) in the random ora
le model [11℄, Paillier's signature s
heme[16℄ and DSA [10℄.The hashing algorithm may require multiple hash ora
le queries, for example two hashqueries as in PSS. For simpli
ity, we say in the following that a forger
an make qhash hashqueries if he
an apply Hashing to qhash messages. The a
tual number of hash queries q0hashwill then be a multiple of qhash (for PSS, we have q0hash = 2 � qhash).We say that a signature s
heme is with unique signature if ea
h message has a uniquesignature, given the random ora
le H 2 Hk; formally:De�nition 10 (signature s
heme with unique signature). A signature s
heme is saidto be with unique signature if for any publi
 key pk, any message M and any random ora
leH in Hk, there is a unique x su
h that Verifypk(M;x) = 1.Hash-and-sign signature s
hemes with unique signature in
lude FDH, GHR in the ran-dom ora
le model and Paillier's signature s
heme. PSS and DSA are not signature s
hemeswith unique signature.Lemma 2. Let S be a hash-and-sign signature s
heme with unique signature. Let h Hashingpk(M). The signature x of M is then a fun
tion of h and the publi
 key pk only.Proof. We denote SignHpk;sk, HashingHpk and VerifyHpk the algorithms Sign, Hashing andVerify with ora
le a

ess to H 2 Hk.Let x be the signature of M with random ora
le H 2 Hk and publi
 key pk. Let(pk0; sk0) be another publi
/private key pair, M 0 another message, and H 0 2 Hk anotherrandom ora
le. Let h0 HashingH0pk0(M 0) and x0 Signingpk0;sk0(h0). We must show thatif pk = pk0 and h = h0, then x = x0.From pk = pk0 and h = h0, we dedu
e h0 HashingHpk(M) and x0 Signingpk;sk0(h0),whi
h implies that x0 is a signature of M under the publi
 key pk with random ora
le H.Sin
e S is a signature s
heme with unique signature, we must have x = x0. ut

22 The se
urity of the signature s
heme that we
onsider is not ne
essarily based on thehardness of inverting RSA; it
an be based on the hardness of any sear
h problem �, de�nedas follows:De�nition 11. A sear
h problem � is a triple (Gen�;D; S) where D is a set of �niteobje
ts
alled instan
es, and for ea
h instan
e I 2 D, S[I℄ is a set of �nite obje
ts
alledsolutions for I. Gen� is an algorithm whi
h, on input 1k, randomly sele
ts an instan
eI 2 D su
h that jIj = k.De�nition 12. An algorithm A is said to (tA; "A)-solve � if after re
eiving an instan
eI generated using Gen�(1k) and tA(k) pro
essing time it outputs a solution z for I withprobability greater than "A(k) for all k 2 N.De�nition 13. A problem � is said to be (tA; "A)-hard if there is no algorithm A whi
h(tA; "A)-solves �.In the following we
onsider a hash-and-sign signature s
heme with unique signatureprovably se
ure in the random ora
le model, assuming that solving a given problem � ishard. This means that there exists a redu
tion from solving the hard problem � to breakingthe signature s
heme S. A redu
tion from solving � to breaking S is an algorithm whi
huses a forger for S in order to solve �. Resistan
e against adaptive
hosen message atta
ksis
onsidered, so the forger is allowed to make signature queries for messages of his
hoi
e.Moreover, in the random ora
le model, the forger
annot
ompute the hash fun
tion byitself: the forger must make a hash query. Consequently, when intera
ting with the forger,the redu
tion algorithm must answer the hash queries and the signature queries made bythe forger.De�nition 14. A redu
tion R in the random ora
le model from solving (Gen�;D; S) tobreaking (Gen; Sign; Verify) is a probabilisti
 algorithm taking as input an instan
e Iand (qhash; qsig), where I Gen�(1k), and outputting a solution z for I. The redu
tionalgorithm intera
ts with a forger F for (Gen; Sign; Verify) whi
h outputs a forgery afterat most qhash hash queries and qsig signature queries. The redu
tion algorithm answers thehash queries and the signature queries made by F .We quantify the eÆ
ien
y of the redu
tion by giving the probability that the redu
tionalgorithm outputs a solution of the problem � using a forger that (tF ; qhash,qsig,"F)-breaksthe signature s
heme, within an additional running time of tR.De�nition 15. We say that a redu
tion algorithm R (tR; qhash; qsig; "F ; "R)-redu
es solving(Gen�;D; S) to breaking the signature s
heme (Gen; Sign; Verify) if after running anyforger that (tF ; qhash; qsig,"F)-breaks (Gen; Sign; Verify), the redu
tion outputs a solutionof � with probability greater than "R, within an additional running time of tR.In this se
tion we
onsider redu
tions running a forger only on
e, as the redu
tion oftheorem 1 for FDH. Redu
tions running a forger more than on
e will be
onsidered in thenext se
tion. The following theorem shows that for any hash-and-sign signature s
heme withunique signature provably se
ure in the random ora
le model, assuming the hardness of agiven problem �, the se
urity redu
tion
annot be tighter than roughly "F =qsig. Namelywe show that from R we
an solve the problem � with probability greater than roughly"R � "F =qsig, in roughly the same time bound. Thus, if solving � is hard, the su

essprobability "R of R
annot be greater than roughly "F =qsig.

23Theorem 9. Let R be a redu
tion whi
h (tR; qhash; qsig; "R; "F)-redu
es solving � to break-ing a hash-and-sign signature s
heme with unique signature. R runs the forger only on
e.From R we
an
onstru
t an algorithm whi
h (tA; "A)-solves �, with:tA = 2 � tR (32)"A = "R � "F � exp(�1)qsig � �1� qsigqhash��1 (33)Proof. From a redu
tion R that (tR; qhash; qsig; "F ; "R)-redu
es solving � to breaking thesignature s
heme (Gen; Sign; Verify), we build an algorithm A that (tA; "A)-solves � usingR. The algorithm A re
eives as input an instan
e I of the problem � and must output asolution z of I using R. As in the proof of theorem 5, the algorithm A will simulate a forgerwith respe
t to R. A arbitrarily sele
ts qhash distin
t messages M1; : : : ;Mqhash of lengthO(k).First A re
eives from R the publi
 key pk. Then A runs Hashing for the qhash messagesM1; : : : ;Mqhash , performs the
orresponding hash queries toR, and obtain the
orrespondingstrings h1; : : : ; hqhash . A sele
ts a random integer � 2 [1; qhash℄ and a random sequen
e � ofqsig integers in [1; qhash℄nf�g, whi
h we denote � = (�1; : : : ; �qsig).A sele
ts a random integeri 2 [1; qsig℄ and de�ne the sequen
e of i integers �0 = (�1; : : : ; �i�1; �). Then A makes the isignature queries
orresponding to �0 to R and re
eive from R the
orresponding signatures,the last one being the signature s� of M�.Then the redu
tion R is rewound to the state in whi
h it was after the hash queries,and this time, A makes the qsig signature queries
orresponding to �. If R has answered allthe signature queries, then with probability "F , A sends (M�; s�) as a forgery to R. Fromlemma 2 the signature s� ofM� is a fun
tion of h� and pk only, so s� is still a valid signatureof M� after R has been rewound. This is a true forgery for R be
ause after the rewind ofR, there was no signature query for M�. Eventually R outputs a solution z of instan
e I.We denote by Q the set of sequen
es of signature queries whi
h are
orre
tly answered byR after the hash queries, in time less than tR. If a sequen
e of signature queries is
orre
tlyanswered by R, then the same sequen
e without the last signature query is also
orre
tlyanswered, so for any (�1; : : : ; �j) 2 Q, we have (�1; : : : ; �j�1) 2 Q. Let denote by ans theevent � 2 Q, whi
h
orresponds to R answering all the signature queries after the rewind,and by ans' the event �0 2 Q, whi
h
orresponds to R answering all the signature queriesbefore the rewind.Let
onsider a forger whi
h makes the same hash queries, the same signature queries
orresponding to �, and outputs a forgery for M� with probability "F . By de�nition, whenintera
ting with su
h a forger, R would output yd mod N with probability at least "R. Afterthe rewind,R sees exa
tly the same trans
ript as when intera
ting with this forger, ex
ept ifevent ans is true and ans' is false: in this
ase, the forger outputs a forgery with probability"F , whereas our simulation does not output a forgery. Consequently, when intera
ting withour simulation of a forger, R outputs yd mod N with probability at least:"R � "F � Pr[ans ^ :ans'℄ (34)Using lemma 1 with n = qsig and k = qhash, we obtain:Pr[ans ^ :ans'℄ � exp(�1)qsig �1� qsigqhash��1 (35)The term (1 � qsig=qhash) in equation (35) is due to the fa
t that we sele
t �1; : : : ; �qsig in[1; qhash℄nf�g whereas in lemma 1 the integers are sele
ted in [1; qhash℄. From equations (34)

24and (35) we obtain that I su

eeds with probability greater than "I given by (33). Be
auseof the rewind, the running time of I is at most twi
e the running time of R, whi
h gives(32).F Proof of theorem 6In this se
tion, we
onsider redu
tions running a forger more than on
e, as opposed tose
tion E in whi
h the forger was run only on
e. The redu
tion
an run or rewind the forgerat most r times. Using the same te
hnique as previously, we show that from a redu
tionR allowed to run or rewind the forger at most r times, we
an solve the problem � withprobability greater than roughly "R � "F � r=qsig in roughly the same time bound. Thus, ifsolving � is hard, the su

ess probability of R
annot be greater than roughly "F � r=qsig.The proof is very similar to the proof of theorem 9. Assume �rst that the redu
tion isnot allowed to rewind the forger. The redu
tion is only allowed to run the forger at most rtimes. We say that the redu
tion is in the j-th round if the redu
tion has already run theforger j � 1 times. Thus there are at most r rounds.In the �rst round of the redu
tion, we apply exa
tly the same te
hnique as previously: wemake the qhash hash queries, then we sele
t a random �1 2 [1; qhash℄ and a random sequen
e�1 of qsig integers in [1; qhash℄ n f�1g. We sele
t a random integer i1 2 [1; qsig℄ and de�nethe sequen
e �01 as the �rst i1 � 1 integers of �1 plus the integer �1. Then we make thei1 signature queries
orresponding to �01 to R and obtain the signature s�1 of M�1 . Thenwe rewind R to the state it was after the hash queries, and this time, we make the qsigsignature queries
orresponding to �1. If R has answered all the signature queries, thenwith probability "F , we send (M�1 ; s�1) as a forgery to R.Then the redu
tion is in the se
ond round, and starts intera
ting with a forger for these
ond time. We pro
eed re
ursively for the remaining rounds: at the j-th round, we makethe same qhash hash queries and sele
t �j , �j and ij as previously. We obtain the signature ofM�j , then we rewind R to the state it was after the hash queries, then make the signaturequeries
orresponding to �j , and with probability "R output the signature of M�j as aforgery. Using this te
hnique, we are able to simulate a forger being run at most r times bythe redu
tion.Let us denote ans0j the event in whi
h the redu
tion in the j-th round answers thesignature queries before it is rewound and ansj the event in whi
h the redu
tion answersthe signature queries after it is has been rewound.Let
onsider a forger whi
h at ea
h round makes the same hash queries and signaturequeries
orresponding to �j, and outputs a forgery forM�j with probability "F . By de�nition,when running at most r times this forger, R su

eeds with probability at least "R.After the rewind of the j-th round,R sees exa
tly the same trans
ript as when intera
tingwith this forger, ex
ept if event ansj is true and ans0j is false: in this
ase, this forger outputs aforgery with probability "F , whereas our simulation does not output a forgery. This happenswith probability: "F � Pr[ansj ^ :ans0j ℄Sin
e there are at most r rounds, A su

eeds with probability greater than:"R � rXj=1 "F � Pr[ansj ^ :ans0j ℄

25Using lemma 1, we obtain for all j:Pr[ansj ^ :ans0j ℄ � exp(�1)qsig � �1� qsigqhash��1Consequently, A su

eeds with probability greater than:"A = "R � "F � exp(�1) � rqsig ��1� qsigqhash��1 (36)The redu
tion R is rewound at most r times, so the running time of A is at most r+1 timesthe running time of R, whi
h gives: tA = (r + 1) � tR (37)Now assume that the redu
tion R is allowed to rewind the forger to a previous stateS. Equivalently we assume that the redu
tion a
tually restarts the forger with the samerandom tape and provides the same input to the forger until the same state S is rea
hed.If R restarts the forger at the j � 1-th round, the redu
tion is now in the j-th round. Wedistinguish two
ases: if the redu
tion sends the same publi
 key and provides the sameanswer to the hash queries, the forger will make the same signature queries and forgery asin the j � 1-th round. Therefore our simulation will make the same signature queries andforgery as in the j � 1-th round. At the j-th round the redu
tion sees exa
tly the sametrans
ript when intera
ting with the forger as when intera
ting with our simulation, ex
eptwith probability: "F � Pr[ansj ^ :ans0j ℄Otherwise if the redu
tion sends a di�erent publi
 key or provides a di�erent answer to thehash queries, the forger makes signature queries for random messages and forge the signatureof a randomly
hosen message, and so our simulation makes signature queries for randommessages and forge the signature of a randomly
hosen message. Consequently, at the j-thround the redu
tion sees exa
tly the same trans
ript when intera
ting with the forger aswhen intera
ting with our simulation, ex
ept with probability:"F � Pr[ansj ^ :ans0j ℄Consequently, we obtain the same result as previously: A su

eeds with probability at least"A given by equation (36).G Se
urity de�nitions in the standard modelDe�nition 16. A forger F is said to (t; qsig; ")-break the signature s
heme (Gen; Sign;Verify) if after at most qsig(k) signature queries and t(k) pro
essing time, it outputs aforgery with probability at least "(k) for all k 2 N.De�nition 17. A signature s
heme (Gen; Sign; Verify) is (t; qsig; ")-se
ure if there is noforger who (t; qsig; ")-breaks the s
heme.De�nition 18 (signature s
heme with unique signature). A signature s
heme is saidto be with unique signature if for any publi
 key pk and any message M , there is a uniquesignature x su
h that Verifypk(M;x) = 1.

26 Note that a signature s
heme with unique signature is ne
essarily state-free: the signatureof a message does not depend on previously signed messages.We assume that the se
urity of (Gen; Sign; Verify) is based on the hardness of theproblem �, so there exists a redu
tion from solving � to breaking the signature s
heme inthe standard model.De�nition 19. A redu
tion algorithm R in the standard model from solving (Gen�;D; S)to breaking (Gen; Sign; Verify) is a probabilisti
 algorithm taking as input an instan
e Iand qsig, where I Gen�(1k), and outputting a solution z for I. The redu
tion algorithmintera
ts with a forger F for (Gen; Sign; Verify) whi
h outputs a forgery after at most qsigsignature queries. The redu
tion algorithm answers the signature queries made by F .De�nition 20. A redu
tion algorithm R is said to (tR; qsig; "F ; "R)-redu
e solving � tobreaking the signature s
heme (Gen; Sign; Verify) if after re
eiving an instan
e I su
h thatI Gen�(1k) and running any forger that (tF ; qsig; "F)-breaks the signature s
heme, theredu
tion R outputs a solution z for I with probability at least "R(k) after at most tR(k)additional pro
essing time for all k 2 N.H Proof of theorem 7The proof is very similar to the proof of theorem 6. The only di�eren
e is that there are nohash queries. Moreover, we repla
e in algorithm A the number of hash queries qhash by thelower bound 2` on the size of the message spa
e; instead of sele
ting qhash distin
t messages,we sele
t 2` distin
t messages M1; : : : ;M2` . The rest of algorithm A is the same, and thesame analysis shows that from a redu
tion with running time of tR, whi
h su

eeds withprobability at least "R after running or rewinding at most r times a forger that breaks thesignature s
heme with probability at least "F , we
an build an algorithm whi
h (tA; "A)-solves the problem �, with:tA = (r + 1) � tR"A = "R � "F � exp(�1) � rqsig � �1� qsig2` ��1I A variant of GHR's s
heme provably se
ure in the standard modelLet us
onsider Gennaro-Halevi-Rabin's signature s
heme [11℄. The publi
 key is N = p � qand a random y 2 Z�N, where p and q are random k=2-bit primes and (p�1)=2 and (q�1)=2are also primes. The private key is (p; q). The s
heme uses a hash fun
tion H whi
h outputsodd integers of length k0 bits. To sign a message m, the signer obtains e = H(m) and
omputes the signature � as the e-th root of y modulo N , using p; q. To verify a signature�, one
omputes e = H(m) and
he
ks that �e = y mod N .The se
urity of Gennaro-Halevi-Rabin's signature s
heme is based on the hardness ofthe strong RSA problem.De�nition 21 (Strong RSA problem). Given a randomly
hosen RSA modulus N anda random element s 2 Z�N, �nd a pair (e; r) with e > 1 su
h that re = s mod N .In this se
tion we illustrate theorem 7 with a variant of GHR's s
heme provably se
ure inthe standard model, with unique signature. The hash fun
tion H is repla
ed by an inje
tivefun
tion 	 whi
h maps any string from f0; 1g` to the set of prime integers, so that 	 is

27easy to
ompute. Su
h a fun
tion is
onstru
ted in [11℄. We obtain a signature s
heme withunique signature provably se
ure in the standard model. However the s
heme is provablyse
ure for short messages only (say, less than 40 bits); this is due to the 2` fa
tor in the timebound tF of the forger. We denote by t(`) the time ne
essary to
ompute 	 .Theorem 10. Assume that the strong RSA problem is (tI ; "I)-hard. Then the previous GHRvariant is (tF ; qsig; "F)-se
ure, where:tI = tF + poly�2`; k; t(`)� (38)"I = "Fqsig � �1� 1qsig + 1�qsig+1 (39)Proof. Assume that there exists a forger F that (tF ; qsig; "F)-breaks the signature s
heme(Gen; Sign, Verify). We
onstru
t an algorithmA that solves the strong RSA problem usingF . A will answer the signature queries of the forger itself. The message spa
e is f0; 1g`.Algorithm for A.Input: (N; s) and (`; qsig), where N RSA(1k) and s R Z�N.Output: (r; e) with e > 1 su
h that re = s mod N .1. Let E 1.2. For all messages Mi 2 f0; 1g`, do the following:Flip a
oin
i with bias
.
i = 0 with probability
 and
i = 1 with probability 1�
.If
i = 0 then
ompute E E � 	(Mi).3. Let y sE mod N .4. Send the publi
 key (N; y) to F .5. If F makes a signature query for Mi:If
i = 0 then return sE=	(Mi) mod N . Otherwise stop.6. If F outputs a forgery (Mi; x):If
i = 0 then stop.Otherwise 	(Mi) ^E = 1 so let a; b 2 Z su
h that a � 	(Mi) + b �E = 1.Let r xb � sa mod N and e 	(Mi) and output (r; e).The probability that A answers to all the signature queries is greater than
qsig . Even-tually F outputs a forgery with probability "F whi
h A
an use with probability 1 �
 tooutput (r; e). Consequently A outputs (r; e) with probability
qsig � (1 �
) � "F , whi
h ismaximal for
 = 1� 1=(qsig + 1) and gives (39). utJ Proof of theorem 8We use the following method: we
onsider PSS in whi
h the random salt is �xed to 0k0 ,and we denote this signature s
heme PSS0[k0; k1℄. Consequently, PSS0[k0; k1℄ is a signatures
heme with unique signature. First, we show how to
onvert a forger for PSS0[k0; k1℄ intoa forger for PSS[k0; k1℄. Then, any redu
tion R from inverting RSA to breaking PSS[k0; k1℄will use this forger for PSS[k0; k1℄ in order to invert RSA. Consequently, from a forger forPSS0[k0; k1℄, we
an invert RSA using the redu
tion R. In other words, from R we
an
onstru
t a redu
tion R0 from inverting RSA to breaking PSS0[k0; k1℄. Sin
e PSS0[k0; k1℄ isa signature s
heme with unique signature, theorem 6 gives an upper bound for the su

essprobability of R0, from whi
h we derive an upper bound for the su

ess probability of R.

28This upper bound shows that the size k0 of the random salt must be at least log2 qsig forPSS[k0; k1℄ to have a se
urity level equivalent to RSA, and so our se
urity proof of se
tion3.2 is optimal.Lemma 3. Let F0 be a forger whi
h (t0F ; q0hash; q0sig; "0F)-breaks PSS0[k0; k1℄. From F0 we
an
onstru
t a forger F whi
h (tF ; qhash; qsig; "F)-breaks PSS[k0; k1℄, with:qhash = q0hash qsig = 2k0+1 � q0sig "F = "0F =2Proof. From F0 we
onstru
t a forger F for PSS[k0; k1℄. When the forger F0 makes a hashquery, the forger F makes the same hash query and forwards the result to F0. When theforger F0 makes a signature query for a message M , the forger F makes signature queriesfor M until the random salt used to generate the signature is 0k0 . Then it forwards thesignature to F0. Eventually the forger F0 outputs a forgery for PSS0[k0; k1℄, whi
h is also aforgery for PSS[k0; k1℄.When F makes a signature query, the random salt used to generate the signature is equalto 0k0 with probability 2�k0 . Therefore F must perform on average 2k0 signature queries forea
h signature query of F0. More pre
isely, let Yi be the number of signature queries madeby F for the i-th signature query of F0, and let Y be the total number of signature queriesmade by F . Sin
e F is limited to qsig signature queries, the probability that all the signaturequeries of F0 are answered is Pr[Y � qsig℄. In this
ase, the forger F0 outputs a forgery withprobability at least "0F . Therefore, the forger F outputs a forgery with probability at least"0F � Pr[Y � qsig℄.The distribution of Yi follows a geometri
 law of parameter 1� 2�k0 :Pr[Yi = j℄ = 2�k0 � (1� 2�k0)j�1 for j � 1The expe
tan
y and varian
e of Yi are given by:E[Yi℄ = 2k0 Var[Yi℄ = 2k0 � �2k0 � 1�We assume that F0 makes exa
tly q0sig signature queries4. Sin
e Y is the sum of q0sig inde-pendent random variables, we obtain:E[Y ℄ = 2k0 � q0sig Var[Y ℄ = q0sig � 2k0 �2k0 � 1�Then, using Chebyshev's inequality, we have for any Æ:Pr [jY � E[Y ℄j � Æ℄ � Var[Y ℄Æ2and taking Æ = E[Y ℄, we obtain for q0sig � 2:Pr [Y � 2 � E[Y ℄℄ � 1q0sig � 12If q0sig = 1, then Y = Y1 andPr[Y � 2 � E[Y ℄℄ = Pr[Y1 � 2k0+1℄ = �1� 2�k0�2k0+1�14 Otherwise we
an simulate the remaining signature queries with previously queried messages. If F0 makesno signature queries, then F outputs a forgery with the same probability as F0.

29Using the inequality (1� 1=x)x � 1=2 for x � 1, we obtain as previously:Pr[Y � 2 � E[Y ℄℄ � �1� 2�k0�2k0 � 12So letting qsig = 2k0+1 � q0sigthis gives Pr[Y � qsig℄ � 1=2 and thus Pr[Y � qsig℄ � 1=2. Consequently, the forger Foutputs a forgery for PSS[k0; k1℄ with probability at least"F = "0F =2after at most qsig signature queries. utLemma 4. Let R be a redu
tion whi
h (tR; qhash; qsig; "F ; "R)-redu
es inverting RSA tobreaking PSS[k0; k1℄. From R we
an
onstru
t a redu
tion R0 whi
h (t0R; q0hash; q0sig; "0F ; "0R)-redu
es inverting RSA to breaking PSS0[k0; k1℄, with:qsig = q0sig � 2k0+1 qhash = q0hash"F = "0F =2 "R = "0R (40)t0R = tR (41)Proof. Let F0 be a forger whi
h (t0F ; q0hash; q0sig; "0F)-breaks PSS0[k0; k1℄. Using the previouslemma we
onstru
t from F0 a forger F whi
h (tF ; qhash; qsig; "F)-breaks PSS[k0; k1℄, whereqhash, qsig and "F are given by equation (40). Then from F using R we
an invert RSA withprobability at least "R.Therefore, from F0 whi
h (t0F ; q0hash; q0sig; "0F)-breaks PSS0[k0; k1℄, and using R, we
aninvert RSA with probability at least "R. Consequently, from R we
an
onstru
t a redu
-tion R0 whi
h (t0R; q0hash; q0sig; "0F ; "0R)-redu
es inverting RSA to breaking PSS0[k0; k1℄, where"0R = "R and t0R = tR. utLet R be a redu
tion whi
h (tR; qhash; qsig; "F ; "R)-redu
es inverting RSA to breakingPSS[k0; k1℄. From lemma 4, we
onstru
t from R an algorithm R0 whi
h (t0R, q0hash, q0sig ,"0F , "0R)-redu
es inverting RSA to breaking PSS0[k0; k1℄, where t0R, q0hash, q0sig, "0F and "0R aregiven by equations (40) and (41). The redu
tion R
an run or rewind the forger at most rtimes, so R0 runs or rewinds the forger at most r times. Then from R0 using theorem 6 we
onstru
t an algorithm I whi
h (tI ; "I)-inverts RSA, with:tI = (r + 1) � t0R"I = "0R � r � "0F � exp(�1)q0sig � 1� q0sigq0hash!�1Using equations (40) and (41) with qhash � 2 � qsig and exp(�1) � 1=2, we obtain:r � "0F � exp(�1)q0sig � 1� q0sigq0hash!�1 � r � "F � 2k0+2qsigwhi
h shows that the inverter su

eeds with probability at least:"R � r � "F � 2k0+2qsigand gives equations (19) and (20).

