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Abstract. At Crypto 1999, Coron, Naccache and Stern described an
existential signature forgery against two popular RSA signature stan-
dards, ISO 9796-1 and ISO 9796-2. Following this attack ISO 9796-1 was
withdrawn, and ISO 9796-2 was amended by increasing the message di-
gest to at least 160 bits. In this paper we describe an attack against the
amended version of ISO 9796-2, for all modulus sizes. Our new attack is
based on Bernstein’s algorithm for detecting smooth numbers, instead of
trial division. In practice we were able to compute a forgery in only two
days on a network of 19 servers. Our attack can also be extended to EMV
signatures, an ISO 9796-2-compliant format with extra redundancy.
In response to this new attack, the ISO 9796-2 standard was amended
again in late 2010.
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1 Introduction

RSA Signatures. RSA [50] is certainly the most popular public-key cryptosys-
tem. A chosen-ciphertext attack against RSA textbook encryption was described
by Desmedt and Odlyzko in [21]. As noted in [43], Desmedt and Odlyzko’s attack
also applies to RSA signatures:

σ = µ(m)d mod N

where µ(m) is an encoding function and d the private exponent. Desmedt and
Odlyzko’s attack only applies if the encoding function µ(m) is much smaller than



N . In which case, one obtains an existential forgery under a chosen-message
attack: the opponent can ask for signatures of any messages of his choosing
before computing, by his own means, the signature of a (possibly meaningless)
message which was never signed by the legitimate owner of d.

One can distinguish two classes of encoding functions µ(m):

1. Ad-hoc encodings are “handcrafted” to thwart certain classes of attacks.
While still in use, ad-hoc encodings are currently being phased-out. PKCS
#1 v1.5 [33], ISO 9796-1 [28] and ISO 9796-2 [29, 30] are typical ad-hoc
encoding examples.

2. Provably secure encodings are designed to make cryptanalysis equivalent to
inverting RSA (generally in the Random Oracle Model [2]). OAEP [3] (for
encryption) and PSS [4] (for signature) are typical provably secure encoding
examples.

For ad-hoc encodings, there is no guarantee that forging signatures is as
hard as inverting RSA, and many such encodings were found to be weaker than
the RSA problem. We refer the reader to [11, 15, 14, 32, 18, 25] for a few char-
acteristic examples. It is thus a practitioner’s rule of thumb to use provably
secure encodings whenever possible. Nonetheless, ad-hoc encodings continue to
populate hundreds of millions of commercial products (e.g. EMV cards) for a
variety of practical reasons. A periodic re-evaluation of such encodings is hence
necessary.

The ISO 9796-2 Standard. ISO 9796-2 is a specific encoding function µ(m)
standardized by ISO in [29]. At Crypto 1999, Coron, Naccache and Stern de-
scribed an attack against ISO 9796-2 [19]. Their attack is an adaptation of
Desmedt and Odlyzko’s cryptanalysis which could not be applied directly since
in ISO 9796-2, the encoding µ(m) is almost as large as the modulus N .

ISO 9796-2 can be used with hash-functions of diverse digest-sizes kh. Coron
et al. estimated that attacking kh = 128 and kh = 160 would require (respec-
tively) 254 and 261 operations. After Coron et al.’s publication ISO 9796-2 was
amended and the official requirement (see [30]) became kh ≥ 160. It was shown
in [16] that ISO 9796-2 can be proven secure in the random oracle model for
e = 2 and if the digest size kh is a least 2/3 the size of the modulus.

Our new attack. In this paper, we describe an improved attack against the
amended version of ISO 9796-2, that is for kh = 160. The new attack applies to
EMV signatures as well. EMV is an ISO 9796-2-compliant format with extra re-
dundancy. Our new attack is similar to Coron et al. forgery but using Bernstein’s
smoothness detection algorithm instead of trial division; we also use some algo-
rithmic refinements: better message choice, large prime variant and optimized
exhaustive search.

In practice we were able to compute forgery for ISO 9796-2 in only two days,
using a few dozens of servers on the Amazon EC2 grid, for a total cost of us$800.
The forgery was implemented for e = 2 but attacking odd exponents would not



take significantly longer.1 We estimate that under similar conditions an EMV
signature forgery would cost us$45,000. Note that all costs are per modulus;
after computing a first forgery for a given N , additional forgeries come at a
negligible cost.

2 The ISO 9796-2 Standard

ISO 9796-2 is an encoding standard allowing partial or total message recovery
[29, 30]. Here we consider only partial message recovery. As already mentioned,
ISO 9796-2 can be used with hash-functions H(m) of diverse digest-sizes kh. For
the sake of simplicity we assume that the hash size kh, the size of m and the
size of N (denoted k) are all multiples of 8; this is also the case in the EMV
specifications. The ISO 9796-2 encoding function is then:

µ(m) = 6A16‖m[1]‖H(m)‖BC16

where the message m = m[1]‖m[2] is split in two: m[1] consists of the k−kh−16
leftmost bits of m and m[2] represents all the remaining bits of m. The size of
µ(m) is therefore always k − 1 bits.

The original version of the standard recommended 128 ≤ kh ≤ 160 for partial
message recovery (see [29], §5, note 4). The new version of ISO 9796-2 [30]
requires kh ≥ 160. The EMV specifications also use kh = 160.

Rabin-Williams Signatures. Since our attack will be implemented for e = 2,
we briefly recall Rabin-Williams signatures. Such signatures use an encoding
function µ(m) such that µ(m) = 12 mod 16 for all m. In contrast with RSA,
it is required that p = 3 mod 8 and q = 7 mod 8. For e = 2 the private key is
d = (N − p − q + 5)/8. To sign a message m, first compute the Jacobi symbol

J =
(µ(m)

N

)
. The signature of m is then s = min(σ,N − σ), where:

σ =

{
µ(m)d mod N if J = 1

(µ(m)/2)
d

mod N otherwise

To verify the signature σ compute ω = s2 mod N and check that:

µ(m)
?
=


ω if ω = 4 mod 8
2 · ω if ω = 6 mod 8
N − ω if ω = 1 mod 8
2 · (N − ω) if ω = 7 mod 8

1 The size of the public exponent affects the linear algebra step of the attack slightly:
for e = 3 or e = 65537, say, that step would take a bit longer, both because some
matrices involves would be a bit less sparse, and because available sparse linear
algebra packages are particularly optimized for the binary case, which is used in
the quadratic sieve (on modern CPUs, they use bit packing, bit fiddling and other
tricks). Nevertheless, the impact would be minor, particularly because the linear
algebra step takes negligible time compared to the search for smooth numbers, for
which the value of e is irrelevant.



The following fact shows that the Rabin-Williams signature verification works
[41]. In particular, the fact that

(
2
N

)
= −1 ensures that either µ(m) or µ(m)/2

has a Jacobi symbol equal to 1.

Fact 1. Let N be an RSA-modulus with p = 3 mod 8 and q = 7 mod 8. Then(
2
N

)
= −1 and

(−1
N

)
= 1. Let d = (N − p − q + 5)/8. Then for any integer x

such that
(
x
N

)
= 1, we have that x2d = x mod N if x is a square modulo N ,

and x2d = −x mod N otherwise.

3 Desmedt-Odlyzko’s Attack

Desmedt and Odlyzko’s attack is an existential forgery under a chosen-message
attack, in which the forger asks for the signature of messages of his choice before
computing the signature of a (possibly meaningless) message that was never
signed by the legitimate owner of d. In the case of Rabin-Williams signatures it
may even happen that the attacker factors N ; i.e. a total break. The attack only
applies if µ(m) is much smaller than N and works as follows:

1. Select a bound B and let P = {p1, . . . , p`} be the list of all primes less or
equal to B.

2. Find at least τ ≥ ` + 1 messages mi such that each µ(mi) is a product of
primes in P.

3. Express one µ(mj) as a multiplicative combination of the other µ(mi), by
solving a linear system given by the exponent vectors of the µ(mi) with
respect to the primes in P.

4. Ask for the signatures of the mi for i 6= j and forge the signature of mj .

In the following we assume that e is prime; this includes e = 2. We let τ be the
number of messages mi obtained at step 2. We say that an integer is B-smooth
if all its prime factors are less or equal to B. The integers µ(mi) obtained at
step 2 are therefore B-smooth and we can write for all messages mi, 1 ≤ i ≤ τ :

µ(mi) =
∏̀
j=1

p
vi,j
j (1)

To each µ(mi) we associate the `-dimensional vector of the exponents modulo
e, that is Vi = (vi,1 mod e, . . . , vi,` mod e). Since e is prime, the set of all `-
dimensional vectors modulo e forms a linear space of dimension `. Therefore, if
τ ≥ ` + 1, one can express one vector, say Vτ , as a linear combination of the
others modulo e, using Gaussian elimination:

Vτ = Γ · e+

τ−1∑
i=1

βiVi



for some Γ = (γ1, . . . , γ`) ∈ Z` and some βi ∈ {0, . . . , e − 1}. This gives for all
1 ≤ j ≤ `:

vτ,j = γj · e+

τ−1∑
i=1

βi · vi,j

Then using (1), one obtains:

µ(mτ ) =
∏̀
j=1

p
vτ,j
j =

∏̀
j=1

p
γj ·e+

τ−1∑
i=1

βi·vi,j

j =

∏̀
j=1

p
γj
j

e

·
∏̀
j=1

τ−1∏
i=1

p
vi,j ·βi
j

µ(mτ ) =

∏̀
j=1

p
γj
j

e

·
τ−1∏
i=1

∏̀
j=1

p
vi,j
j

βi

=

∏̀
j=1

p
γj
j

e

·
τ−1∏
i=1

µ(mi)
βi

That is:

µ(mτ ) = δe ·
τ−1∏
i=1

µ(mi)
βi , where δ :=

∏̀
j=1

p
γj
j (2)

Therefore, we see that µ(mτ ) can be written as a multiplicative combination of
the other µ(mi). For RSA signatures, the attacker will ask for the signatures σi
of m1, . . . ,mτ−1 and forge the signature στ of mτ using the relation:

στ = µ(mτ )d = δ ·
τ−1∏
i=1

(
µ(mi)

d
)βi

= δ ·
τ−1∏
i=1

σβii (mod N)

Rabin-Williams Signatures. For Rabin-Williams signatures (e = 2), the
attacker may even factor N . Let J(x) denote the Jacobi symbol of x with respect
to N . We distinguish two cases. If J(δ) = 1, we have δ2d = ±δ mod N , which
gives from (2) the forgery equation:

µ(mτ )d = ±δ ·
τ−1∏
i=1

(
µ(mi)

d
)βi

(mod N)

If J(δ) = −1, then letting u = δ2d mod N we obtain u2 = (δ2)2d = δ2 mod N ,
which implies (u− δ)(u+ δ) = 0 mod N . Moreover since J(δ) = − J(u) we must
have δ 6= ±u mod N and therefore gcd(u±δ,N) will factor N . The attacker can
therefore submit the τ messages for signature, recover u = δ2d mod N , factor N
and subsequently sign any message.2

2 In both cases we have assumed that the signature is always σ = µ(m)d mod N ,
whereas by definition a Rabin-Williams signature is σ = (µ(m)/2)d mod N when
J(µ(m)) = −1. A possible work-around consists in discarding such messages but it
is also easy to adapt the attack to handle both cases.



Attack complexity. The complexity of the attack depends on the number of
primes ` and on the probability that the integers µ(mi) are p`-smooth, where
p` is the `-th prime. We define ψ(x, y) = #{v ≤ x, such that v is y-smooth}. It
is known [22] that, for large x, the ratio ψ(x, t

√
x)/x is equivalent to Dickman’s

function defined by:

ρ(t) =


1 if 0 ≤ t ≤ 1

ρ(n)−
∫ t

n

ρ(v − 1)

v
dv if n ≤ t ≤ n+ 1

ρ(t) is thus an approximation of the probability that a u-bit number is 2u/t-
smooth; Table 1 gives the numerical value of ρ(t) (on a logarithmic scale) for
1 ≤ t ≤ 10. The following theorem [12] gives an asymptotic estimate of the
probability that an integer is smooth:

Theorem 1. Let x be an integer and let Lx[β] = exp
(
β ·
√

log x log log x
)
. Let

t be an integer randomly distributed between zero and xγ for some γ > 0. Then
for large x, the probability that all the prime factors of t are less than Lx[β] is
given by Lx [−γ/(2β) + o(1)].

Using this theorem, an asymptotic analysis of Desmedt and Odlyzko’s attack
is given in [17]. The analysis yields a time complexity of:

Lx[
√

2 + o(1)]

where x is a bound on µ(m). This complexity is sub-exponential in the size of the
integers µ(m). In practice, the attack is feasible only if the µ(mi) are relatively
small (e.g. less than 200 bits).

t 1 2 3 4 5 6 7 8 9 10

− log2 ρ(t) 0.0 1.7 4.4 7.7 11.5 15.6 20.1 24.9 29.9 35.1

Table 1. The value of Dickman’s function for 1 ≤ t ≤ 10.

4 Coron-Naccache-Stern’s Attack

The Desmedt-Odlyzko’s attack recalled in the previous section does not apply
directly against ISO 9796-2, because in ISO 9796-2 the encoding function µ(m)
is as long as the modulus N . Coron-Naccache-Stern’s workaround [19] consisted
in generating messages mi such that a linear combination ti of µ(mi) and N is
much smaller than N . Then, the attack can be applied to the integers ti instead
of µ(mi).



More precisely, Coron et al. observed that it is sufficient to find a constant a
and messages mi such that:

ti = a · µ(mi) mod N

is small, instead of requiring that µ(mi) is small. Namely, the factor a can be
easily dealt with by regarding a−1 mod N as an “additional factor” in µ(mi);
to that end we only need to add one more column in the matrix considered in
Section 3. In their attack the authors used a = 28.

Obtaining a small a · µ(m) mod N is done in [19] as follows. From the defi-
nition of ISO 9796-2:

µ(m) = 6A16 ‖ m[1] ‖ H(m) ‖ BC16
= 6A16 · 2k−8 + m[1] · 2kh+8 + H(m) · 28 + BC16

where k is the modulus N size in bits, and kh is the hash size. Euclidean division
by N provides b and 0 ≤ r < N < 2k such that:

(6A16 + 1) · 2k = b ·N + r

Denoting N ′ = b ·N one can write:

N ′ = 6A16 · 2k + (2k − r)
= 6A16 ‖ N ′[1] ‖N ′[0]

where N ′ is k+7 bits long and N ′[1] is k−kh−16 bits long, the same bit-length
as m[1]. Consider now the linear combination:

t = b ·N − a · µ(m)
= N ′ − 28 · µ(m)

By setting m[1] = N ′[1] we get:

t = 6A16 ‖ N ′[1] ‖ N ′[0]
− 6A16 ‖ m[1] ‖ H(m)‖BC0016

= ���6A16 ‖���N ′[1] ‖ N ′[0]
−���6A16 ‖���N ′[1] ‖ H(m)‖BC0016

= N ′[0]− (H(m)‖BC0016)

which gives |t| ≤ 2kh+16. For kh = 160, the integer t is therefore at most 176-bits
long.

The forger can thus modify m[2], and therefore H(m), until he gets a set of
messages whose t-values are B-smooth and express one such µ(mτ ) as a mul-
tiplicative combination of the others. As per the analysis in [19], attacking the
instances kh = 128 and kh = 160 requires (respectively) 254 and 261 operations.

5 Our new Attack

We improve the above complexities by using four new ideas: we accelerate
Desmedt-Odlyzko’s process using Bernstein’s smoothness detection algorithm
[7], instead of trial division; we also use the large prime variant [1]; moreover,
we modify Coron et al.’s attack by selecting better messages and by optimizing
exhaustive search to balance complexities.



5.1 Bernstein’s Smoothness Detection Algorithm

The B-smooth part of an integer t is the product (with multiplicities) of all of
its prime factors less or equal to B. In particular, an integer t is B-smooth if
and only if its B-smooth part is equal to t.

Bernstein [7] describes the following algorithm for finding the B-smooth parts
of each integer in a large list {t1, . . . , tn}, and hence deduce, in particular, which
of those integers are B-smooth.

Algorithm: Given the list of all prime numbers p1, . . . , p` up to B in increasing
order, and a collection of positive integers t1, . . . , tn, output the B-smooth part
of each ti:

1. Compute the product z ← p1× · · · × p`. This can be done in time and space
Õ(`) using a product tree.

2. Compute the modular reductions z1 ← z mod t1, . . . , zn ← z mod tn of z
modulo each of the ti’s. This can again be done in quasilinear time in the
size of the input using a remainder tree.

3. For each i ∈ {1, . . . , n}: Compute yi ← (zi)
2e mod ti by repeated squaring,

where e is the smallest non-negative integer such that 22
e ≥ ti.

4. For each i ∈ {1, . . . , n}: output si ← gcd(ti, yi) as the B-smooth part of ti.

The algorithm is correct since for each i ∈ {1, . . . , n}:

yi ≡
∏̀
j=1

p2
e

j (mod ti)

and hence, if we denote by vj(ti) the pj-adic valuation of ti, we have:

si = gcd(ti, yi) =
∏̀
j=1

p
min(vj(ti),2

e)
j =

∏̀
j=1

p
vj(ti)
j

in view of the choice of e, and this is clearly the B-smooth part of ti.
In order to achieve a satisfactory time complexity, it is important to use

efficient integer arithmetic and tree-based algorithms in Steps 1 and 2.
Indeed, a naive algorithm for the computation of the product z = p1×· · ·×p`

would amount to `− 1 multiplications of integers of size close to to the size of z
(namely Õ(`) bits), and would thus require quadratic time even with quasilinear
arithmetic. Instead, the tree-based approach consists in carrying out the `/2
products p1p2, p3p4, . . . between contiguous pairs of pi’s, which are numbers of
size ≤ 2 log `; and then the `/4 products (p1p2)(p3p4), (p5p6)(p7p8), . . . between
pairs of pairs, which are of size ≤ 4 log `; and so on until the whole product
is obtained. The product tree has depth log2 ` and level k consists of `/2k+1

multiplications of numbers of 2k+1 log ` bits, so that the overall complexity is
quasilinear in `.

Similarly, to compute the modular reductions of z modulo each of the ti’s, one
does not carry out each of the n Euclidean divisions sequentially, which would



take time Õ(n`), but instead computes a product tree of the ti’s, and then carries
out the Euclidean division of z by the product of the first half all ti’s on the one
hand (that product is a node in the product tree), and by the product of the
second half of all ti’s on the other hand (also a node in the product tree). This

first level takes time 2×Õ(`+nα/2), where α is the bitsize of the ti’s. Then, the
remainder of the first division is divided by the product of the first quarter of
all ti’s, and by the product of the second quarter, whereas the remainder of the
second division is divided by the product of the third quarter of all ti’s, and by
the fourth quarter, for a total time of 4×Õ(nα/4). And so on and so forth until
the leaves of the tree are reached, at which points one obtains all the remainders
of z modulo the ti’s. Level k consists of 2k+1 Euclidean divisions by integers
of nα/2k bits, and there are log2(nα) levels, so that the overall complexity is
quasilinear in nα (and separately `, accounting for the first level).

As a result, Bernstein obtains the following theorem.

Theorem 2 (Bernstein). The algorithm computes the B-smooth part of each
integer ti in time O(β log2 β log log β), where β is the number of input bits.

In other words, given a list of n integers ti < 2α and the list of the first `
primes, the algorithm will detect the B-smooth ti’s, where B = p`, in complexity:

O(β · log2 β · log log β)

where β = n ·α+ ` · log2 ` is the total number of input bits. For large n and fixed
α, `, the asymptotic complexity is O(n · α · log2 n · log log n).

Optimization for large n. When n is very large, it becomes actually more
efficient to run the algorithm k times, on batches of n′ = n/k integers. In the
following we determine the optimal n′ and the corresponding running time. We
assume that for a single batch the algorithm runs in time:

BatchTime(n′, α, `) = C · β′ · log2 β′ · log log β′

where C is a constant and β′ = n′ · α + u is the bit-length of the batch, where
u = ` · log2 ` is the pi-list’s size in bits. The total running time is then:

TotalTime(n, α, `, n′) = C · n
n′
· β′ · log2 β′ · log log β′

The running time of a single batch only depends on β′. Hence, as a first
approximation one could select an n′ equating the sizes of the ti-list and the
pi-list. This gives n′ · α = u, and therefore β′ = 2n′ · α, which gives a total
running time of C · 2n · α · log2 β′ · log log β′.

A more accurate analysis reveals that TotalTime is minimized for a slightly
larger value of n′. Let u = ` · log2 ` and n′ such that n′ · α = γ · u for some
parameter γ, which gives β′ = (γ + 1) · u, and:

TotalTime(n, α, `, γ) = C · n · α
u
· β
′ · log2 β′ · log log β′

γ



We look for the optimal γ. We neglect the log log β′ term and consider the
function:

f(u, γ) =
β′ · log2 β′

γ
where β′ = u · (γ + 1)

Setting ∂f(u, γ)/∂γ = 0, we get u · (log2 β′ + 2 log β′) · γ − β′ log2 β′ = 0, which
gives (log b + 2) · γ = (γ + 1) log b and then 2γ = log b. This gives 2γ = log u +
log(γ + 1), and neglecting the log(γ + 1) term, we finally get:

γ = (log u)/2

as the optimal γ. This translates into running time as:

TotalTime(n, α, `) ' C · n · α · log2 β′ · log log β′ (3)

where β′ ' (u log u)/2 and u = ` · log2 `.

Other optimizations. Bernstein recommends a number of speed-up ideas of
which we used a few. In our experiments we used the scaled remainder tree [9],
which replaces most division steps in the remainder tree by multiplications. This
algorithm is fastest when fft multiplications are done modulo numbers of the
form 2α − 1: we used this Mersenne fft multiplication as well, as implemented
in Gaudry, Kruppa and Zimmermann’s gmp patch [24]. Other optimizations
included computing the product z only once, and treating the prime 2 separately.

Bernstein’s algorithm was actually the main source of the attack’s improve-
ment. It proved about 1000 faster than the trial division used in [19].

5.2 The Large Prime Variant

An integer is said to be semi-smooth with respect to y and z if its greatest
prime factor is ≤ y and all other factors are ≤ z. Bach and Peralta [1] define the
function σ(u, v), which plays for semi-smoothness the role played by Dickman’s
ρ function for smoothness: σ(u, v) is the asymptotic probability that an integer
n is semi-smooth with respect to n1/v and n1/u.

In our attack we consider integers ti which are semi-smooth with respect
to B2 and B, for some second bound B2 such that B < B2 < B2. This is
easy to detect using Bernstein’s algorithm: for ti to be (B2, B)-semi-smooth, it
suffices that its B-smooth part si (as computed by the algorithm above) satisfy
ti/si ≤ B2. Indeed, by definition, ti/si has no prime factor smaller than B;
therefore, if it is less or equal to B2 < B2 it must be prime itself (or equal to 1),
and thus ti = si · (ti/si) is (B2, B)-semi-smooth.

Namely it is often convenient in sieving algorithms for integer factorization
and other problems (NFS, index calculus, etc.) to consider not only smooth num-
bers, which can be decomposed over the factor base, but also semi-smooth num-
bers, which cannot be decomposed directly, but do yield decomposable numbers
when two or more are found corresponding to the same large prime: in other
words, if t1, t2 are both (B2, B)-semi-smooth, and the large primes t1/s1 and



t2/s2 are equal, then the rational number t1/t2 is B-smooth and can thus be
considered in the relation-finding stage.

A detailed complexity analysis of this “large prime” variant in our context is
provided in Appendix A.

5.3 Constructing Smaller a · µ(m) − b ·N Candidates

In this paragraph we show how to construct smaller ti = a ·µ(mi)− b ·N values
for ISO 9796-2. Smaller ti-values increase smoothness probability and hence
accelerate the forgery process.

We write:

µ(x, h) = 6A16 · 2k−8 + x · 2kh+8 + h · 28 + BC16

where x = m[1] and h = H(m), with 0 < x < 2k−kh−16.
We first determine a, b > 0 such that the following two conditions hold:

0 < b ·N − a · µ(0, 0) < a · 2k−8 (4)

b ·N − a · µ(0, 0) = 0 (mod 28) (5)

and a is of minimal size. Then by Euclidean division we compute x and r such
that:

b ·N − a · µ(0, 0) = (a · 2kh+8) · x+ r

where 0 ≤ r < a · 2kh+8 and using (4) we have 0 ≤ x < 2k−kh−16 as required.
This gives:

b ·N − a · µ(x, 0) = b ·N − a · µ(0, 0)− a · x · 2kh+8 = r

Moreover as per (5) we must have r = 0 mod 28; denoting r′ = r/28 we obtain:

b ·N − a · µ(x, h) = r − a · h · 28 = 28 · (r′ − a · h)

where 0 ≤ r′ < a · 2kh . We then look for smooth values of r′ − a · h, whose size
is at most kh plus the size of a.

If a and b are both 8-bit integers, this gives 16 bits of freedom to satisfy
both conditions (4) and (5); heuristically each of the two conditions is satisfied
with probability ' 2−8; therefore, we can expect to find such an {a, b} pair;
we can enable slightly larger a and b if necessary. For example, for the RSA-
2048 challenge, we found {a, b} to be {625, 332}; therefore, for RSA-2048 and
kh = 160, the integer to be smooth is 170-bits long (instead of 176-bits in Coron
et al.’s original attack). This decreases the attack complexity further. We provide
in Table 2 the optimal {a, b} pairs for for several RSA challenge moduli.

6 Attacking ISO 9796-2

We combined all the building-blocks listed in the previous section to compute
an actual forgery for ISO 9796-2, with the RSA-2048 challenge modulus. The



Challenge RSA-704 RSA-768 RSA-896 RSA-1024 RSA-1536 RSA-2048

a 481 251 775 311 581 625

b 228 132 412 172 316 332

Table 2. {a, b} values for several RSA challenge moduli.

implementation replaced Coron et al.’s trial division by Bernstein’s algorithm,
replaced Coron et al.’s a · µ(m) − b ·N values by the shorter ti’s introduced in
paragraph 5.3 and took advantage of the large prime variant. Additional speed-
up was obtained by exhaustive search for particular digest values.

As is usual for algorithms based on sieving methods, our attack can be
roughly divided in two main stages: relation generation on the one hand, in
which we try to generate many smooth and semismooth values ti, yielding a
large, sparse matrix of relations over our factor base, and linear algebra on the
other hand, where we look for a non zero vector in the kernel of that large matrix,
deducing a forgery. We provide technical details on both stages below.

6.1 Relation generation

Relation generation in our attacks amounted to computing many integers of the
form ti = bN − aµ(x, hi) discussed in §5.3 (at most 170 bits long), and using
Bernstein’s algorithm to find the smooth and semismooth ones among them
(with respect to suitable smoothness bounds). As shown in §5.1, Bernstein’s
algorithm is best applied on relatively small batches of such integers, and the
whole relation generation process is thus an embarrassingly parallel problem.

As a result, we found it convenient to run this part of the attack on Amazon’s
EC2 cloud computing service, which also helps putting a simple dollar figure on
the complexity of cryptanalytic attacks.

The Amazon grid. Amazon Web Services, Inc. offers virtualized computer
instances for rent on a pay by the hour basis, which we found convenient to run
our computations. At the time of our attack, the best-suited for cpu-intensive
tasks featured 8 Intel Xeon 64-bit cores clocked at 2.4ghz supporting the Core2
instruction set, as well as 7gb ram and 1.5tb disk space. Renting such a capacity
cost us$0.80 per hour. One could launch up to 20 such instances in parallel, and
possibly more subject to approval by Amazon (20 were enough for our purpose
so we didn’t apply for more).

When an instance is launched, it starts up from a disk image containing a
customizable unix operating system. In the experiment, we ran a first instance
using the basic Linux distribution provided by default, installed necessary tools
and libraries, compiled our own programs and made a disk image containing our
code, to launch subsequent instances with. When an instance terminates, its disk
space is freed, making it necessary to save results to some permanent storage
means. We simply transfered results to a machine of ours over the network.



Amazon also charges for network bandwidth but data transmission costs were
negligible in our case.

All in all, we used about 1,100 instance running hours (including setup and
tweaks) over a little more than two days. While we found the service to be
rather reliable, one instance failed halfway through the computation, and its
intermediate results were lost.

Parameter selection. The optimal choice of ` for 170 bits is about 221. Since
the Amazon instances are memory-constrained (less than 1gb of ram per core),
we preferred to use ` = 220. This choice had the additional advantage of making
the final linear algebra step faster, which is convenient since this step was run
on a single off-line pc. Computing the product of the first ` primes itself, as used
in Bernstein’s algorithm, was done once and for all in a matter of seconds using
mpir [26].

Hashing. Since smoothness detection part of the attack works on batches of
ti’s (in our cases, we chose batches of 219 integers), we had to compute digests
of messages mi in batches as well. The messages themselves are 2048-bit long,
i.e. as long as N , and with the following structure: a constant 246-byte prefix
followed by a 10-byte seed. The first two bytes identify a family of messages
examined on a single core of one Amazon instance, and the remaining eight
bytes are explored by increments of 1 starting from 0.

Messages were hashed using Openssl’s implementation of sha-1. For each
message, we only need to compute one sha-1 block, since the first three 64-byte
blocks are fixed. This computation is relatively fast compared to Bernstein’s
algorithm, so we have a bit of leeway for exhaustive search. We can compute a
large number of digests, keeping the ones likely to give rise to a smooth ti. We
did this by selecting digests for which the resulting ti would have many zeroes
as leading and trailing bits.

More precisely, we looked for a particular bit pattern at the beginning and
at the end of each digest hi, such that finding n matching bits results in n
null bits at the beginning and at the end of ti. The probability of finding n
matching bits when we add the number of matches at the beginning and at the
end is (1 +n/2) ·2−n, so we expect to compute 2n/(1 +n/2) digests per selected
message. We found n = 8 to be optimal: on average, we need circa 50 digests to
find a match, and the resulting ti is at most 170−8 = 162 bit long (once powers
of 2 are factored out).

Finding smooth and semi-smooth integers Once a batch of 219 appro-
priate ti’s is generated, we factor out powers of 2, and feed the resulting odd
numbers into our C++ implementation of Bernstein’s algorithm. This imple-
mentation uses the mpir multi-precision arithmetic library [26], which we chose
over vanilla gmp because of a number of speed improvements, including J.W.
Martin’s patch for the Core2 architecture. We further applied Gaudry, Kruppa



and Zimmermann’s fft patch, mainly for their implementation of Mersenne fft
multiplication, which is useful in the scaled remainder tree [9].

We looked for B-smooth as well as for (B,B2)-semi-smooth ti’s, where B =
16,290,047 is the 220-th prime, and B2 = 227. Each batch took ' 40 seconds to
generate and to process, and consumed about 500mb of memory. We ran 8 such
processes in parallel on each instance to take advantage of the 8 cores, and 19
instances simultaneously.

After processing 647,901 such batches in roughly 1,100 CPU hours and a little
over two days on the wall clock, we finally obtained sufficiently many relations
for our purposes—namely 684,365 smooth ti’s and 366,302 collisions between
2,786,327 semi-smooth ti’s, for a total of 1,050,667 columns (slightly in excess
of the ` = 220 = 1,048,576 required).

6.2 Linear algebra

The output of the relation generation stage was a large, sparse matrix over
GF(2), and all that remained to do to find a forgery was to find a non zero
vector in its kernel. This was done in a few hours on a single desktop PC using
an free software implementation of the block Wiedemann algorithm.

The exponent matrix. More precisely, as mentioned above, the exponent
matrix was of size 1,048,576× 1,050,667, and it had 14,215,602 non zero entries
(13.5 per column on average, or 10−5 sparsity; the columns derived from the
large prime variant tend to have twice as many non-zero entries, of course).

A number of rows contained only one non zero entry. As a preprocessing
stage to the actual linear algebra computation, such rows and the corresponding
columns could be safely removed, and that process was repeated recursively
until no single entry remained. This resulted in a reduced matrix of dimension
750,031× 839,908.

Block Wiedemann. We found non zero kernel elements of the final sparse
matrix over GF(2) using Coppersmith’s block Wiedemann algorithm [13] imple-
mented in wlss2 [34, 40], with parameters m = n = 4 and κ = 2. The whole
computation took 16 hours on one 2.7ghz personal computer, with the first (and
longest) part of the computation using 2 cores, and the final part using 4 cores.

The program obtained 124 kernel vectors with Hamming weights ranging
from 337,458 to 339,641. Since columns obtained from pairs of semi-smooth
numbers account for two signatures each, the number of signature queries re-
quired to produce the 124 corresponding forgeries is slightly larger, and ranges
between 432,903 and 435,859.

Being written with the quadratic sieve in mind, the block Wiedemann algo-
rithm in wlss2 works over GF(2). There exist, however, other implementations
for different finite fields.



6.3 Summary of the experiment

The entire experiment can be summarized as follows:

16,230,259,553,940
digest computations

↓
339,686,719,488 ti’s in

647,901 batches of 219 each
↙ ↘

684,365 366,302 collisions between
smooth ti’s 2,786,327 semi-smooth ti’s

↘ ↙
1,050,667-column matrix

↓
algebra on 839,908 columns
having > 1 nonzero entry

↓
124 kernel vectors

↓
forgery involving 432,903 signatures

7 Cost Estimates

The experiment described in the previous section can be used as a benchmark
to estimate the cost of the attack as a function of the size of the ti’s, denoted α;
this will be useful for analyzing the security of the EMV specifications, where α
is bigger (204 bits instead of 170 bits).

α = log2 ti log2 ` Estimated TotalTime log2 n Amazon EC2 cost (us$)

64 11 15 seconds 20 negligible
128 19 4 days 33 10

160 21 6 months 38 470

170 22 1.8 years 40 1,620

176 23 3.8 years 41 3,300

204 25 95 years 45 84,000

232 27 19 centuries 49 1,700,000

256 30 320 centuries 52 20,000,000

Table 3. Bernstein+Large prime variant. Estimated parameter trade-offs, running
times and costs, for various ti sizes, as of Spring 2009.

Results are summarized in Table 3. We assume that the ti’s are uniformly
distributed α-bit integers and express costs as a function of α. We only take into



account the running time of the smoothness detection algorithm from Section
5.1, and do not include the linear algebra step whose computational requirements
are very low compared to the smoothness detection step. The running times
are extrapolated from the experiments performed in the previous section, using
Equation (3), where the total number of messages n to be examined is estimated
as

n ' `

ρ(α/ log2 p`)

where ρ is Dickman function and p` ' ` log `; for simplicity we don’t consider
the large prime variant. For each value of α, we compute the optimal value of
` that minimizes the running time. The number of signatures required for the
forgery is then τ = `+ 1. Note that in Table 3 we do not assume any exhaustive
search on the ti’s; this is why the cost estimate for α = 170 in Table 3 is about
the double of the cost of our experimental ISO 9796-2 forgery.

Running times are given for a single 2.4ghz pc. Costs correspond to the
Amazon EC2 grid as of Spring 2009, as in the previous section. Estimates show
that the attack is feasible up to ' 200 bits, but becomes infeasible for larger
values of α. We also estimate log2 n, where n is the total number of messages to
be examined.

7.1 Fewer Queries

The number of signatures actually used by the forger is not τ but the number
of nonzero βi values in the formula:

µ(mτ ) =

∏̀
j=1

p
γj
j

e

·
τ−1∏
i=1

µ(mi)
βi

Assuming that (β1, . . . , βτ−1) is a random vector of Zτ−1e only τ(e− 1)/e of
the signatures will be actually used to compute the forgery. The gain is signif-
icant when e is a very small exponent (e.g. 2 or 3). However, one can try to
generate more than τ candidates but select the subset of signatures minimizing
the number of nonzero βi values. Such a sparse β-vector may allow to reduce the
number of queries and defeat ratification counters meant to restrict the number
of authorized signature queries.

In essence, we are looking at a random [`, k] code: a kernel vector has `
components which, for e = 2, can be regarded as a set of independent unbiased
Bernoulli variables. The probability that such a vector has weight less than

w =
τ−1∑
i=1

βi is thus:

w∑
j=1

(
`

j

)
2−` ' 1

2

(
1 + erf

(
w − `/2√

`/2

))



We have 2k such vectors in the kernel, hence the probability that at least one of
them has a Hamming weight smaller than w is surely bounded from above by:

2k × 1

2

(
1 + erf

(
w − `/2√

`/2

))
= 2k−1

(
1 + erf

(
w − `/2√

`/2

))
Let c denote the density bias of w i.e., w = (1/2 − c)`. The previous bound
becomes:

p(c) = 2k−1
(

1 + erf
(
−c
√

2`
))

= 2k−1
(

1− erf
(
c
√

2`
))

= 2k−1 erfc(c
√

2`) ∼
`→+∞

2k−1 exp(−2`c2)

c
√

2π`

For ` = 220, even if we take k as large as 210 (the largest subspace dimension
considered tractable, even in much smaller ambient spaces), we get p(1/50) '
10−58, so the probability that there exists a kernel vector of weight w < 500,000
is negligible. In addition, even if such a vector existed, techniques for actually
computing it, e.g. [10], seem to lag far behind the dimensions we deal with.

It follows that a better strategy to diminish w is to simply decrease `. The
expected payoff might not be that bad: If the attacker is limited to, say, 216

signatures, then he can pick ` = 217, and for 196-bit numbers (204 bits minus 8
bits given by exhaustive search), the attack becomes about 15 times slower than
the optimal choice, ` = 224 (note as well that more exhaustive search becomes
possible in that case). That is slow, but perhaps not excruciatingly so.

8 Application to EMV Signatures

EMV is a collection of industry specifications for the inter-operation of payment
cards, pos terminals and atms. The EMV specifications [23] rely on ISO 9796-2
signatures to certify public-keys and to authenticate data. For instance, when
an Issuer provides application data to a Card, this data must be signed using
the Issuer’s private key Si. The corresponding public-key Pi must be signed by
a Certification Authority (ca) whose public-key is denoted Pca. The signature
algorithm is RSA with e = 3 or e = 216 + 1. The bit length of all moduli is
always a multiple of 8.

EMV uses special message formats; 7 different formats are used, depending
on the message type. In the following we describe one of these formats: the Static
Data Authentication, Issuer Public-key Data (SDA-IPKD), and adapt our attack
to it.

8.1 EMV Static Data Authentication, Issuer Public-key Data
(SDA-IPKD)

We refer the reader to §5.1, Table 2, page 41 in EMV [23]. SDA-IPKD is used by
the ca to sign the issuer’s public-key Pi. The message to be signed is as follows:

m = 0216‖X‖Y ‖Ni‖0316



where X represents 6 bytes that can be controlled by the adversary and Y
represents 7 bytes that cannot be controlled. Ni is the Issuer’s modulus to be
certified. More precisely, X = id‖date where id is the issuer identifier (4 bytes)
and date is the Certificate Expiration Date (2 bytes); we assume that both can
be controlled by the adversary. Y = csn‖C where csn is the 3-bytes Certificate
Serial Number assigned by the ca and C is a constant. Finally, the modulus to
be certified Ni can also be controlled by the adversary.

With ISO 9796-2 encoding, this gives:

µ(m) = 6A0216‖X‖Y ‖Ni,1‖H(m)‖BC16

where Ni = Ni,1‖Ni,2 and the size of Ni,1 is k − kh − 128 bits. k denotes the
modulus size and kh = 160 as in ISO 9796-2.

8.2 Attacking SDA-IPKD

To attack SDA-IPKD write:

µ(X,Ni,1, h) = 6A0216 · 2k1 +X · 2k2 + Y · 2k3 +Ni,1 · 2k4 + h

where Y is constant and h = H(m)‖BC16. We have:
k1 = k − 16
k2 = k1 − 48 = k − 64
k3 = k2 − 56 = k − 120
k4 = kh + 8 = 168

Generate a random ka-bit integer a, where 36 ≤ ka ≤ 72, and consider the
equation:

b ·N − a · µ(X, 0, 0) = b ·N − a ·X · 2k2 − a · (6A0216 · 2k1 + Y · 2k3)

If we can find integers X and b such that 0 ≤ X < 248 and:

0 ≤ b ·N − a · µ(X, 0, 0) < a · 2k3 (6)

then as previously we can compute Ni,1 by Euclidean division:

b ·N − a · µ(X, 0, 0) = (a · 2k4) ·Ni,1 + r (7)

where 0 ≤ Ni,1 < 2k3−k4 as required and 0 ≤ r < a · 2k4 , which gives:

b ·N − a · µ(X,Ni,1, h) = r − a · h

and therefore |b ·N − a · µ(X,Ni,1, h)| < a · 2k4 for all values of h.
In the above we assumed Y to be a constant. Actually the first 3 bytes of Y

encode the csn assigned by the ca, and may be different for each new certificate
(see Appendix B). However if the attacker can predict the csn, then he can



compute a different a for every Y and adapt the attack by factoring a into a
product of small primes.

Finding small X and b so as to minimize the value of

|b ·N − a ·X · 2k2 − a · (6A0216 · 2k1 + Y · 2k3)|

is a Closest Vector Problem (cvp) in a bi-dimensional lattice; a problem that can
be easily solved using the LLL algorithm [36]. We first determine heuristically
the minimal size that can be expected; we describe the LLL attack in Appendix
B.

Since a · 6A0216 · 2k1 is an (k + ka)-bit integer, with X ' 248 and b ' 2ka ,
heuristically we expect to find X and b such that:

0 ≤ b ·N − a · µ(X, 0, 0) < 2(k+ka)−48−ka = 2k−48 ' a · 2k−48−ka = a · 2k3+72−ka

which is (72−ka)-bit too long compared to condition (6). Therefore, by exhaus-
tive search we will need to examine roughly 272−ka different integers a to find
a pair (b,X) that satisfies (6); since a is ka-bits long, this can be done only if
72 − ka ≤ ka, which gives ka ≥ 36. For ka = 36 we have to exhaust the 236

possible values of a.
Once this is done we obtain from (7):

t = b ·N − a · µ(X,Ni,1, h) = r − a · h

with 0 ≤ r < a · 2k4 . This implies that the final size of t values is 168 + ka bits.
For ka = 36 this gives 204 bits (instead of 170 bits for plain ISO 9796-2). The
attack’s complexity will hence be higher than for plain ISO 9796-2.

In Appendix B we exhibit concrete (a, b,X) values for ka = 52 and for the
RSA-2048 challenge; this required ' 223 trials (109 minutes on a single pc). We
estimate that for ka = 36 this computation will take roughly 13 years on a single
pc, or equivalently us$11,000 using the EC2 grid.

9 Conclusion

We have described an improved attack against the amended version of ISO 9796-
2, that is for kh = 160. The new attack applies to EMV signatures as well. Our
new attack is similar to Coron et al. forgery but using Bernstein’s smoothness
detection algorithm instead of trial division. In practice we were able to compute
a forgery for ISO 9796-2 in only two days, using a few dozens of servers on the
Amazon EC2 grid, for a total cost of us$800.

In response to this attack, the ISO 9796-2 standard was amended [31] to
discourage the use of the ad-hoc signature padding in contexts where chosen-
message attacks are an issue.

References

1. E. Bach and R. Peralta, Asymptotic semismoothness probabilities, Mathematics
of Computation, vol. 65, number 216, 1996, pp. 1701–1715.



2. M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing
efficient protocols, Proceedings of ccs 1993, acm, 1993, pp. 62–73.

3. M. Bellare and P. Rogaway, Optimal Asymmetric Encryption: How to encrypt with
RSA, Proceedings of Eurocrypt 1994, lncs, vol. 950, Springer-Verlag, 1995, pp.
92–111.

4. M. Bellare and P. Rogaway, The Exact security of digital signatures: How to sign
with RSA and Rabin, Proceedings of Eurocrypt 1996, lncs, vol. 1070, Springer-
Verlag, 1996, pp. 399–416.

5. D.J. Bernstein and T. Lange (editors), ebacs: ecrypt Benchmarking of crypto-
graphic systems, bench.cr.yp.to.

6. D.J. Bernstein, Fast Multiplications and its applications, Algorithmic Number The-
ory, vol. 44, 2008.

7. D.J. Bernstein, How to find smooth parts of integers, 2004/05/10, cr.yp.to/

papers.html\#smoothparts.
8. D.J. Bernstein, Proving tight security for Rabin-Williams signatures. Proceedings

of Eurocrypt 2008, lncs, vol. 4665, Springer-Verlag, 2008, pp. 70–87.
9. D.J. Bernstein, Scaled remainder trees, 2004/08/20, cr.yp.to/papers.html\

#scaledmod.
10. D.J. Bernstein, T. Lange and Ch. Peters, Attacking and defending the McEliece

cryptosystem, Proceedings of Post-Quantum Cryptography 2008, lncs, vol. 5299,
Springer-Verlag, 2008, pp. 31–46.

11. D. Bleichenbacher, Chosen ciphertext attacks against protocols based on the RSA
encryption standard, Proceedings of Crypto 1998, lncs, vol. 1462, Springer-Verlag,
1998, pp. 1–12.
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A Large Prime Variant: Complexity Analysis

In this appendix we provide an accurate analysis of the large prime variant in
the context of our attack.

Assume that we check our ti-list for (B,B2)-semi-smoothness (instead of B-
smoothness) and detect η semi-smooth numbers. Amongst those, we expect to
find ηλ numbers that are actually B-smooth, for some λ ∈ [0, 1] that can be
expressed in terms of ρ and σ functions. If we further assume that the η(1− λ)
remaining numbers, which are semi-smooth but non-smooth, have their largest
prime factors uniformly distributed amongst the h primes between B and B2, we
expect to find about η2(1 − λ)2/(2h) “collisions” between them, that is, about
η2(1− λ)2/(2h) pairs of numbers with the same largest prime factor.

Note that:

h ' B2

logB2
−B

Let ` be the number of primes less than B. The smooth numbers in the list
yield a total of ηλ exponent vectors over the first ` primes, and each of the
collisions between the remaining semi-smooth numbers yields such an additional
exponent vector. Since we need (slightly more than) ` vectors to forge a signature,
we should examine enough ti’s to find η semi-smooth numbers, where η satisfies:

` = ηλ+
η2(1− λ)2

2h

Solving for η, we get:

η =
2`

λ+
√

2` · (1− λ)2/h+ λ2



The probability β that a random α-bit integer is semi-smooth with respect
to B2 and B ' ` · log ` is:

β = σ

(
α log 2

log(` log `)
,
α log 2

logB2

)
and if γ denotes the probability that a random α-bit integer is B-smooth, we
have:

λ =
γ

β
= ρ

(
α log 2

log(` log `)

)
/σ

(
α log 2

log(` log `)
,
α log 2

logB2

)
In this large prime variant, we only need to generate n′ = η/β numbers to

find enough exponent vectors, as opposed to n = `/γ previously. Therefore, the
large prime variant improves upon simple smoothness by a factor of roughly:

ϑ =
n

n′
=
`/γ

η/β
=

1

λ
· `
η

=
1

2

1 +

√
1 +

2`

h

(
1

λ
− 1

)2
 ≥ 1 (8)

ϑ is always greater than 1, and for the sizes we are interested in, say 100 ≤
α ≤ 200, we find ϑ ' 1.5 for the best choice of B, and B2 & 7B. The reader is
referred to Table 4 for precise figures.

Integer size α 128 144 160 176 192

Optimal log2(`) 19 20 21 23 24

Best ϑ 1.43 1.46 1.49 1.43 1.45

Table 4. Improvement factor ϑ due to the large prime variant.

According to formula (8), ϑ increases until B2 reaches ' 7B, and decreases
slowly thereafter. This is actually not the case: finding a larger ti population
to be semi-smooth can only produce more collisions. The decrease suggested by
formula (8) stems from the assumption that the largest prime factors of the ti’s
are uniformly distributed amongst the h primes between B and B2, which is only
approximately true. The imprecision grows with h (a larger B2 doesn’t spread
the largest prime factors more thinly). Choosing a very large B2 is not advisable,
however, because it produces considerable extra output (searching for collisions
becomes cumbersome) with negligible returns in terms of actual collisions. In
the practical attack, we selected ` = 220 and B2 = 227 ' 9B.

B LLL Attack on EMV SDA-IPKD Encoding

B.1 The LLL Attack

Given a, N we must minimize the value of:∣∣b ·N − a ·X · 2k2 − a · (6A0216 · 2k1 + Y · 2k3)
∣∣



We show how this can be done using LLL. We write:

u = a · 2k2

v = a · (6A0216 · 2k1 + Y · 2k3)

where N ' 2k, X ' 248, a ' 2ka , u ' 2k−64+ka and v ' 2k+ka .
Hence we must minimize the absolute value of:

t = b ·N − x · u− v

Consider the lattice of column vectors:

L =

 2k−48

2k−96

N − u − v


As seen previously, heuristically, we can obtain t ' 2k−48; therefore the coef-
ficients in L are chosen so as to obtain a short vector of norm ' 2k−48. More
precisely, we look for a short column vector c ∈ L of the form:

c =

 2k−48

x · 2k−96
b ·N − u · x− v


Theorem 3 (LLL). Let L be a lattice spanned by (u1, . . . , uω). The LLL algo-
rithm, given the vectors (u1, . . . , uω), finds in polynomial time a vector b1 such
that:

‖b1‖ ≤ 2(ω−1)/4 det(L)1/ω

Therefore, using LLL we can find a short vector of norm:

‖b1‖ ≤ 2 · (detL)1/3 ≤ 2 · (23k−144)1/3 ≤ 2k−47

Heuristically we hope that b1 = c, which allows solving for the values of b and
X. The attack is heuristic but it works very well in practice, as shown in the
next section.

B.2 Practical Value for EMV SDA-IPKD

Consider again the SDA-IPKD EMV format; we write:

µ(X,Ni,1, h) = 6A0216 · 2k1 +X · 2k2 + Y · 2k3 +Ni,1 · 2k4 + h

where the constant Y is taken to be:

Y = 010203 0101 F8 0116

The first 3 bytes correspond to the csn assigned by the ca (we took 01020316),
010116 corresponds to the hash algorithm indicator and to the public-key algo-
rithm indicator. F816 = 248 is the issuer public-key length (in bytes) and 0116 is
the length of the public exponent (e = 3).



Taking the RSA-2048 challenge for N , we have run the attack of the pre-
vious section for ka = 52 and found the following values after 8,303,995 ' 223

iterations:

a = 4127135343129068 b = 2192055331476458 X = 66766242156276

which are such that 0 < X < 248 and:

0 ≤ b ·N − a · µ(X, 0, 0) < a · 2k3 (9)

as required.
The computation took ' 109 minutes on a single 2ghz pc. Therefore, for

ka = 36 we expect that 236 trials to yield a triple {a, b,X} satisfying condition (9)
such that |a| ≤ 236, within a running time of ' 109 ·236−20 = 4.3 ·108 minutes =
13 years on a single pc, or equivalently for us$11,000 using the EC2 grid.


