
How to Build an Ideal Cipher:
The Indifferentiability of the Feistel Construction∗

Jean-Sébastien Coron
University of Luxembourg

jean-sebastien.coron@uni.lu

Thomas Holenstein and Robin Künzler
ETH Zurich, Department of Computer Science, 8092 Zurich, Switzerland

thomas.holenstein@inf.ethz.ch, robink@inf.ethz.ch

Jacques Patarin
University of Versailles-Saint-Quentin, France

jacques.patarin@uvsq.fr

Yannick Seurin
ANSSI, Paris, France

yannick.seurin@m4x.org

Stefano Tessaro
University of California, Santa Barbara, Department of Computer Science

tessaro@cs.ucsb.edu

November 18, 2014

Abstract
This paper provides the first provably secure construction of an invertible random permutation
(and of an ideal cipher) from a public random function that can be evaluated by all parties in
the system, including the adversary. The associated security goal was formalized via the notion
of indifferentiability by Maurer et al. (TCC 2004). The problem is the natural extension of that
of building (invertible) random permutations from (private) random functions, first solved by
Luby and Rackoff (SIAM J. Comput., ’88) via the four-round Feistel construction.

As our main result, we prove that the Feistel construction with fourteen rounds is indiffer-
entiable from an invertible random permutation. We also provide a new lower bound showing
that five rounds are not sufficient to achieve indifferentiability. A major corollary of our result is
the equivalence (in a well-defined sense) of the random oracle model and the ideal cipher model.

Keywords. Random oracle model, ideal cipher model, Feistel construction, indifferentiability.

∗ c© IACR 2014. This article is the final version submitted by the authors to the Journal of Cryptology. The final
publication is available at http://link.springer.com/article/10.1007/s00145-014-9189-6. The results of this
paper were presented in [CPS08a] and [HKT11].

jean-sebastien.coron@uni.lu
thomas.holenstein@inf.ethz.ch
robink@inf.ethz.ch
jacques.patarin@uvsq.fr
yannick.seurin@m4x.org
tessaro@cs.ucsb.edu
http://link.springer.com/article/10.1007/s00145-014-9189-6

Contents

1 Introduction 3
1.1 Random Oracles, Random Permutations, and Ideal Ciphers 3
1.2 Building Ideal Primitives and Indifferentiability . 3
1.3 Our Main Result: Ideal Ciphers Via the Feistel Construction 4
1.4 Technical Overview . 6

1.4.1 Five rounds are not enough . 6
1.4.2 Indifferentiability of the fourteen-round Feistel construction 6

1.5 Model and Notational Conventions . 9

2 The Five-Round Feistel Construction is not Sufficient 9

3 Indifferentiability of the Fourteen-Round Feistel Construction 11
3.1 Simulator Definition . 12

3.1.1 Informal description . 12
3.1.2 The simulator in pseudocode . 14
3.1.3 An example of chain completion . 16

3.2 Proof of Indifferentiability . 17
3.2.1 Overview . 17
3.2.2 Detailed description of the second scenario 19
3.2.3 Detailed description of the third scenario . 20
3.2.4 Indifferentiability . 21

3.3 Complexity of the Simulator . 21
3.4 Equivalence of the First and the Second Scenarios 23
3.5 Equivalence of the Second and the Third Scenarios 27

3.5.1 Overview and intuition . 27
3.5.2 Partial chains . 29
3.5.3 Bad events and good executions . 30
3.5.4 Bad events are unlikely . 32
3.5.5 Properties of good executions . 34
3.5.6 Mapping randomness of S2 to randomness of S3 40

3.6 Equivalence of the Third and the Fourth Scenarios 43

References 44

A A Note on Honest-but-Curious Indifferentiability 48

B Building an Ideal Cipher from a Random Oracle 49

2

1 Introduction

1.1 Random Oracles, Random Permutations, and Ideal Ciphers

Hash functions and block ciphers are the fundamental building blocks of practical cryptography. A
multitude of practical designs for these primitives have been developed and standardized over the
years, and commodity algorithms like the SHA hash-function family and the Advanced Encryption
Standard (AES) find nowadays ubiquitous usage. Following a well-established approach, we seek
to rigorously prove security of applications using these primitives in the so-called standard model,
i.e., via a reduction from a well-defined security assumption such as collision resistance of hash
functions or block-cipher pseudorandomness.

Unfortunately, this is not always possible: Many widely in-use cryptographic schemes elude
standard-model security proofs under non-trivial assumptions, despite a lack of attacks threaten-
ing their security. In these cases, we often settle with proving security in an ideal model where
invocations of the underlying primitive by the scheme are replaced by calls to a randomized oracle
representing an idealized version of the primitive. This oracle is accessible by all parties, including
the adversary. It is well known [CGH04, MRH04, Bla06] that such proofs deliver solely a heuristic
argument. Nevertheless, these security statements enjoy a natural interpretation in terms of lack
of generic structural weaknesses of the scheme at hand, hence raising hope for secure instantiation
via algorithms like SHA-3 and AES.

More concretely, following an approach formalized by Bellare and Rogaway [BR93] (but used
even earlier by Fiat and Shamir [FS86]), a hash function is idealized as a randomized function R
called a random oracle mapping arbitrary bit strings to independent random n-bit digests. Work on
the random oracle model (ROM) encompasses by now thousands of papers. Many widely employed
practical schemes, including OAEP [BR94], FDH [BR93], PSS [BR96], as well as truly efficient
pairing-based cryptography [BF03, BLS04], only enjoy security proofs in the ROM.

A corresponding ideal model for block ciphers dates back to Shannon’s work [Sha49]. An ideal
cipher E : {0, 1}κ × {0, 1}n → {0, 1}n associates each κ-bit key k with an independent randomly
chosen permutation Ek on the n-bit strings, and allows for both forward queries E(k, x) = Ek(x)
and backward queries E−1(k, y) = E−1

k (y) for all k, x, y. Again, application examples of the ideal
cipher abound, and we only mention a few. They range from analyses of block-cipher based
hash function constructions (e.g. in [BRS02]), small-domain encryption [BR02], authenticated key-
agreement protocols [BPR00], and block-cipher key extension [KR01, BR06], to studying generic
related-key attacks [BK03]. If κ = 0, we call the ideal cipher a random permutation, and simply
denote it by P : {0, 1}n → {0, 1}n. The random permutation model has been used in the analysis of
hash [BDPA08, RS08b, RS08a, DRRS09] and block-cipher constructions [EM97, BKL+12, LS13,
CS14, CLL+14].

1.2 Building Ideal Primitives and Indifferentiability

It is natural to ask whether one ideal primitive (and hence model) is stronger or weaker than
another one. At first, an ideal cipher seems to provide a stronger structure and functionality than
a random oracle, as first pointed out in [BPR00]. But, most results in the ICM ended up having
a ROM counterpart, indicating that this may not be true. Conversely, how to provide a provably
sound instantiation of a random oracle using an ideal cipher is also not immediately clear. In
summary, the following two questions appear natural:

Question 1. Can we find an efficient construction C1 invoking a random oracle R
such that CR

1 is “as good as” an ideal cipher E, meaning that any secure application

3

using E remains secure when using CR
1 instead?

Question 2. Conversely to Question 1, is there C2 such that CE
2 is “as good as” a

random oracle R?

While the first question was already asked informally in [BPR00], formalizing the proper notion of
being “as good as” has proved itself a difficult task. For instance, indistinguishability of CR

1 and E
is necessary but not sufficient, as the adversary can exploit access to the underlying primitive R.
For this reason, Maurer et al. [MRH04] put forward the notion of indifferentiability: The system
CR

1 is indifferentiable from E if there exists a simulator1 S accessing E such that (CR
1 ,R) and

(E,SE) are indistinguishable. The definition of CE
2 being indifferentiable from R is analogous, and

the notion in fact generalizes to arbitrary primitives.
As shown in [MRH04], indifferentiability is the “right” notion to instantiate the “as good as”

relation when security of a scheme can be expressed in terms of the real/ideal world paradigm of
simulation-based security frameworks such as [Can01, MR11]. However, with respect to more tradi-
tional game-based security definitions, Ristenpart et al. [RSS11] later showed that indifferentiability
is not sufficient to instantiate the “as good as” relation under a more general view including multi-
stage security games, where the attacker is forced to forget some information during its attack,
while still sufficient for single stage security games. Unfortunately, as recently shown by Demay et
al. [DGHM13], there does not seem to be any hope to positively answer the above two questions
for arbitrary security games. For this reason, this work focuses on indifferentiability, the strongest
notion for which it currently seems possible answering these questions. We in particular note that
a positive answer to both questions implies that the random oracle and the ideal cipher models are
equivalent with respect to most security games, namely all single-stage ones.

When focusing on indifferentiability, Question 2 is well understood and has given rise to an
impactful line of research: Coron et al. [CDMP05], and long series of subsequent works, have pre-
sented several constructions of random oracles from ideal ciphers leveraging hash-function designs
such as the Merkle-Damgård construction [Mer89, Dam89] as well as block-cipher based compres-
sion functions. As a consequence of these results, indifferentiability has become a de facto standard
security requirement for hash function constructions. In a similar vein, answering Question 1
could provide new approaches to designing block ciphers from non-invertible primitives. But in
contrast, the problem appears more challenging and has remained unsolved to date. This work fills
the gap by answering this question in the affirmative.

1.3 Our Main Result: Ideal Ciphers Via the Feistel Construction

The main result of this paper is the first positive answer to Question 1 above:

Main Result (Informal). There exists an efficient construction C such that CR for
a random oracle R is indifferentiable from an ideal cipher E.

Our approach relies on the r-round Feistel construction Ψr, which implements a permutation with
a 2n-bit input (x0, x1) (where x0, x1 are n-bit strings), and a 2n-bit output (xr, xr+1), such that
for i = 1, . . . , r, the i-th round computes

xi+1 := xi−1 ⊕ Fi(xi) ,

where F1, . . . ,Fr : {0, 1}n → {0, 1}n are the so-called round functions. Luby and Rackoff [LR88]
first proved that if the round functions are independent random functions, then Ψ3 is information-
theoretically indistinguishable from a random permutation that does not allow backward queries,

1Usually required to be efficient, i.e., with running time polynomial in the number of queries it processes.

4

whereas Ψ4 is indistinguishable from a full-fledged random permutation. Can we expect a similar
statement to be true for indifferentiability? More concretely, is it possible to prove that if the round
functions are independent random functions, Ψr is indifferentiable from a random permutation for
some r ≥ 4?2 Concretely, with F = (F1, . . . ,Fr) being r independent random functions, and P
being a random invertible permutation, we seek for an efficient simulator S such that (ΨF

r ,F) and
(P,SP) are indistinguishable for all distinguishers making overall a polynomial number of queries
to the given systems.

This suffices to build an ideal cipher form a random oracle R: For each value k of the ideal-
cipher key, one implements the r independent random round functions from the random oracle R by
enforcing domain separation, e.g., letting Fk,i(x) = R(k, 〈i〉, x), where 〈i〉 is the dlog re-bit encoding
of i ∈ {1, . . . , r}. The ideal cipher with key k is implemented by using the Feistel construction with
the round functions Fk,1, . . . ,Fk,r.

Dodis and Puniya [DP06] were the first to study indifferentiability of the Feistel construction.
They showed that ω(logn) rounds of the Feistel construction are sufficient in the honest-but-curious
model of indifferentiability, where the adversary only gets to see queries made by the construction to
the round functions, but is not allowed to issue chosen queries. In the same work, while no positive
results for full indifferentiability where shown, it was first noted that four rounds are insufficient.

Our contributions. This paper provides the first positive result showing indifferentiability of
the Feistel construction with a sufficiently large number of rounds, providing in particular both
upper and lower bounds on the number of rounds necessary for indifferentiability:

• First, we start by providing a new lower bound on the number of rounds that are necessary
in order to ensure indifferentiability of the Feistel construction: Specifically, we prove in
Section 2 that the five-round Feistel construction Ψ5 is not indifferentiable from a random
permutation, therefore showing that at least six rounds are necessary.

• Our main contribution is then given in Section 3: We prove that the fourteen-round Feistel
construction Ψ14 is indifferentiable from a random permutation. In terms of concrete pa-
rameters, if Ψ14 implements a permutation on 2n bit strings, whenever interacting with a
distinguisher making q queries overall, the simulator makes at most 1400q8 queries and runs
in time O(q8). The distinguishing advantage is at most 108·q16

22n + 1022·q10

2n .

Somewhat surprisingly, our result does not improve the work of [DP06] on honest-but-curious
indifferentiability: In particular, we show that this notion is not implied by full indifferentiability
in Appendix A.

The remainder of the introduction provides a high-level outline of the techniques behind our
contributions, as well as a specification of the formal model and notation used throughout the
paper. Before turning to these, however, we find it appropriate to provide some background on the
time line behind the results that constitute the contents of this paper and on related results.

Further background. Establishing our main result is the outcome of an intricate line of works
whose end result is summarized by the present paper. Coron et al. [CPS08a] presented a first
proof that the six-round Feistel construction Ψ6 with independent random round functions is in-
differentiable from a random permutation. Seurin [Seu09] also presented a somewhat simpler in-
differentiability proof for the ten-round Feistel construction Ψ10. Upon publication of these works,

2Note that in contrast to the case of indistinguishability considered by Luby and Rackoff, we cannot construct a
non-invertible random permutation from a random oracle, regardless of the number of rounds. This follows from a
well-known result by Rudich [Rud89] and Kahn et al. [KSS00].

5

the stated equivalence of the random oracle and ideal cipher models has been used for example
to infer security in the random oracle model using an ideal cipher (or random permutation) as
an intermediate step [DPW10] and to prove impossibility of black-box constructions from block
ciphers [LZ09].

Holenstein et al. [HKT11] then gave a distinguishing attack showing that the proof of [CPS08b]
(the full version of [CPS08a]) is not correct: For the simulator given in the proof, they exhibit
an attacker that distinguishes with overwhelming advantage. A further stronger attack appears to
succeed against a large class of simulators following the natural approach of [CPS08b], suggesting
that it may be difficult to give a proof for six rounds. Later, Seurin [Seu11] found a distinguishing
attack showing that the proof of [Seu09] is also not correct.

The main contribution of Holenstein et al. [HKT11] was a proof that the fourteen-round Feis-
tel construction is indifferentiable from a random permutation. The proof was partially based
on [CPS08a], but used several new ideas. More precisely, the simulator is similar to the one
in [Seu09], and for bounding the simulator’s running time, the elegant idea in [CPS08a] is used.

This paper includes both the negative result for five rounds from [CPS08a], and the positive
result for fourteen rounds from [HKT11].

We also note that Mandal et al. [MPS12] showed that the six-round Feistel construction satisfies
the weaker notion of public indifferentiability from a random permutation. Moreover, Lampe and
Seurin [LS13] have adapted the techniques of the present paper to provide a construction of an
ideal cipher from a small number of random permutations using a generalization of the so-called
Even-Mansour construction [EM97]. (An alternative way to use the Even-Mansour construction
for the same goal has been analyzed by Andreeva et al. [ABD+13].)

1.4 Technical Overview

1.4.1 Five rounds are not enough

Let us first briefly address why the five-round Feistel construction is not indifferentiable from a
random permutation. At the high level, we leverage the fact that it is possible—given oracle
access to the round functions—to efficiently find inputs to the construction that, together with the
resulting outputs, satisfy some relation that is hard to satisfy for a random permutation. More
precisely, we show how a distinguisher can find four inputs (x0, x1), (x′0, x′1), (x′′0, x′′1), and (x′′′0 , x′′′1)
with corresponding outputs (x5, x6), (x′5, x′6), (x′′5, x′′6), and (x′′′5 , x′′′6), satisfying the following two
relations:

x1 ⊕ x′1 ⊕ x′′1 ⊕ x′′′1 = 0 , x5 ⊕ x′5 ⊕ x′′5 ⊕ x′′′5 = 0 .
Since finding such inputs for a random permutation is hard, any efficient simulator will necessarily
fail to return consistent answers to the distinguisher.

1.4.2 Indifferentiability of the fourteen-round Feistel construction

We now discuss the techniques behind our main result. To this end, we first discuss the basic
approach to proving that the r-round Feistel construction Ψr, for a sufficiently large number of
rounds r ≥ 6, is indifferentiable from a random permutation, and discuss our concrete instantiation
of this approach. For reference, an illustration of the Feistel construction is provided on Page 13.

Recall that our task is to devise a simulator S that uses a given random permutation P :
{0, 1}2n → {0, 1}2n (accepting both forward and backward queries) to simulate r independent func-
tions F1, . . . ,Fr so that P is consistent with Ψr using these simulated round functions. Concretely,
when asked to evaluate Fi on input xi, the simulator needs to set the value Fi(xi) to some value
yi, but could in fact already have set this value proactively when answering an earlier query.

6

Our Strategy: Simulation via chain-completion. To convey the main idea, suppose that
a distinguisher queries the simulated round functions to evaluate Ψr on input (x0, x1) ∈ {0, 1}2n
obtaining the resulting output (xr, xr+1) by computing xi+1 = xi−1 ⊕ Fi(xi) for all i = 1, . . . , r.
Then, (xr, xr+1) must equal the output of P on input (x0, x1), for otherwise the distinguisher could
easily detect it is not interacting with the real world.3 To this end, the simulator needs to recognize
that the queries x1, . . . , xr belong to an evaluation of Ψr, and to set the values Fi(xi) to enforce
consistency with P. In the following, a sequence of values x1, . . . , xr such that Fi(xi) is defined by
the simulator for all i = 1, . . . , r, and such that xi+1 = xi−1⊕Fi(xi) for all i = 2, . . . , r− 1, will be
called a chain. Partial chains, corresponding to a contiguous subsequence of a chain, are defined
analogously. In addition, such partial chains may also “wrap around”: For example, the sequence
(x1, x2, xr−1, xr) constitutes a partial chain in case P(x0, x1) = (xr, xr+1), where x0 = x2 ⊕F1(x1)
and xr+1 = xr−1 ⊕ Fr(xr). Also, a length-two partial chain (xi, xi+1) corresponds simply to two
values for which Fi(xi) and Fi+1(xi+1) have been defined by the simulator. Note that any given
chain of length at least two allows to evaluate forward and backward w.r.t. the Feistel construction.
We stress that whether a sequence is a partial chain or not is a property that depends on the values
of the round functions which have been defined by the simulator so far.

Our simulation strategy will consider a carefully chosen set of relevant partial chains (i.e., not
all types of partial chains will be detected). Upon a query for Fi with input xi, the simulator
sets Fi(xi) to a fresh random value and looks for new relevant partial chains involving xi, adding
them to a FIFO queue. (There may be many new partial chains!) Then, the simulator repeats the
following, until the queue is empty: It removes the first partial chain from the queue and completes
it to a (full) chain x1, x2, . . . , xr such that P(x0, x1) = (xr, xr+1), where x0 = F1(x1) ⊕ x2 and
xr+1 = Fr(xr)⊕xr−1. In particular, is sets each undefined Fi(xi) to a fresh uniform random string,
with the exception of two consecutive values F`(x`) and F`+1(x`+1) set adaptively for consistency.
We refer to this step as adapting the values of F`(x`) and F`+1(x`+1), and showing that such
adapting is always possible (for some well chosen `) will be a major challenge of our analysis below.
For example, the simulator could complete the partial chain (x7, x8) as follows. First, it evaluates
backward to obtain (x0, x1), setting each undefined Fi(xi) to a fresh uniform random string. It
then sets (xr, xr+1) := P(x0, x1) and continues to evaluate backward and forward (again setting
undefined values to fresh random strings), until only F10(x10) and F11(x11) are undefined. These
two values are then defined as F10(x10) := x9⊕x11, and F11(x11) := x10⊕x12. However, note that
within the process, new values Fj(xj) are defined, which may result in new chains being detected
and added to the queue. When the queue is finally empty, the simulator returns Fi(xi).

We now face three main challenges, and our choice of which partial chains are relevant and how
they are completed will be crucial in order to solve them:

(1) Efficiency: We need to show that the simulation terminates with high probability when an-
swering a query, i.e., early enough the queue becomes empty.

(2) Consistency: We need to show that the values F`(x`) and F`+1(x`+1) which are adapted to
ensure consistency are always undefined whenever a chain is completed.

(3) Indistinguishability: Even if the above two points are successfully shown, it is still necessary
to show that the simulated world cannot be distinguished from the real world.

Our instantiation. We will fix r = 14. As indicated in the illustration on Page 13, upon a query
to F2 or F13, the simulator will detect partial chains of the form (x1, x2, x13, x14), while upon a

3Of course, much more is needed, as this is only one specific distinguisher. But it will be convenient right now to
restrict ourselves to thwarting this type of distinguishing attacks.

7

query to F7 or F8, it will detect partial chains of the form (x7, x8) (we henceforth refer to the
two subsets of rounds {1, 2, 13, 14} and {7, 8} as detect zones). The simulator always adapts either
F4(x4) and F5(x5), or F10(x10) and F11(x11), depending on the round function queried when the
chain is first detected. (We refer to {4, 5} and {10, 11} as adapt zones.) In particular, note that
function values in rounds 3, 6, 9, 12 (which are called the buffer rounds) are always set to uniform
random values when completing. Concretely, upon a query to F2 or F7, in case one or more partial
chains (x1, x2, x13, x14) or (x7, x8) are detected, they will be completed using the adapt zone {4, 5}.
Symmetrically, chains detected upon queries to F13 or F8 are completed using the adapt zone
{10, 11}. Let us now elaborate shortly on how the above three challenges are addressed.

Addressing Challenge 1. We will show that the recursion stops after at most poly(q) steps, where
q is the overall number of queries of the distinguisher. To this end, we rely on the observation that
unless some unlikely collision occurs, each detected partial chain (x1, x2, x13, x14) is associated with
an earlier P query by the distinguisher (either a forward query on input (x0, x1) or a backward
query on input (x14, x15)); hence, at most q such chains will ever be detected and completed.
Furthermore, the number of values F7(x7) that are defined by the simulator is at most 2q: either
the distinguisher queries F7(x7) directly, or the value is defined when completing a chain detected
in zone {1, 2, 13, 14}. As the same argument holds for F8, we get that the total number of chains
that are completed is upper bounded by q + (2q)2.

Addressing Challenge 2. As an illustrative example, suppose that upon setting F2(x2) uniformly at
random, a new chain C = (x1, x2, x13, x14) is detected and enqueued. The simulator will eventually
complete C into a chain (x1, x2, . . . , x14) using the adapt zone {4, 5}, i.e., it sets xi := Fi+1(xi+1)⊕
xi+2 for all i = 12, 11, . . . , 5, 4, and x3 := F2(x2)⊕x1, where all undefined values Fi(xi) for i /∈ {4, 5}
are set uniformly at random. Finally, if possible, it sets Fi(xi) := xi−1 ⊕ xi+1 for i = 4, 5.

In order for the final step to be possible, our hope is that F3(x3) and F6(x6) are unset when
C is dequeued, and are set to uniform random values at completion. By doing so, x4 and x5 also
become fresh random values, and hence F4(x4) and F5(x5) are unset with high probability. The
proof that this hope is true is one of our main technical contributions. We now illustrate the issue
for the case of F3(x3).

First, note that when setting F2(x2), the value x3 := x1 ⊕ F2(x2) is fresh and random, and
thus with very high probability, at this point, F3(x3) is unset. However, it may be that many other
values are defined after C is detected and before C is completed when completing other chains:
First, C may be detected during the completion of some other chain, and second, several partial
chains containing x2 may be enqueued just before C. The crucial observation is that by using a
FIFO queue, every partial chain C ′ completed in between either shares the same x2 and is added
together with C, or was already in the queue when defining F2(x2).

For all partial chains C ′ = (x′1, x2, x
′
13, x

′
14) of the former type, they must have x′1 6= x1, and

hence x′3 = x′1 ⊕ F2(x2) 6= x3. Moreover, for those C ′ which were already in the queue, if they are
of the form C ′ = (x′1, x′2, x′13, x

′
14) for x′2 6= x2, then we must have x′1 ⊕F2(x′2) 6= x3 with very high

probability because x3 is fresh and random. Therefore, we are left with proving that completing
chains (x′7, x′8) which are already in the queue cannot set F3(x3), except with negligible probability,
which is the hardest part of our analysis.

Addressing Challenge 3. To see why proving indistinguishability can be difficult, consider a dis-
tinguisher which in the ideal world first queries the given permutation P(x0, x1), giving values
(x14, x15). The distinguisher then checks (say) the first bit of x14, and depending on it, starts
querying the simulator to evaluate the Feistel construction from the top with the input values

8

(x0, x1), or from the bottom with values (x14, x15). Inspection of our simulator reveals that the
choice of the adapt zone of the simulator then depends on the first bit of x14.

The problem which now comes in is that the randomness inherent in (x14, x15) is needed in
order to show that the values of F in the adapt zones look random. However, conditioned on using
the upper adapt zone, one bit of x14 is already fixed.

In order to solve this problem, we take the following, very explicit approach: we consider the
two experiments which we want to show to behave almost the same and define a map associating
randomness in one experiment to randomness in the other experiment. We then study this map.
This leads to a fine-grained understanding and a formal treatment of the indistinguishability proof.

1.5 Model and Notational Conventions

The results throughout this paper are information-theoretic and consider random experiments
where a distinguisher D interacts with some given system T, outputting a value D(T). In the
context of this paper, such systems consist of the composition T = (T1,T2) of two (generally
correlated) systems accessible in parallel, where Ti is either a random primitive (such as a random
function F, a random permutation P defined above), or a construction CT accessing the random
primitive T. The advantage ∆D(T,T′) of a distinguisher D in distinguishing two systems T and
T′ is defined as the absolute difference |Pr[D(T) = 1]− Pr[D(T′) = 1]|.

We dispense to the largest extent with a formal definition of such systems (cf. e.g. the framework
of Maurer [Mau02] for a formal treatment). Most systems we consider will be defined formally using
pseudocode in a RAM model of computation, following the approach of [BR06, Sho04]. The time
complexity of a system/distinguisher is also measured with respect to such a model.

Defining indifferentiability is somewhat subtle, as different definitions [MRH04, CDMP05] are
used in the literature. In particular, it will be convenient to use the following definition:

Definition 1.1. For a construction C accessing independent random functions F = (F1, . . . ,Fr),4
we say that CF is indifferentiable from a random permutation P if there exists a simulator S
such that for all polynomially bounded q, the advantage ∆D((CF,F), (P,SP)) is negligible for all
distinguishers D issuing a total of at most q queries to the two given systems, and furthermore,
there exists a fixed polynomial p(q), such that S runs in time p(q) except with negligible probability.
♦

Our definition allows exponential worst-case running time of the simulator. However, given an
upper bound on the number q of overall distinguisher queries, the simulator can be made to run in
polynomial time by aborting after p(q) steps. This modification makes the simulator distinguisher
dependent, since the simulator cannot see (and count) queries to P, and consequently cannot
determine q. But we point out that this dependence is quite weak: The simulator only depends on
the number of queries the distinguisher makes. In other words, our definition implies the original
one in [MRH04], but does not imply the stronger one of [CDMP05], which requires a universal
simulator.

2 The Five-Round Feistel Construction is not Sufficient

In this section, we prove the following theorem.

Theorem 2.1. The five-round Feistel construction using five independent random functions is not
indifferentiable from a random permutation.

4Such a tuple can also be seen as a random primitive.

9

For this, we construct a polynomial-time distinguisher D which, for any polynomial-time sim-
ulator S, distinguishes with overwhelming advantage (P,SP) from (ΨF,F), where P is a random
permutation, Ψ is a five-round Feistel construction, and F is a collection of five uniform random
functions. Toward this end, we first show the following lemma.

Lemma 2.2. Let P : {0, 1}2n → {0, 1}2n be a random permutation, and consider a system issuing
at most q queries to P. Denote generically (xi0, xi1), (xi5, xi6) the input/output of P corresponding to
the i-th query (independently of whether this is a query to P or P−1). Then, assuming q ≤ 22n−1,
the probability that there exist four queries i1, i2, i3 and i4 with pairwise different input values such
that {

xi11 ⊕ x
i2
1 ⊕ x

i3
1 ⊕ x

i4
1 = 0

xi15 ⊕ x
i2
5 ⊕ x

i3
5 ⊕ x

i4
5 = 0

is less than q4/2n.

Proof. Denote by Bad the event that such queries exist among all q queries, and by Badi the event
that such queries exist among the first i queries. We will upper bound Pr[Badi|Badi−1]. Consider
the i-th query, and assume wlog that it is a query to P. Then, Badi happens only if the input is
different from all previous inputs and xi5 hits one of at most

(i−1
3
)
≤ i3 values, hence with probability

less than 2ni3/(22n − (i − 1)) ≤ 2i3/2n (using q ≤ 22n−1). The result follows by summing over i
and using

∑q
i=1 i

3 ≤ q4/2.

The distinguisher D interacts with a system Σ = (P, F) which is either (P,SP) or (ΨF,F). It
proceeds as follows (the attack is depicted in Fig. 1):

1. Choose arbitrary values x3, x′3, x4 that are pairwise different.

2. Compute x2 = x4 ⊕ F3(x3) and x′2 = x4 ⊕ F3(x′3).

3. Compute 
x1 = x3 ⊕ F2(x2), x0 = x2 ⊕ F1(x1)
x′1 = x′3 ⊕ F2(x′2), x′0 = x′2 ⊕ F1(x′1)
x′′1 = x′3 ⊕ F2(x2), x′′0 = x2 ⊕ F1(x′′1)
x′′′1 = x3 ⊕ F2(x′2), x′′′0 = x′2 ⊕ F1(x′′′1)

4. If x1, x
′
1, x
′′
1, x
′′′
1 are not pairwise different, then return 0.

5. Query (x5, x6) = P (x0, x1), (x′5, x′6) = P (x′0, x′1), (x′′5, x′′6) = P (x′′0, x′′1), and (x′′′5 , x′′′6) =
P (x′′′0 , x′′′1).

6. If x5 ⊕ x′5 ⊕ x′′5 ⊕ x′′′5 = 0 then return 1, else return 0.

We have the following lemma, from which Theorem 2.1 is a simple consequence.

Lemma 2.3. For any polynomial-time simulator S, there is a negligible function ν such that the
advantage ∆D((ΨF,F), (P,SP)) is greater that 1− ν.

Proof. We first show that D outputs 1 with overwhelming probability when interacting with
(ΨF,F). Since x3 6= x′3 by definition, the probability that F3(x3) 6= F3(x′3) is 1 − 1/2n. If
this inequality holds, we have x2 6= x′2. This in turn implies that F2(x2) 6= F2(x′2) and x1 6= x′1 and
x′′1 6= x′′′1 with probability at least 1− 3/2n. Thus, with probability at least 1− 4/2n, we have that
x1, x

′
1, x
′′
1, x
′′′
1 are pairwise different, and thus step 4 does not return. Denote x′4 = x2 ⊕ F3(x′3) =

10

F1

F2 x2

F3 x3

F4 x4

F5 x5

x0 x1

x5 x6

x0 x′0 x′′0 x′′′0

x1 x′1 x′′1 x′′′1⊕ ⊕ ⊕ = 0

x2 x′2

x3 x′3

x4 x′4

x5 x′5 x′′5 x′′′5⊕ ⊕ ⊕ = 0

x6 x′6 x′′6 x′′′6

Figure 1: The five-round distinguishing attack. The lines with four distinct patterns on the left side
represent the computation paths in the Feistel construction for each input/output (xi0, xi1), (xi5, xi6)
involved in the attack.

x′2⊕F3(x3) (the last two values are equal by definition of x2 and x′2). Then, computing the Feistel
forward, one has:

x5 = x3 ⊕ F4(x4)
x′5 = x′3 ⊕ F4(x4)
x′′5 = x′3 ⊕ F4(x′4)
x′′′5 = x3 ⊕ F4(x′4)

Hence, the equality x5 ⊕ x′5 ⊕ x′′5 ⊕ x′′′5 = 0 is always satisfied.
We show that D outputs 0 with overwhelming probability when interacting with (P,SP). We

may assume that x1, x
′
1, x
′′
1, x
′′′
1 are pairwise different, as otherwise D outputs 0 in step 4. Note that

by construction of the distinguisher, the equality x1⊕x′1⊕x′′1⊕x′′′1 = 0 is always satisfied. Consider
the union of D and S as a single system interacting with the random permutation P, and let q be
an upper bound on the total number of queries issued by this system to P. Clearly, q is polynomial
if S is polynomial-time. Then, by Lemma 2.2, the probability that x5 ⊕ x′5 ⊕ x′′5 ⊕ x′′′5 = 0 is less
than q4/2n, which is negligible. The result follows.

3 Indifferentiability of the Fourteen-Round Feistel Construction

We now turn to the main result of this paper. We prove that the fourteen-round Feistel construction
is indifferentiable from a random permutation, as summarized by the following theorem.

Theorem 3.1. The fourteen-round Feistel construction using fourteen independent random func-
tions is indifferentiable from a random permutation.

11

For a random permutation on 2n bits and any distinguisher that issues at most q queries, except
with probability 108·q16

22n , the simulator makes at most 1400q8 queries and runs in time O(q8). The
distinguishing advantage is at most 108·q16

22n + 1022·q10

2n .

Even though we state explicit bounds in the theorem, we have not tried to optimize them, and
aim for a simple proof instead.

Moreover, we can extend this result to provide a construction of an ideal cipher from a ran-
dom oracle, as we now explain. To implement the ideal cipher, we use a keyed version of the
Feistel construction, which we define as follows. Given a random oracle R : {0, 1}∗ → {0, 1}n,
for understood parameters κ and n, we define the r-round keyed Feistel construction Ψ̃r = Ψ̃R

r

which, on inputs (k, x) for a forward query and (k, y) for a backward query (where k ∈ {0, 1}κ and
x, y ∈ {0, 1}2n) behaves as ΨFk

r on a forward query x and on a backward query y, respectively, where
Fk = (Fk1, . . . ,Fkr) are shorthands for Fki (x) = R(〈i〉‖k‖x). Here, 〈i〉 is the dlog re-bit encoding of
i ∈ {1, . . . , r}.

The following theorem states the main result of this paper. It establishes the indifferentiability
of the keyed Feistel construction from an ideal cipher. Given that the Feistel construction is
indifferentiable from a random permutation (Theorem 3.1), the proof of this theorem is not difficult:
it relies on standard techniques and is given in Appendix B.

Theorem 3.2. The fourteen-round keyed Feistel construction using a random oracle is indifferen-
tiable from an ideal cipher. For an ideal cipher with κ-bit key and 2n-bit inputs, and any distin-
guisher that issues at most q queries, except with probability 108·q17

22n , the simulator makes at most
1400q8 queries and runs in time O(q8). The distinguishing advantage is at most 108·q17

22n + 1022·q11

2n .

The remainder of this section is devoted to the proof of Theorem 3.1. Our task is to provide
a simulator S with access to a random permutation P such that (P,SP) is indistinguishable from
(ΨF,F), where F denotes the random functions used in the Feistel construction.

We first define the simulator S in Section 3.1. Then, we transform (P,SP) stepwise to (ΨF,F)
to prove indistinguishability. The random functions we consider in this section are always from n
bits to n bits, and the random permutation P is over 2n bits.

3.1 Simulator Definition

We first give a somewhat informal, but detailed description of the simulator. We then use pseu-
docode to specify the simulator in a more formal manner.

3.1.1 Informal description

The simulator provides an interface S.F(k, x) to query the simulated random function Fk on input x.
For each k, the simulator internally maintains a table whose entries are pairs (x, y) of n-bit values.
They denote pairs of inputs and outputs of S.F(k, x). We denote these tables by S.Gk or just Gk
when the context is clear. We write x ∈ Gk whenever x is a preimage in this table, often identifying
Gk with the set of preimages stored. When x ∈ Gk, Gk(x) denotes the corresponding image.

On a query S.F(k, x), the simulator first checks whether x ∈ Gk. If so, it answers with Gk(x).
Otherwise the simulator picks a random value y and inserts (x, y) into Gk(x). After this, the
simulator takes steps to ensure that its future answers are consistent with the permutation P.

There are two cases in which the simulator performs a specific action for this. First, if k ∈
{2, 13}, the simulator considers all newly generated tuples (x1, x2, x13, x14) ∈ G1×G2×G13×G14,
and computes x0 := x2 ⊕ G1(x1) and x15 := x13 ⊕ G14(x14). It then checks whether P(x0, x1) =

12

x1G1

x2G2

x3G3

x4G4

x5G5

x6G6

x7G7

x8G8

x9G9

x10G10

x11G11

x12G12

x13G13

x14G14

x0

x15

adapt

adapt

set uniform

set uniform

set uniform

set uniform

x8 detect

x2 detect

x7 detect

x13 detect

Figure 2: The fourteen-round Feistel with the zones where our simulator detects chains and adapts
them. Whenever a function value G2(x2), G7(x7), G8(x8), or G13(x13) is defined, the simulator
checks whether the values in the dashed zones x7, x8 and x1, x2, x13, x14 (in the colored version
these zones are blue) form a partial chain. In case a chain is detected, it is completed; the function
values in the dashed zones x4, x5 or x10, x11 (in the colored version these zones are red) are adapted
in order to ensure consistency of the chain.

13

(x14, x15). Whenever the answer to such a check is positive, the simulator enqueues the detected
values in a queue5. More precisely, it enqueues a four-tuple (x1, x2, 1, `). The value 1 ensures that
later the simulator knows that the first value x1 corresponds to G1. The value ` describes where
to adapt values of G` to ensure consistency with the given permutation. If k = 2, then ` = 4 and
if k = 13 then ` = 10. The second case is when k ∈ {7, 8}. Then, the simulator enqueues all newly
generated pairs (x7, x8) ∈ G7×G8. It enqueues all these pairs into the queue as (x7, x8, 7, `), where
` = 4 if k = 7 and ` = 10 if k = 8 (this is illustrated in Figure 2). We call the tuples added to the
queue partial chains.

The simulator then does the following, until the queue is empty. (When the queue is finally
empty, the simulator returns the answer to the initial query.) It removes the first partial chain
(xi, xi+1, i, `) from the queue, and completes it. This means that we compute all values xj by
evaluating the Feistel construction (making at most one query to P or P−1), and setting all un-
defined Gj(xj) for j 6= {`, ` + 1} to fresh random values. The simulator defines the remaining
two values in such a way that consistency with P is ensured, i.e., G`(x`) := x`−1 ⊕ x`+1 and
G`+1(x`+1) := x` ⊕ x`+2. If a value for either of these is defined from a previous action of the
simulator, the simulator overwrites the value (possibly making earlier chains inconsistent).

Whenever a new value Gk(xk) for k ∈ {2, 13} is defined when completing a chain, the exact
same checks as above are performed on the newly generated tuples (x1, x2, x13, x14), and a new
partial chain can be enqueues. Whenever a value Gk(xk) for k ∈ {7, 8} is defined, the simulator
similarly enqueues all new pairs (x7, x8).

In order to make sure the simulator does not complete the same chains twice, the simulator
additionally keeps a set CompletedChains that contains all triples (xk, xk+1, k) which have been
completed previously. Whenever the simulator dequeues a chain, it only completes the chain if it
is not in the set CompletedChains.

3.1.2 The simulator in pseudocode

We provide pseudocode to describe the simulator as explained above in full detail below. Later,
during the analysis, we will consider a slightly different simulator T. For this, we replace whole lines;
the replacements are put into boxes next to these lines. The reader can ignore these replacements
at the moment.

First, the simulator internally uses a queue and some hashtables to store the function values,
and a set CompletedChains to remember the chains that have been completed already. The queue
Q provides the procedure Q.Enqueue to add elements to the end of the queue. The procedure
Q.Dequeue removes the element in the front of the queue and returns it.

The procedure F(i, x) provides the interface to a distinguisher. It first calls the corresponding
internal procedure Finner, which defines the value and fills the queue if necessary. Then, the
procedure F(i, x) completes the chains in the queue that were not completed previously, until the
queue is empty.

The procedure Adapt adapts the values. It first sets the values in the buffer rounds (namely
rounds 3 and 6, or 9 and 12 in Figure 2) uniformly at random. It then adapts the values of G`(x`)
and G`+1(x`+1) such that the chain matches the permutation. It would be possible to simplify the
code by removing lines 20 to 25 below, and changing the parameters in lines 12 and 13 above. The
current notation simplifies notation in the proof.

The procedure Finner provides the internal interface for evaluations of the simulated function.
It only fills the queue, but does not empty it.

5Recall that a queue is a first in first out data structure.

14

The procedure enqueueNewChains detects newly created chains and enqueues them. Some-
times, chains may be detected which have been completed before, but they are ignored when they
are dequeued.

The helper procedures EvaluateForward and EvaluateBackward take indices k and `
and a pair (xk, xk+1) of input values for Gk and Gk+1, and either evaluate forward or backward in
the Feistel to obtain the pair (x`, x`+1) of input values for G` and G`+1.

1 System S: System T(f):
2 Variables:
3 Queue Q
4 Hashtable G1, . . . , G14
5 Set CompletedChains := ∅

6 public procedure F(i, x)
7 Finner(i, x)
8 while ¬Q.Empty() do
9 (xk, xk+1, k, `) := Q.Dequeue()

10 if (xk, xk+1, k) /∈ CompletedChains then // ignore previously completed chains
11 // complete the chain
12 (x`−2, x`−1) := EvaluateForward(xk, xk+1, k, `− 2)
13 (x`+2, x`+3) := EvaluateBackward(xk, xk+1, k, `+ 2)
14 Adapt(x`−2, x`−1, x`+2, x`+3, `)
15 (x1, x2) := EvaluateBackward(xk, xk+1, k, 1)
16 (x7, x8) := EvaluateForward(x1, x2, 1, 7)
17 CompletedChains := CompletedChains ∪ {(x1, x2, 1), (x7, x8, 7)}
18 return Gi(x)

19 private procedure Adapt(x`−2, x`−1, x`+2, x`+3, `)
20 if x`−1 /∈ G`−1 then
21 G`−1(x`−1)←R {0, 1}n G`−1(x`−1) := f(`− 1, x`−1)
22 x` := x`−2 ⊕G`−1(x`−1)
23 if x`+2 /∈ G`+2 then
24 G`+2(x`+2)←R {0, 1}n G`+2(x`+2) := f(`+ 2, x`+2)
25 x`+1 := x`+3 ⊕G`+2(x`+2)
26 ForceVal(x`, x`+1 ⊕ x`−1, `)
27 ForceVal(x`+1, x` ⊕ x`+2, `+ 1)
28

29 private procedure ForceVal(x, y, `)
30 G`(x) := y

31 private procedure Finner(i, x):
32 if x /∈ Gi then
33 Gi(x)←R {0, 1}n Gi(x) := f(i, x)
34 if i ∈ {2, 7, 8, 13} then
35 enqueueNewChains(i, x)
36 return Gi(x)

15

37 private procedure enqueueNewChains(i, x):
38 if i = 2 then
39 forall (x1, x2, x13, x14) ∈ G1 × {x} ×G13 ×G14 do
40 if Check(x2 ⊕G1(x1), x1, x14, x13 ⊕G14(x14)) then
41 Q.Enqueue(x1, x2, 1, 4)
42 else if i = 13 then
43 forall (x1, x2, x13, x14) ∈ G1 ×G2 × {x} ×G14 do
44 if Check(x2 ⊕G1(x1), x1, x14, x13 ⊕G14(x14)) then
45 Q.Enqueue(x1, x2, 1, 10)
46 else if i = 7 then
47 forall (x7, x8) ∈ {x} ×G8 do
48 Q.Enqueue(x7, x8, 7, 4)
49 else if i = 8 then
50 forall (x7, x8) ∈ G7 × {x} do
51 Q.Enqueue(x7, x8, 7, 10)
52

53 private procedure Check(x0, x1, x14, x15)
54 return P(x0, x1) = (x14, x15) return R.Check(x0, x1, x14, x15)

55 private procedure EvaluateForward(xk, xk+1, k, `):
56 while k 6= ` do
57 if k = 14 then
58 (x0, x1) := P−1(x14, x15) (x0, x1) := R.P−1(x14, x15)
59 k := 0
60 else
61 xk+2 := xk ⊕ Finner(k + 1, xk+1)
62 k := k + 1
63 return (x`, x`+1)

64 private procedure EvaluateBackward(xk, xk+1, k, `):
65 while k 6= ` do
66 if k = 0 then
67 (x14, x15) := P(x0, x1) (x14, x15) := R.P(x0, x1)
68 k := 14
69 else
70 xk−1 := xk+1 ⊕ Finner(k, xk)
71 k := k − 1
72 return (x`, x`+1)

3.1.3 An example of chain completion

We provide an illustrative example of a simulator execution for the following distinguisher queries:
First, choose x9 and x10 arbitrarily. For i = 10, . . . , 14 let xi+1 := xi−1⊕F(i, xi), define (x0, x1) :=
P−1(x14, x15), and for i = 1, 2 let xi+1 := xi−1 ⊕ F(i, xi).

Suppose all hash tables and the queue are initially empty. For the queries F(i, xi) for i =
10, . . . , 14, Gi(xi) is set uniformly in Finner, as Gi is empty before the call. After the call to
Finner, the queue is empty: only for i = 13, enqueueNewChains is called, but since G14 is

16

empty at this point, no chain is enqueued. In F(1, x1), G1(x1) is set uniformly in Finner, and
no chain is enqueued. Finally, when F(2, x2) is called, G2(x2) is set uniformly at random in
Finner, and enqueueNewChains(2, x2) is called. In this call, the tuple (x1, x2, x13, x14) makes
Check evaluate to true, and (x1, x2, 1, 4) is enqueued. When the call to Finner returns in F,
(x1, x2, 1, 4) is dequeued. As it is not in CompletedChains, the chain gets completed as follows.
EvaluateForward(x1, x2, 1, 2) returns (x2, x3) where x3 = x1 ⊕ G2(x2), and no new entries
are added to Gi’s. In EvaluateBackward(x1, x2, 1, 6), for i = 14, . . . , 10, we have xi ∈ Gi
already, and for i = 9, . . . , 7, letting xi = xi+2 ⊕ G(xi+1), the values G(xi) are defined uniformly
in Finner. When G(x7) is defined in Finner, enqueueNewChains enqueues (x7, x8, 7, 4), and this
is the only chain that is enqueued during EvaluateBackward. Finally, for x6 := x8 ⊕ G(x7),
Adapt(x2, x3, x6, x7, 4) is called, and both (x1, x2, 1), (x7, x8, 7) are added to CompletedChains.
Thus, when (x7, x8, 7) is dequeued in the next iteration, it is skipped. Finally, Q is empty, and F
returns G2(x2).

3.2 Proof of Indifferentiability

In this section, we provide the indifferentiability analysis.

3.2.1 Overview

Our overall plan is to show that for any deterministic distinguisher D that makes at most q queries6,
the probability that D outputs 1 when interacting with (P,SP) differs by at most poly(q)

2n from
the probability it outputs 1 when interacting with (ΨF,F), where Ψ is a fourteen-round Feistel
construction, and F is a collection of 14 uniform random functions.

We denote the scenario where a distinguisher D interacts with (P,SP) by S1, and the scenario
where D interacts with (ΨF,F) by S4. Both S1 and S4 are depicted in Figure 3. The scenarios S2
and S3 will be intermediate scenarios, that we describe in the following. When we use the term
“execution of Si”, we always have a fixed (deterministic) distinguisher in mind, without mentioning
it explicitly. Also, whenever we prove a statement about an “execution of Si”, this means that the
statement holds for any fixed distinguisher that issues at most q queries in scenario Si.

The transition from S1 to S2. To obtain S2 from S1, we replace the random permutation P by
a two-sided random function R. Informally, R can be described as follows. Fresh queries are always
answered with uniform random bitstrings, and once a query R(x0, x1) was answered by choosing
uniform random (x14, x15), the system will answer consistently in the future, i.e., future queries
will be answered as R(x0, x1) = (x14, x15) and R−1(x14, x15) = (x0, x1). Clearly, it may happen
that when a random answer for the second query R(x′0, x′1) for some (x′0, x′1) 6= (x0, x1) is chosen
randomly, it again equals (x14, x15). It is very intuitive that such collisions occur only with small
probability. Also, given that collisions rarely occur, it is intuitive that R behaves like a random
permutation. We make the randomness used by the simulator and R explicit, and write S2(f, p)
for the scenario where the simulator (now denoted by T(f)) uses randomness from f and R(p)
uses randomness from p. In Lemma 3.6 we formally prove that P and R(p) can be distinguished
only with negligible probability. This, together with the fact that the simulator is efficient in S2 (as
discussed below), directly gives that S1 and S2(f, p) can be distinguished with negligible probability
for uniformly chosen f and p. This is formally stated in Lemma 3.11, and treated in Section 3.4.

6We may assume that D is deterministic, since we are only interested in the advantage of the optimal distinguisher,
and for any probabilistic distinguisher, the advantage can be at most the advantage of the optimal deterministic
distinguisher.

17

D

0/1

SP

D

0/1

TR

fp

D

0/1

TΨ

h

D

0/1

FΨ

S1 S2 S3 S4

Figure 3: Scenarios used in the indifferentiability proof.

The simulator is efficient in S2. It is easier to prove the simulator’s efficiency in scenario S2.
Lemmas 3.4 and 3.5 state that the query complexity and the running time, respectively, are poly(q).
We are going to prove the simulator’s efficiency in S2 before analyzing the transition from S1 to S2,
since we need it there (i.e., for proving Lemma 3.11). This is treated in Section 3.3.

The simulator is efficient in S1. This directly follows from the fact that the simulator is
efficient in S2, and S1 and S2 can be distinguished only with negligible probability. The formal
statement can be found in Lemma 3.10.

The transition from S2 to S3. In scenario S3 we replace the two-sided random function R(p) by
the fourteen-round Feistel construction Ψ(h), which uses randomness in h. The same randomness
h is accessed by the simulator T(h). The main part of our indifferentiability proof is to show that
S2(f, p) for uniform random (f, p) and S3(h) for uniform random h can be distinguished only with
negligible probability. This is formally stated in Lemma 3.37, which will be proved in Section 3.5.
The proof of this lemma is the main part of the indifferentiability proof. A large part of the
proof consists in showing that the simulator does not overwrite a value in calls to ForceVal. An
interesting feature of the proof is that in a second part it directly maps pairs (f, p) to elements
h = τ(f, p) such that S2(f, p) and S3(h) behave the same for most pairs (f, p), and the distribution
induced by τ is close to uniform.

The transition from S3 to S4. It follows by definition that whenever a query is answered by
the simulator in S3, then it is answered with the corresponding entry of h that is used in Ψ (see
Lemma 3.38). Since S2 and S3 are close, and in S2 the simulator is efficient, this implies that
with overwhelming probability the simulator gives an answer after a polynomial number of steps

18

in S3.7 This implies that S3 and S4 can be distinguished only with negligible probability, as stated
in Lemma 3.39, which will be proved in Section 3.6.

We now describe the two intermediate scenarios S2(f, p) and S3(h) in detail.

3.2.2 Detailed description of the second scenario

Scenario S2(f, p) is similar to S1. However, instead of the simulator S we use the simulator T(f),
and instead of a random permutation P we use a two-sided random function R(p). The differences
between these systems are as follows:

Explicit randomness: We make the randomness used by the simulator explicit. Whenever S
sets Gi(xi) to a random value, T(f) takes it from f(i, xi) instead, where f is a table which
contains an independent uniform random bitstring of length n for each i ∈ {1, 2, . . . , 14} and
xi ∈ {0, 1}n. This modification does not change the distribution of the simulation, because it
is clear that the simulator considers each entry of f at most once.
As can be seen in the pseudocode below, the randomness of the two-sided random function
R(p) is also explicit: It is taken from p(↓, x0, x1) or p(↑, x14, x15), a table in which each entry
is an independent uniform random bitstring of length 2n.
When we say that some entry of a table is “queried”, this just means that the entry is read
from the table.

Two-sided random function: We replace the random permutation P by a two-sided random
function R(p) (see below for pseudocode). This function keeps a hashtable P that contains
elements (↓, x0, x1) and (↑, x14, x15). Whenever the procedureR.P(x0, x1) is queried,R checks
whether (↓, x0, x1) ∈ P , and if so, answers accordingly. Otherwise, an independent uniform
random output (x14, x15) is picked (by considering p), and (↓, x0, x1) as well as (↑, x14, x15)
are added to P , mapping to each other.

Check procedure: The two-sided random function R has a procedure Check(x0, x1, x14, x15).
If (↓, x0, x1) ∈ P , it returns true if P maps (↓, x0, x1) to (x14, x15), and false otherwise. If
(↑, x14, x15) ∈ P , it returns true if P maps (↑, x14, x15) to (x0, x1), and false otherwise. If both
(↓, x0, x1) /∈ P and (↑, x14, x15) /∈ P , Check returns false. The simulator T(f) also differs
from S in that T(f).Check simply calls R.Check.

Pseudocode for T(f) can be obtained by using the boxed contents on the right hand side in the
pseudocode of S instead of the corresponding line. For the two-sided random function R, the
pseudocode looks as follows:

1 System Two-sided random function R(p):
2 Variables:
3 Hashtable P
4

5 public procedure P(x0, x1)
6 if (↓, x0, x1) /∈ P then
7 (x14, x15) := p(↓, x0, x1)
8 P (↓, x0, x1) := (x14, x15)
9 P (↑, x14, x15) := (x0, x1) // (May overwrite an entry)

7It is actually not hard to see that the simulator always gives an answer in S3 after a finite number of steps, but
we don’t need to show this as S2 and S3 behave almost the same anyway.

19

10 return P (↓, x0, x1)
11

12 public procedure P−1(x14, x15)
13 if (↑, x14, x15) /∈ P then
14 (x0, x1) := p(↑, x14, x15)
15 P (↓, x0, x1) := (x14, x15) // (May overwrite an entry)
16 P (↑, x14, x15) := (x0, x1)
17 return P (↑, x14, x15)
18

19 public procedure Check(x0, x1, x14, x15)
20 if (↓, x0, x1) ∈ P then return P (↓, x0, x1) = (x14, x15)
21 if (↑, x14, x15) ∈ P then return P (↑, x14, x15) = (x0, x1)
22 return false

Note that the Check procedure never returns true in line 21, because P (↑, x14, x15) = (x0, x1)
implies that (↓, x0, x1) ∈ P . Still, we think this is the most intuitive way of writing the Check
procedure.

3.2.3 Detailed description of the third scenario

In S3(h), we replace the above two-sided random function R(p) by a Feistel construction Ψ(h).
Similar to S2, h is used to make the randomness explicit. Ψ(h) is defined as follows:

1 System Ψ(h):
2

3 Variables:
4 Hashtable P
5

6 public procedure P(x0, x1)
7 for i := 2 to 15 do
8 xi := xi−2 ⊕ h(i− 1, xi−1)
9 P (↓, x0, x1) := (x14, x15)

10 P (↑, x14, x15) := (x0, x1)
11 return (x14, x15)
12

13 public procedure P−1(x14, x15)
14 for i := 13 to 0 step −1 do
15 xi := xi+2 ⊕ h(i+ 1, xi+1)
16 P (↓, x0, x1) := (x14, x15)
17 P (↑, x14, x15) := (x0, x1)
18 return (x0, x1)
19

20 public procedure Check(x0, x1, x14, x15)
21 if (↓, x0, x1) ∈ P then return P (↓, x0, x1) = (x14, x15)
22 if (↑, x14, x15) ∈ P then return P (↑, x14, x15) = (x0, x1)
23 return false

We define S3(h) to be the scenario where the distinguisher interacts with (Ψ(h),T(h)Ψ(h)). Note
that the randomness used by Ψ and T is the same, and we call it h.

20

3.2.4 Indifferentiability

We will prove the following four lemmas.

Lemma 3.10. Consider an execution of S1. Then with probability at least 1− 2·107·q16

22n , the simulator
runs for at most O(q8) steps and issues at most 1400q8 queries to P.

Lemma 3.11. The probability that a fixed distinguisher answers 1 in S1 differs at most by 4·107·q16

22n

from the probability that it answers 1 in S2(f, p) for uniform random (f, p).

Lemma 3.37. The probability that a fixed distinguisher answers 1 in S2(f, p) for uniform random
(f, p) differs at most by 1021·q10

2n from the probability that it answers 1 in S3(h) for uniform random h.

Lemma 3.39. The probability that a fixed distinguisher answers 1 in S3(h) for uniformly chosen
h differs at most by 1021·q10

2n from the probability that it answers 1 in S4.

Collecting these results allows to prove Theorem 3.1.

Proof of Theorem 3.1. Fix a distinguisher D which makes at most q queries. Lemmas 3.11, 3.37,
and 3.39 give that the probability that D outputs 1 in S1 = (P,SP) differs at most by

4 · 107 · q16

22n + 2 · 1021 · q10

2n <
108 · q16

22n + 1022 · q10

2n

from the probability that it outputs 1 in S4 = (ΨF,F). Lemma 3.10 gives the desired bounds on
the running time and query complexity of the simulator.

3.3 Complexity of the Simulator

In this section, we show that the simulator is efficient in scenario S2(f, p) for any f, p. Throughout
the paper, for a hashtable G we denote by |G| the number of entries in G.

Lemma 3.3. Consider an execution of S2(f, p) for some (f, p). Then, the simulator dequeues at
most q times a partial chain of the form (x1, x2, 1, `) for which (x1, x2, 1) /∈ CompletedChains.

Proof. Consider such a dequeue call and let (x1, x2, 1, `) be the partial chain dequeued for which
(x1, x2, 1) /∈ CompletedChains. The chain (x1, x2, 1, `) must have been enqueued when (x2 ⊕
G1(x1), x2, x14, x13 ⊕ G14(x14)) was detected in line 40 or 43 of enqueueNewChains. Since
neither G1(x1) nor G14(x14) are ever overwritten, this means that we can find a unique 4-tuple
(x0, x1, x14, x15), where x0 = x2 ⊕G1(x1) and x15 = x13 ⊕G14(x14), associated with (x1, x2, 1) for
which Check(x0, x1, x14, x15) was true at the moment (x1, x2, 1, `) was enqueued. We can now
find a unique query to p which corresponds to (x0, x1, x14, x15): since Check(x0, x1, x14, x15) was
true, there must have been a call to P or P−1 in R(p) where either p(↓, x0, x1) = (x14, x15) or
p(↑, x14, x15) = (x0, x1), respectively, was accessed in line 7 or 14 of R(p). This call to P or P−1

was made either by the distinguisher or the simulator. We argue that this call cannot have been
issued by the simulator. The simulator issues such calls only when it completes a chain (i.e., within
calls to EvaluateBackward and EvaluateForward in F), and after this completion, it adds
(x1, x2, 1) to CompletedChains (in line 17 of F). During this chain completion (in lines 12 to 17
of F), no calls to Q.Dequeue occur, and so it is not possible that (x1, x2, 1) /∈ CompletedChains
when it was dequeued. Thus, we found a unique query to P or P−1 of the distinguisher associated
with this dequeue call. Finally, note that after (x1, x2, 1) is completed by the simulator, (x1, x2, 1)
is added to CompletedChains. Thus, there are at most q such dequeue calls.

21

Lemma 3.4. Consider an execution of S2(f, p) for some (f, p). Then, at any point in the execution
we have |Gi| ≤ 6q2 for all i. Furthermore, there are at most 6q2 queries to both R.P, and R.P−1,
and at most 1296q8 queries to R.Check.

Proof. We first show that |G7| ≤ 2q and |G8| ≤ 2q. Assignments G7(x7) := f(7, x7) and G8(x8) :=
f(8, x8) only happen in two cases: either when the distinguisher directly queries the corresponding
value using F, or when the simulator completes a chain (x1, x2, 1, `) which it dequeued. There can
be at most q queries to F, and according to Lemma 3.3 there are at most q such chains which are
completed, which implies the bound.

The set Gi can only be enlarged by 1 in the following cases: if the distinguisher queries F(i, ·), if
a chain of the form (x1, x2, 1, `) is dequeued and not in CompletedChains, or if a chain (x7, x8, 7, `)
is dequeued and not in CompletedChains. There are at most q events of the first kind, at most q
events of the second kind (using Lemma 3.3), and at most |G7| · |G8| ≤ 4q2 events of the last kind,
giving a total of 2q + 4q2 ≤ 6q2.

A query to R.P or R.P−1 can be made either by the distinguisher, or by the simulator when
it completes a chain. At most q events of the first kind, and at most q + 4q2 events of the second
kind are possible. Thus, at most 6q2 of these queries occur. The number of Check queries by the
simulator is bounded by |G1 ×G2 ×G13 ×G14| ≤ (6q2)4.

Lemma 3.5. Consider an execution of S2(f, p) for some (f, p). Then the simulator runs in time
O(q8).

Proof. We first establish the following claims: (i) The total number of chains that are dequeued
and not in CompletedChains is at most 5q2. (ii) Any call to enqueueNewChains runs in time
O(q6) and in each such call Q.Enqueue is called at most 216q6 times. (iii) The total number of
calls to enqueueNewChains is at most 24q2. (iv) The total number of calls to Finner is at most
q + 14 · 6q2. (v) The total number of calls to Q.Enqueue is at most 216 · 24q8.

To see (i), note that by Lemma 3.3, the number of chains of the form (x1, x2, 1, `) that are
dequeued and not in CompletedChains is at most q. Furthermore, the number of chains of the
form (x7, x8, 7, `) that are dequeued and not in CompletedChains is at most |G7| · |G8| ≤ 4q2.

Part (ii) can be seen as follows: By Lemma 3.4, we have that for all i, |Gi| ≤ 6q2. Thus for any
i, the number of iterations in the forall loop of enqueueNewChains is at most (6q2)3 = 216q6.

To see (iii), note that enqueueNewChains is called only in Finner, and as |Gi| ≤ 6q2 for all i
and values of Gi are never overwritten, enqueueNewChains is called at most 4 · 6q2 times.

To prove item (iv), note that calls Finner only occur in procedures F, EvaluateBackward,
and EvaluateForward. The first case occurs at most q times, as F is only queried by the
distinguisher. Calls to EvaluateBackward and EvaluateForward only occur in case a chain
is dequeued and not in CompletedChains. By (i), this occurs at most 6q2 times. In each of the
four calls to EvaluateBackward and EvaluateForward, Finner is called at most 14 times,
and thus in total Finner is called at most 4 · 14 · 6q2 times. Summing up gives that Finner is called
at most q + 336q2 times.

Finally, (v) follows as by (ii) and (iii).
We now bound the simulator’s running time. First note that each call to Adapt, ForceVal,

and Check runs in time O(1). By (v), at most 216 · 24q8 chains are ever dequeued, and by (i)
at most 5q2 of them are ever completed. Thus, the number of steps within EvaluateBackward
and EvaluateForward (excluding the steps within calls to Finner) is bounded by O(q2), and
the number of steps within F (excluding the steps within Finner, EvaluateBackward and
EvaluateForward) is bounded by O(q8). By items (ii) and (iii), the total running time of

22

enqueueNewChains is bounded by O(q8). By (iv), the total running time of Finner (exclud-
ing the steps within calls to enqueueNewChains) is bounded by O(q2). This implies that the
simulator runs in time O(q8).

3.4 Equivalence of the First and the Second Scenarios

In this section, we show that for uniformly chosen (f, p) and any D, the probability that D outputs
1 in scenario S2(f, p) differs only by poly(q)

2n from the probability it outputs 1 in scenario S1. As
a side-result, we will obtain that the simulator is efficient in S1 with overwhelming probability.
To show the first claim, we first note that clearly the simulator can take the randomness from f
without any change. Secondly, instead of the procedure Check in the simulator S, we can imagine
that the random permutation P has a procedure P.Check which is implemented exactly as in line
53 of S, and S.Check simply calls P.Check. The following lemma states that such a system P
is indistinguishable from R as above, which we will use to prove our claim. The proof is neither
surprising nor particularly difficult.

Lemma 3.6. Consider a random permutation over 2n bits, to which we add the procedure Check
as in line 53 of the simulator S. Then, a distinguisher which issues at most q′ queries to either
the random permutation or to the two-sided random function R has advantage at most 6(q′)2

22n in
distinguishing the two systems.

Throughout the proof, we will consider distinguishers that issue at most q′ queries. For the
indistinguishability proof we will use four scenarios E1, . . . ,E4, where E1 will correspond to D
interacting with P, and E4 to D interacting with R. E2 and E3 are intermediate scenarios.

Scenario E1: D interacts with P′(p), which is defined as follows: The procedures P′.P
and P′.P−1 are the same as R.P and R.P−1. The Check procedure is defined as

1 public procedure P′(p).Check(x0, x1, x14, x15)
2 if (↓, x0, x1) ∈ P then return P (↓, x0, x1) = (x14, x15)
3 if (↑, x14, x15) ∈ P then return P (↑, x14, x15) = (x0, x1)
4 return P(x0, x1) = (x14, x15) // Note that the procedure P′.P is called!

Finally, p is the table of a uniform random permutation (i.e., p(↓, x0, x1) = (x14, x15) if
and only if p(↑, x14, x15) = (x0, x1)).

In E2, we introduce an alternative way to sample the random permutation.

Scenario E2: D interacts with P′′(p). In P′′, the procedure P′′.P is defined as follows:
1 public procedure P′′.P(x0, x1)
2 if (↓, x0, x1) /∈ P then
3 (x14, x15) := p(↓, x0, x1)
4 if (↑, x14, x15) ∈ P then
5 (x14, x15)←R {0, 1}2n \ {(x′14, x

′
15)|(↑, x′14, x

′
15) ∈ P}

6 P (↓, x0, x1) := (x14, x15)
7 P (↑, x14, x15) := (x0, x1)
8 return P (↓, x0, x1)

The procedure P′′.P−1 is defined analogously, i.e., picks (x0, x1) from p, and replaces it
in case (↓, x0, x1) ∈ P . The procedure Check is defined as in P′.Check above. Finally,
the entries of p are chosen uniformly at random from {0, 1}2n.

23

We next replace the table p of the random permutation by a table that has uniform random
entries:

Scenario E3: D interacts with P′(p), where the entries of p are chosen uniformly at
random from {0, 1}2n.

Finally, we consider the experiment where D interacts with our two-sided random function.

Scenario E4: D interacts with R(p), where the entries of p are chosen uniformly at
random from {0, 1}2n.

The only difference between E3 and E4 is the change in the last line in the procedure Check.
Our goal is to prove that the consecutive scenarios behave almost identically. We state a lemma

for each transition from Ei to Ei+1.
We first note that E1 corresponds to an interaction with P: If we let D interact with P (adding

a Check-procedure to P in the most standard way, i.e., as in the simulator S), then this behaves
exactly as E1.

Lemma 3.7 (Transition from E1 to E2). The probability that a fixed distinguisher answers 1 in E1
equals the probability that it answers 1 in E2.

Proof. The procedure Check is the same in both scenarios. Furthermore, a distinguisher can keep
track of the table P and it is also the same in both scenarios, and so we only need to consider the
procedures P and P−1: the procedure Check could be a part of the distinguisher.

Now, in both scenarios, the values chosen in the procedures P and P−1 are chosen uniformly at
random from the set of values that do not correspond to an earlier query. Thus, E1 and E2 behave
identically.

Lemma 3.8 (Transition from E2 to E3). The probability that a fixed distinguisher outputs 1 in E1

differs by at most (q′)2

22n from the probability that it outputs 1 in E3.

This proof is very similar to the proof that a (one-sided) random permutation can be replaced
by a (one-sided) random function.

Proof. Consider E2 and let BadQuery be the event that in P we have (↑, x14, x15) ∈ P , or in P−1

we have (↓, x0, x1) ∈ P . We show that this event is unlikely and that the two scenarios behave
identically if BadQuery does not occur in E2.

There are at most q′ queries to P or P−1 in an execution of E2, since each Check query issues
at most one query to P. Observe that each table entry in p is accessed at most once and thus each
time p is accessed it returns a fresh uniform random value. Since for each query there are at most q′

values in P , and p contains uniform random entries, we have Pr[BadQuery occurs in E2] ≤ (q′)2

22n . The
scenarios E2 and E3 behave identically if BadQuery does not occur. Thus,

∣∣∣Pr[D outputs 1 in E2]−

Pr[D outputs 1 in E3]
∣∣∣ ≤ Prp[BadQuery occurs in E2] ≤ (q′)2

22n .

Lemma 3.9 (Transition from E3 to E4). The probability that a fixed distinguisher outputs 1 in E3

differs by at most 5(q′)2

22n from the probability that it outputs 1 in E4.

Proof. The event BadCheck occurs for some p if P′.Check returns true in the last line in E3 in an
execution using p. The event BadOverwrite occurs for some p if either in E3 or in E4, in any call to

24

P or P−1, an entry of P is overwritten.8 The event BadBackwardQuery occurs if in E3 there exist
(x0, x1), (x∗14, x

∗
15) such that all of the following hold:

(i) The query P(x0, x1) is issued in the last line of a Check query, and P (↓, x0, x1) is set to
(x∗14, x

∗
15) = p(↓, x0, x1).

(ii) After (i), the query P−1(x∗14, x
∗
15), or the query Check(x0, x1, x

∗
14, x

∗
15) is issued.

(iii) The query P(x0, x1) is not issued by the distinguisher between point (i) and point (ii).

We show that these events are unlikely and that E3 and E4 behave identically if the events do not
occur for a given p.

For BadCheck to occur in a fixed call P′.Check(x0, x1, x14, x15), it must be that (↓, x0, x1) /∈ P
and (↑, x14, x15) /∈ P . Thus, in the call P(x0, x1) in the last line of Check, P (↓, x0, x1) will be
set to a fresh uniform random value p(↓, x0, x1), and this value is returned by P. Therefore, the
probability over the choice of p that P(x0, x1) = (x14, x15) is at most 1

22n . Since Check is called
at most q′ times, we see that Prp[BadCheck] ≤ q′

22n .
We now bound the probability that BadOverwrite occurs in E3. This only happens if a fresh

uniform random entry read from p collides with an entry in P . Since there are at most q′ queries
to P and P−1 and at most q′ entries in P , we get Prp[BadOverwrite occurs in E3] ≤ (q′)2

22n . The same
argument gives a bound on BadOverwrite in E4, and so Prp[BadOverwrite] ≤ 2(q′)2

22n .
We next estimate the probability of (BadBackwardQuery∧¬BadCheck) in E3. Consider any pairs

(x0, x1), (x∗14, x
∗
15) such that (i) holds. Clearly, since BadCheck does not occur, the Check query

returns false. Now, as long as none of the queries P(x0, x1), P−1(x∗14, x
∗
15) or Check(x0, x1, x

∗
14, x

∗
15)

is made by the distinguisher, the value (x∗14, x
∗
15) is distributed uniformly in the set of all pairs

(x′14, x
′
15) for which Check(x0, x1, x

′
14, x

′
15) was not queried. Thus, the probability that in a single

query, the distinguisher queries one of P−1(x∗14, x
∗
15) or Check(x0, x1, x

∗
14, x

∗
15) is at most q′

22n−q′ ≤
2q′
22n (assuming q′ < 22n

2). Since there are at most q′ Check queries, we find

Pr
p

[(BadBackwardQuery ∧ ¬BadCheck)] ≤ 2(q′)2

22n .

We proceed to argue that if the bad events do not occur, the two scenarios behave identically.
Thus, let p be a table such that none of BadCheck, BadBackwardQuery, and BadOverwrite occurs.

We first observe that the following invariant holds in both E3 and E4: after any call to P, P−1 or
Check, if P (↓, x0, x1) = (x14, x15) for some values (x0, x1, x14, x15), then P (↑, x14, x15) = (x0, x1),
and vice versa. The reason is simply that no value is ever overwritten in the tables, and whenever
P (↑, ·, ·) is set, then P (↓, ·, ·) is also set.

Next, we argue inductively that for a p for which none of the bad events occur, all queries and
answers in E3 and E4 are the same.

For this, we start by showing that (assuming the induction hypothesis), if a triple (↓, x0, x1)
is in P in the scenario E4, then the triple is in P in E3 as well, and both have the same image
(x14, x15). This holds because of two reasons: First, in E4, each such entry corresponds to an answer
to a previously issued query to P or P−1. This query was also issued in E3, and at that point the
answer was identical, so that the entry P (↓, x0, x1) was identical (this also holds if the response in E3
is due to the entry P (↑, x14, x15), because we saw above that this implies P (↓, x0, x1) = (x14, x15)).

8It would actually be sufficient to consider the scenario E3 here, but we can save a little bit of work by considering
both E3 and E4.

25

Since the event BadOverwrite does not occur, the property will still hold later. (We remark that
entries in the table P in E3 may exist which are not in E4.)

We now establish our claim that all queries and answers of the distinguisher in E3 and E4 are
the same.

Consider first a P-query P(x0, x1). If (↓, x0, x1) ∈ P in E4, the previous paragraph gives the
result for this query. If (↓, x0, x1) /∈ P in both E3 and E4, the same code is executed. The only
remaining case is (↓, x0, x1) ∈ P in E3 and (↓, x0, x1) /∈ P in E4. The only way this can happen is if
the query P(x0, x1) was invoked previously from a query to Check in E3, in which case the same
entry p(↓, x0, x1) was used to set P , and we get the result.

Next, we consider a P−1-query P−1(x∗14, x
∗
15). Again, the only non-trivial case is if (↑, x∗14, x

∗
15) ∈

P in E3 and (↑, x∗14, x
∗
15) /∈ P in E4. This is only possible if during some query to Check(x0, x1, ·, ·)

in E3, the last line invoked P(x0, x1), and (x∗14, x
∗
15) = p(↓, x0, x1). Since it also must be that

until now the distinguisher never invoked P(x0, x1) (otherwise, P (↑, x∗14, x
∗
15) = (x0, x1) in E4), this

implies that the event BadBackwardQuery must have happened.
Finally, consider a call Check(x0, x1, x14, x15) to Check. In case (↓, x0, x1) ∈ P in E4 and in

case (↓, x0, x1) /∈ P in E3, line 20 behaves the same in both E3 and E4. If (↓, x0, x1) ∈ P in E3 and
(↓, x0, x1) /∈ P in E4, then in E4, Check returns false. In E3, Check can only return true if the
event BadBackwardQuery occurs.

The second if statement in Check (in E4 this is line 21 of R) can only return false in both E3
and E4: otherwise, the first if statement in Check (in E4 this is line 20 of R) would already have
returned true. This is sufficient, because the event BadCheck does not occur, and so the last line of
Check in both scenarios also returns false.

Thus, ∣∣∣Pr
p

[D outputs 1 in E3]− Pr
p

[D outputs 1 in E4]
∣∣∣

≤ Pr
p

[(BadCheck ∨ BadOverwrite ∨ BadBackwardQuery)]

≤ q′

22n + 2(q′)2

22n + 2(q′)2

22n ≤ 5(q′)2

22n .

Proof of Lemma 3.6. Since E1 corresponds to an interaction with P, while E4 corresponds to an
interaction with R, Lemma 3.6 now follows immediately from Lemmas 3.7, 3.8, and 3.9 as∣∣∣Pr[D outputs 1 in E1]− Pr[D outputs 1 in E4]

∣∣∣ ≤ (q′)2

22n + 5(q′)2

22n ≤ 6(q′)2

22n .

We are now able to prove that the simulator is efficient in S1 with overwhelming probability.

Lemma 3.10 (Efficiency of the simulator). Consider an execution of S1. Then, with probability at
least 1− 2·107·q16

22n , the simulator runs for at most O(q8) steps and issues at most 1400q8 queries to
P.

Proof. By Lemmas 3.4 and 3.5, in S2(f, p) for uniform (f, p), there are at most 6q2+1296q8 ≤ 1400q8

queries to R(p), and the simulator runs in time r(q) ∈ O(q8) for some function r.
Toward a contradiction suppose there exists a distinguisher D that issues at most q queries such

that in S1 the simulator runs for more than r(q) steps or makes more than 1400q8 queries to P,
with probability larger than 2·107·q16

22n . We define a new distinguisher D′ that consists of D and the
simulator together. D′ outputs 1 if and only if the simulator takes more than r(q) steps or more
than 1400q8 queries are issued by D and the simulator (i.e., D′ stops and outputs 1 immediately
before the 1400q8 + 1’st query is issued, so that D′ never issues more than 1400q8 queries). Then

26

D′ issues at most 1400q8 queries and distinguishes R(p) from P with probability larger than
2·107·q16

22n > 6(1400q8)2

22n , which contradicts Lemma 3.6. We conclude that such a distinguisher D
cannot exist.

Finally, this allows us to conclude that scenarios S1 and S2 can be distinguished only with
negligible probability.

Lemma 3.11 (Transition from S1 to S2). The probability that a fixed distinguisher answers 1 in
S1 differs at most by 4·107·q16

22n from the probability that it answers 1 in S2(f, p) for uniform random
(f, p).

Proof. Toward a contradiction assume that there exists a distinguisher D that issues at most q
queries and distinguishes with probability larger than 4·107·q16

22n . We now define a distinguisher D′
for P and R(p) as follows: D′ consists of D and the simulator together. D′ counts the total
number of queries of both D and the simulator, and whenever the query limit of 1400q8 queries
is exceeded, D′ stops and outputs 1. Otherwise, D′ outputs whatever D outputs. The query
limit is never reached in S2 by Lemma 3.4, and in S1 this occurs with probability at most 2·107·q16

22n

by Lemma 3.10. By definition, D′ issues at most 1400q8 queries. Clearly, D′ still distinguishes
with probability at least (4−2)·107·q16

22n . But this contradicts Lemma 3.6, as the probability that D′

outputs 1 when interacting with P differs by at least 2·107·q16

22n > 6(1400q8)2

22n from the probability that
it outputs 1 when interacting with R(p). Thus, such a D cannot exist.

3.5 Equivalence of the Second and the Third Scenarios

This section contains the core of our argument: We prove Lemma 3.37, which states that S2(f, p)
and S3(h) have the same behavior for uniformly chosen (f, p) and h. We let G = (G1, . . . , G14) be
the tuple of tables of the simulator T(f) in the execution.

3.5.1 Overview and intuition

Bad events and good executions in S2(f, p). We will define the events BadP, BadlyHit, and
BadlyCollide, which should occur with small probability over the choice of (f, p) in an execution
of S2(f, p). Intuitively, the event BadP occurs if, when an entry of p is read by the simulator,
an unexpected collision with values in P or G occurs. The event BadlyHit captures unexpected
collisions produced by assignments of the form Gi(x) := f(i, x), and the event BadlyCollide happens
if after such an assignment two chains that are defined by G and P suddenly lead to the same value,
even though this was not expected. Finally, we call (f, p) good if none of these events occur in an
execution of S2(f, p). We are going to prove that a randomly chosen pair (f, p) is good with high
probability (Lemma 3.22).

Properties of good executions in S2(f, p): No values are overwritten. We will establish
the following property for executions of S2(f, p) for good (f, p).

(i) No call to ForceVal overwrites an entry. That is, for any call to ForceVal of the form
ForceVal(x, ·, `), we have x /∈ G` before the call. (Lemma 3.31)

Proving this requires a careful analysis of good executions and is one of our main technical contri-
butions. We now give a proof sketch.

A partial chain is a triple (xk, xk+1, k). Given a partial chain, e.g. (x3, x4, 3), it may be possible
to move “forward” or “backward” one step in the Feistel construction, i.e., if x4 ∈ G4, we may

27

obtain x5 = x3 ⊕G4(x4), and if x3 ∈ G3, we may obtain x2 = x4 ⊕G3(x3). Entries in P may also
allow such moves: for example, in case of a partial chain (x0, x1, 0), moving backward is possible
if (↓, x0, x1) ∈ P . We say that two partial chains are equivalent if it is possible to reach one chain
from the other by moving forward and backward as described, given the tables G and P . Note
that this relation is not necessarily symmetric, as BadP may occur. We say that a partial chain is
table-defined if it is possible to move both one step backward and one step forward using G and P .
Intuitively, this just means that the two values that describe the partial chain are in the tables G,
P .

Now suppose (f, p) is good. Then, as BadP does not occur, at any point in the execution
equivalence between partial chains is an equivalence relation (Lemma 3.23).

Next, we show that the equivalence relation among table-defined chains persists: If two partial
chains C and D are table-defined, then assignments of the form Gi(x) := f(i, x) and assignments
to P in R do not change the equivalence relation between C and D (Lemma 3.25). Furthermore,
calls to ForceVal do not change this equivalence relation, given that the buffer rounds (namely
rounds 3 and 6 or 9 and 12) around the adapt zones (see Fig. 2) are still undefined when Adapt
is called (Lemma 3.26(c)).

Next we show that indeed the buffer rounds are still undefined when Adapt is called: We first
show that they are undefined when a chain is enqueued for which no equivalent chain was enqueued
previously (Lemma 3.29), and then, using that the equivalence relation among chains persists, we
show that they are still undefined when the chain is dequeued (Lemma 3.30). The proof of the
latter crucially relies on the fact that the event BadlyCollide does not occur.

Finally, we conclude (i) as follows: As the buffer rounds around the adapt zones are still
undefined when Adapt is called, the calls to ForceVal do not overwrite a value, as otherwise
BadlyHit would occur (Lemma 3.26(a)).

Further properties of good executions in S2(f, p). We say that the distinguisher completes
all chains if for each query to P(x0, x1) or (x0, x1) = P−1(x14, x15) by the distinguisher, it is-
sues the corresponding Feistel queries to F in the end of the execution (i.e., it emulates a call to
EvaluateForward(x0, x1, 0, 14)). We may assume that the distinguisher completes all chains:
This multiplies the number of queries at most by a factor of 15, and the modified distinguisher
achieves at least the advantage of the original distinguisher.

For such a modified distinguisher, (i) implies the following properties for good (f, p):

(ii) At the end of an execution of S2(f, p), for any table entry P (↓, x0, x1) = (x14, x15), emulating
an evaluation of the Feistel construction on x0, x1 using the tables G also yields (x14, x15).
The analogous statement holds for P (↑, x14, x15). (Lemma 3.32)

(iii) The number of calls to Adapt equals the number of queries to p(·, ·, ·) made by the two-sided
random function. (Lemma 3.33)

It is intuitive that (ii) holds: As the distinguisher completes all chains, by (i) no values are ever
overwritten, and BadP does not occur, it follows that for each query to p there will be a chain
completion. Furthermore, the values corresponding to this chain will not be changed afterward. To
prove (iii), we will give a one-to-one mapping between Adapt calls and queries to p.

Mapping randomness of S2 to randomness of S3. Our final goal is to prove that S2(f, p)
for random (f, p) and S3(h) for random h cannot be distinguished. For this, we give a map τ that
maps pairs (f, p) to tables h as follows. If (f, p) is good, run a simulation of S2(f, p) in which the
distinguisher completes all chains. Consider the tables G at the end of this execution, and for any

28

i and x let h(i, x) := Gi(x) in case x ∈ Gi, and h(i, x) := ⊥ otherwise. If (f, p) is not good, let
τ(f, p) := λ. Now (i) and (ii) allow us to show that S2(f, p) behaves exactly as S3(τ(f, p)) for good
(f, p), in the sense that all queries and answers to f (or h) by the simulator, and all queries and
answers to R (or Ψ) are identical in both scenarios (Lemma 3.35).

Finally, using (iii) we can argue that the distribution τ(f, p) for random (f, p) is close to uniform,
if the ⊥ entries of τ(f, p) are replaced by uniform random entries. This implies that S2 and S3
cannot be distinguished (Lemma 3.37).

3.5.2 Partial chains

Evaluating partial chains. A partial chain is a triple (xk, xk+1, k) ∈ {0, 1}n×{0, 1}n×{0, . . . , 14}.
Given such a partial chain C, and a set of tables T.G and R.P , it can be that we can move “for-
ward” or “backward” one step in the Feistel construction. This is captured by the functions next
and prev. Additionally, the functions val+ and val− allow us to access additional values of the
chain indexed by C, val+ by invoking next, and val− by invoking prev. The function val finally
gives us the same information in case we do not want to bother about the direction.

Definition 3.12. Fix a set of tables G = T.G and P = R.P in an execution of S2(f, p). Let
C = (xk, xk+1, k) be a partial chain. We define the functions next, prev, val+, val−, and val
with the following procedures (for a chain C = (xk, xk+1, k), we let C[1] = xk, C[2] = xk+1 and
C[3] = k):

1 procedure next(xk, xk+1, k):
2 if k < 14 then
3 if xk+1 /∈ Gk+1 then return ⊥
4 xk+2 := xk ⊕Gk+1(xk+1)
5 return (xk+1, xk+2, k + 1)
6 else if k = 14 then
7 if (↑, x14, x15) /∈ P then return ⊥
8 (x0, x1) := P (↑, x14, x15)
9 return (x0, x1, 0)

10

11 procedure prev(xk, xk+1, k):
12 if k > 0 then
13 if xk /∈ Gk then return ⊥
14 xk−1 := xk+1 ⊕Gk(xk)
15 return (xk−1, xk, k − 1)
16 else if k = 0 then
17 if (↓, x0, x1) /∈ P then return ⊥
18 (x14, x15) := P (↓, x0, x1)
19 return (x14, x15, 14)
20

21 procedure val+i (C)
22 while (C 6= ⊥) ∧ (C[3] /∈ {i− 1, i}) do
23 C := next(C)
24 if C = ⊥ then return ⊥
25 if C[3] = i then return C[1] else return C[2]
26

27 procedure val−i (C)

29

28 while (C 6= ⊥) ∧ (C[3] /∈ {i− 1, i}) do
29 C := prev(C)
30 if C = ⊥ then return ⊥
31 if C[3] = i then return C[1] else return C[2]
32

33 procedure vali(C)
34 if val+i (C) 6= ⊥ return val+i (C) else return val−i (C)

♦

We use the convention that ⊥ /∈ Gi for any i ∈ {1, . . . , 14}. Thus, the expression vali(C) /∈ Gi
means that vali(C) = ⊥ or that vali(C) 6= ⊥ and vali(C) /∈ Gi. Furthermore, even though next
and prev may return ⊥, according to our definition of partial chains, ⊥ is not a partial chain.

Equivalent partial chains. We use the concept of equivalent partial chains:

Definition 3.13. For a given set of tables G and P , two partial chains C and D are equivalent
(denoted C ≡ D) if they are in the reflexive transitive closure of the relations given by next and
prev. ♦

In other words, two partial chains C and D are equivalent if C = D, or if D can be obtained by
applying next and prev finitely many times on C.

Note that this relation is not an equivalence relation, since it is not necessarily symmetric.9
However, we will prove that for most executions of S2(f, p) it actually is symmetric and thus an
equivalence relation. Furthermore, it is possible that two different chains (x0, x1, 0) and (y0, y1, 0)
are equivalent (e.g., by applying next 15 times). While we eventually show that for most executions
of S2(f, p) this does not happen, this is not easy to show, and we cannot assume it for most of the
following proof.

3.5.3 Bad events and good executions

As usual in indistinguishability proofs, for some pairs (f, p) the scenario S2(f, p) does not behave
as “it should.” In this section, we collect events which we show later to occur with low probability.
We later study S2(f, p) for pairs (f, p) for which these events do not occur.

All events occur if some unexpected collision happens to one of the partial chains which can be
defined with elements of G1, . . . , G14 and P .

Definition 3.14. The set of table-defined partial chains contains all chains C for which next(C) 6=
⊥ and prev(C) 6= ⊥. ♦

If C = (xk, xk+1, k) for k ∈ {1, . . . , 13}, then C is table-defined if and only if xk ∈ Gk and
xk+1 ∈ Gk+1. For k ∈ {0, 14}, C is table-defined if the “inner” value is in G1 or G14, respectively,
and a corresponding triple is in P .

Hitting permutations. Whenever we call the two-sided random function, a query to the table
p may occur. If such a query has unexpected effects, the event BadP occurs.

Definition 3.15. The event BadP occurs in an execution of S2(f, p) if immediately after a call
(x14, x15) := p(↓, x0, x1) in line 7 of R we have one of

9The symmetry can be violated if in the two-sided random function R an entry of the table P is overwritten.

30

• (↑, x14, x15) ∈ P ,

• x14 ∈ G14.

Also, it occurs if immediately after a call (x0, x1) := p(↑, x14, x15) in line 14 of R we have one of

• (↓, x0, x1) ∈ P ,

• x1 ∈ G1.

♦

If BadP does not occur, then we will be able to show that evaluating P and P−1 is a bijection, since
no value is overwritten.

Chains hitting tables. Consider an assignment Gi(xi) := f(i, xi) and a partial chain C that
is table-defined after this assignment. Unless something unexpected happens, such an assignment
allows evaluating next(C) at most once more.

Definition 3.16. The event BadlyHit occurs if one of the following happens in an execution of
S2(f, p):

• After an assignment Gk(xk) := f(k, xk) there is a table-defined partial chain (xk, xk+1, k)
such that prev(prev(xk, xk+1, k)) 6= ⊥.

• After an assignment Gk(xk) := f(k, xk) there is a table-defined partial chain (xk−1, xk, k− 1)
such that next(next(xk−1, xk, k − 1)) 6= ⊥.

♦

Furthermore, if the above happens for some partial chain C, and C ′ is a partial chain equivalent to
C before the assignment, we say that C ′ badly hits the tables.

To illustrate the definition, we give two examples. First, the event BadlyHit occurs if x1 ∈ G1,
the assignment G2(x2) := f(2, x2) occurs, and just after that we have x3 := x1 ⊕ G2(x2) ∈
G3(x3). Clearly (x1, x2, 1) is table-defined after the assignment, next(x1, x2, 1) = (x2, x3, 2), and
next(x2, x3, 2) 6= ⊥ because x3 ∈ G3. Second, the event BadlyHit occurs if x2 ∈ G2, the as-
signment G1(x1) := f(1, x1) occurs, and just after that we have for x0 := G1(x1) ⊕ x2 that
(↓, x0, x1) ∈ P. Clearly (x1, x2, 1) is table-defined after the assignment, prev(x1, x2, 1) = (x0, x1, 0),
and prev(x0, x1, 0) 6= ⊥ because (↓, x0, x1) ∈ P.

We will later argue that the event BadlyHit is unlikely, because a chain only badly hits the tables
if f(k, xk) takes a very particular value. For this (and similar statements), it is useful to note that
the set of table-defined chains after an assignment Gk(xk) := f(k, xk) does not depend on the value
of f(k, xk), as the reader can verify.

Colliding chains. Two chains C and D collide if after an assignment suddenly vali(C) = vali(D),
even though this was not expected. More exactly:

Definition 3.17. The event BadlyCollide occurs in an execution of S2(f, p), if for an assignment of
the form Gi(xi) := f(i, xi) there exist two partial chains C and D such that for some ` ∈ {0, . . . , 15}
and σ, ρ ∈ {+,−} all of the following happen:

• Before the assignment, C and D are not equivalent.

31

• Before the assignment, valσ` (C) = ⊥ or valρ` (D) = ⊥.

• After the assignment, valσ` (C) = valρ` (D) 6= ⊥.

• After the assignment, C and D are table-defined.

♦

Finally, we say that a pair (f, p) is good if none of the above three events happen in an execution
of S2(f, p).

To illustrate the above definition, we give three examples. In all of these, we assume that the
tables G and P only contain the values we explicitly mention.
In the first example, suppose (x1, x3, x4) ∈ G1×G3×G4, the assignment G2(x2) := f(2, x2) occurs,
and just after this assignment, we have x1⊕G2(x2) = x3. In this case the event BadlyCollide occurs
for the given assignment and the chains C = (x1, x2, 1), D = (x3, x4, 3): before the assignment, C
and D are not equivalent because next(x1, x2) = ⊥, and val+3 (C) = ⊥, val−3 (D) = x3. After the
assignment C and D are table-defined, and val+3 (C) = val−3 (D) = x3. (In this case, C and D are
actually equivalent after the assignment.)
For the second example, suppose (x1, x4, x5) ∈ G1×G4×G5, let x3 := G4(x4)⊕x5, the assignment
G2(x2) := f(2, x2) occurs, and just after this assignment we have x1⊕G2(x2) = x3. In this case the
event BadlyCollide occurs for the given assignment and the chains C = (x1, x2, 1), D = (x4, x5, 4):
before the assignment, C and D are not equivalent because next(x1, x2) = ⊥, and val+3 (C) =
⊥, val−3 (D) = x3. After the assignment C and D are table-defined, and val+3 (C) = val−3 (D) = x3.
(In this case, C and D are not equivalent after the assignment.)
In the third example, let x1, x

′
1, x0, x

′
0 be such that x1 6= x′1 and x0 6= x′0. Suppose x1 ∈ G1,

(↓, x0, x1), (↓, x′0, x′1) ∈ P, let x2 := x0 ⊕ G1(x1), the assignment G1(x′1) := f(1, x′1) occurs, and
just after this assignment we have x′0 ⊕ G1(x′1) = x2. In this case the event BadlyCollide occurs
for the given assignment and the chains C = (x0, x1, 0), D = (x′0, x′1, 0): before the assignment,
C and D are not equivalent and val+2 (C) = x2, val+2 (D) = ⊥. After the assignment C and D are
table-defined, and val+2 (C) = val+2 (D) = x2. (Also in this case, C and D are not equivalent after
the assignment.)

3.5.4 Bad events are unlikely

In this subsection, we show that all the bad events we have introduced are unlikely.

Hitting permutations. We first show that the event BadP is unlikely.

Lemma 3.18. Suppose for some T ∈ N, S2(f, p) is such that for any (f, p) the tables satisfy
|Gi| ≤ T for all i and |P | ≤ T at any point in the execution. Then, the probability over the choice
of (f, p) of the event BadP is at most 2T 2

2n .

Proof. For any query to p, only 2 events are possible. In both cases, these events have probability
at most T

2n . Since at most T positions of p can be accessed without violating |P | ≤ T we get the
claim.

Chains hitting tables. We now show that the event BadlyHit is unlikely.

Lemma 3.19. Suppose for some T ∈ N, S2(f, p) is such that for any (f, p) the tables satisfy
|Gi| ≤ T for all i and |P | ≤ T at any point in the execution. Then, the probability over the choice
of (f, p) of the event BadlyHit is at most 30T 3

2n .

32

Proof. We first bound the probability of the first event, i.e., that after the assignment Gk(xk) :=
f(k, xk) there is a table-defined chain C = (xk, xk+1, k) such that prev(prev(C)) 6= ⊥. This can
only happen if xk+1 ⊕Gk(xk) has one of at most T different values (namely, it has to be in Gk−1
in case 14 ≥ k ≥ 2 or in P together with x1 in case k = 1). Thus, for fixed xk+1 ∈ Gk+1 the
probability that prev(prev(C)) 6= ⊥ is at most T/2n. Since there are at most T possible choices
for xk+1 (this also holds if k = 14) the total probability is at most T 2/2n.

The analogous probability for next is exactly the same and thus the probability of BadlyHit for
one assignment is at most 2 · T 2/2n. In total, there are at most 14 · T assignments of the form
Gk(xk) := f(k, xk), and thus the probability of BadlyHit is at most 28T 3/2n.

Colliding chains. We next show that it is unlikely that chains badly collide. First, we give
a useful lemma which explains how the chains behave when they do not badly hit G: for each
σ ∈ {+,−}, at most one value valσi (C) can change from ⊥ to a different value.

Lemma 3.20. Consider a set of tables G and P , xk /∈ Gk, fix a partial chain C, and suppose that
C does not badly hit the tables due to the assignment Gk(xk) := f(k, xk), and C is table-defined
after the assignment. Then, for each σ ∈ {+,−} there is at most one value i such that valσi (C)
differs after the assignment from before the assignment. Furthermore, if some value changes, then
it changes from ⊥ to a different value, and

i =
{
k + 1 if σ = +
k − 1 if σ = −,

and valσk(C) = xk before the assignment.

Proof. We give the proof for σ = +, the other case is symmetric. First, we see that if val+i (C) 6= ⊥
before the assignment, then it does not change due to the assignment. This follows by induction
on the number of calls to next in the evaluation of val+, and by noting that Gk(xk) := f(k, xk) is
not called if xk ∈ Gk in the simulator.

Thus, suppose that val+i (C) = ⊥. This means that during the evaluation of val+i (C) at some
point the evaluation stopped. This was either because a queried triple was not in P , or because
a value xj was not in Gj during the evaluation. In the first case, the evaluation of val+i (C) will
not change due to an assignment to Gk(xk). In the second case, the evaluation can only change
if it stopped because val+k (C) = xk. Then after the assignment, val+k+1(C) will change from ⊥
to a different value. Since C is table-defined after the assignment and does not badly hit the
tables under the assignment, val+k+1(C) /∈ Gk+1 after this assignment (in case k + 1 < 15), and
(↑, val+14(C), val+15(C)) /∈ P (in case k+1 = 15). Thus, there is only one change in the evaluation.

Instead of showing that BadlyCollide is unlikely, it is slightly simpler to consider the event
(BadlyCollide ∧ ¬BadlyHit ∧ ¬BadP).

Lemma 3.21. Suppose for some T ∈ N, S2(f, p) is such that for any (f, p) the tables satisfy
|Gi| ≤ T for all i and |P | ≤ T at any point in the execution. Then, the probability of the event
(BadlyCollide ∧ ¬BadlyHit ∧ ¬BadP) is at most 17 000T 5

2n .

Proof. If the event (BadlyCollide ∧ ¬BadlyHit ∧ ¬BadP) happens for a pair (f, p), then there is
some point in the execution where some assignment Gk(xk) := f(k, xk) makes a pair (C,D) of
partial chains collide as in Definition 3.17. After this assignment, both (C,D) are table-defined,
and valσ` (C) = valρ` (D).

33

We distinguish some cases: first suppose that val−` (C) = val−` (D) = ⊥ before the assignment,
and val−` (C) = val−` (D) 6= ⊥ after the assignment. Since BadlyHit does not happen, Lemma 3.20
implies that before the assignment, val−`+1(C) = val−`+1(D), and furthermore ` + 1 ∈ {1, . . . , 14}.
Also, since C 6≡ D before the assignment, it must be that before the assignment val−`+2(C) 6=
val−`+2(D). However, this implies that val−` (C) 6= val−` (D) after the assignment. Therefore, this
case is impossible and has probability 0.

Next, we consider the case val−` (C) = ⊥, val−` (D) 6= ⊥ before the assignment, and val−` (C) =
val−` (D) after the assignment. SinceD is table-defined after the assignment, and we assume BadlyHit
does not occur, by Lemma 3.20 the value val−` (D) does not change due to the assignment. Since
val−` (C) = val−`+2(C)⊕G`+1(x`+1), and G`+1(x`+1) is chosen uniformly at random, the probability
that it exactly matches val−` (D) is 2−n.

The next two cases are similar to the previous ones, we give them for completeness. The first of
these two is that val+` (C) = val−` (D) = ⊥ before the assignment, and val+` (C) = val−` (D) 6= ⊥ after
the assignment. However, due to Lemma 3.20 this is impossible: we would need both k = ` + 1
and k = `− 1 for both values to change as needed.

Then, we have the case that ⊥ = val+` (C) 6= val−` (D) before the assignment, and val+` (C) =
val−` (D) after the assignment. Again, val−` (D) does not change by the assignment by Lemma 3.20,
and also similarly to before, the probability that val+`−2(C)⊕ f(`− 1, val−`−1(C)) = val+` (D) is 2−n.

Bounds on the probability of the 4 remaining cases follow by symmetry of the construction.
There are 4 possibilities for the values of σ and ρ. As previously, there can be at most 14 · T

assignments of the form Gk(xk) := f(k, xk). For each assignment, there are at most 15 · T 2

possibilities for a chain to be table-defined before the assignment. Since the chains that are table-
defined after the assignment, but not before must involve xk, there are at most 2 · T possibilities
for a fixed assignment. Thus the probability of the event (BadlyCollide ∧ ¬BadlyHit ∧ ¬BadP) is at
most 4·14·T ·(15·T 2+2·T)2

2n ≤ 4·14·172·T 5

2n .

Most executions are good. We collect our findings in the following lemma:

Lemma 3.22. Suppose for some T ∈ N, S2(f, p) is such that for any (f, p) the tables satisfy
|Gi| ≤ T for all i and |P | ≤ T at any point in the execution. Then, the probability that a uniform
randomly chosen (f, p) is not good is at most 18 000 · T 5

2n .

Proof. This follows immediately from Lemmas 3.18, 3.19, and 3.21.

3.5.5 Properties of good executions

We now study executions of S2(f, p) with good pairs (f, p). One of the main goals of this section is
to prove Lemma 3.31, which states that no call to ForceVal overwrites a previous entry. However,
we later also use Lemma 3.32 (in good executions, evaluating the Feistel construction for a pair
(x0, x1) leads to P (x0, x1) — if not, it would be silly to hope that our simulator emulates a Feistel
construction), and Lemma 3.33 (the number of times Adapt is called in T(f) is exactly the same
as the number of times the table p is queried in R(p)).

We first state two basic lemmas about good executions:

Lemma 3.23. Consider an execution of S2(f, p) with a good pair (f, p). Then, we have:

(a) For any partial chain C, if next(C) = ⊥ before an assignment Gi(xi) := f(i, xi) or a pair of
assignments to P in R, then if C is table-defined after the assignment(s), next(next(C)) = ⊥.
For any partial chain C, if prev(C) = ⊥ before an assignment Gi(xi) := f(i, xi) or a pair of
assignments to P in R, then if C is table-defined after the assignment(s), prev(prev(C)) = ⊥.

34

(b) For all partial chains C and D, we have next(C) = D ⇐⇒ prev(D) = C.

(c) The relation ≡ between partial chains is an equivalence relation.

Proof. For assignments of the form Gi(xi) := f(i, xi), (a) follows directly since BadlyHit does not
occur. For the assignments to P, it follows because BadP does not occur.

The statement (b) is trivial for chains C = (xk, xk+1, k) with k ∈ {0, . . . , 13}, since evaluating
the Feistel construction one step forward or backward is bijective. For k = 14 we get (b) because
BadP does not occur: no value is ever overwritten in a call to P or P−1, and thus evaluating P and
P−1 is always bijective.

To see (c), observe that the relation ≡ is symmetric because of (b), and it is reflexive and
transitive by definition.

Lemma 3.24. Consider an execution of S2(f, p) with a good pair (f, p). Suppose that at any point
in the execution, two table-defined chains C and D are equivalent. Then, there exists a sequence of
partial chains C1, . . . , Cr, r ≥ 1, such that

• C = C1 and D = Cr, or else D = C1 and C = Cr,

• Ci = next(Ci−1) and Ci−1 = prev(Ci),

• and each Ci is table-defined.

Proof. Since C ≡ D, D can be obtained from C by applying next and prev finitely many times. A
shortest such sequence can only apply either next or prev, due to Lemma 3.23 (b). The resulting
sequence of chains is the sequence we are looking for (possibly backwards)—note that the last bullet
point also follows by Lemma 3.23 (b).

We first show that assignments Gi(xi) := f(i, xi) and also assignments to P in R do not change
the equivalence relation for chains which were defined before.

Lemma 3.25. Consider an execution of S2(f, p) with a good pair (f, p). Let C and D be two
table-defined partial chains at some point in the execution. Suppose that after this point, there is
an assignment Gi(xi) := f(i, xi) or a pair of assignments to P in R. Then C ≡ D before the
assignment(s) if and only if C ≡ D after the assignment(s).

Proof. Suppose that C ≡ D before the assignment. We apply Lemma 3.24 to get a sequence
C1, . . . , Cr of table-defined chains. This sequence still implies equivalence after the assignment,
since no value in P or G can be overwritten by one of the assignments considered (recall that BadP
does not occur), i.e., the conditions of Definition 3.13 still hold if they held previously, thus C ≡ D
after the assignment(s).

Now suppose that C and D are equivalent after the assignment. Again consider the sequence
C1, . . . , Cr as given by Lemma 3.24. Suppose first that the assignment was Gi(xi) := f(i, xi). If
xi was not part of any chain, then C1, . . . , Cr are a sequence which show the equivalence of C and
D before the assignment. Otherwise, there is j such that the chains Cj−1 and Cj have the form
Cj−1 = (xi−1, xi, i − 1) and Cj = (xi, xi+1, i). It is not possible that Cj = Cr, as Cj is not table-
defined before the assignment. After the assignment next(next(Cj−1)) 6= ⊥ which is impossible by
Lemma 3.23 (a). Suppose now we have a pair of assignments to P , mapping (x0, x1) to (x14, x15).
If (x14, x15, 14) is not part of the sequence connecting C and D after the assignment, the same
sequence shows equivalence before the assignment. Otherwise, next(next(x14, x15, 14)) = ⊥ by
Lemma 3.23 (a), as before.

35

Next, we show that calls to ForceVal also do not change the equivalence relation for previously
defined chains. Also, they never overwrite a previously defined value. However, we only show this
under the assumption x`−1 /∈ G`−1 and x`+2 /∈ G`+2. Later, we will see that this assumption is
safe.

Lemma 3.26. Consider an execution of S2(f, p) with a good pair (f, p). Let ` ∈ {4, 10} and suppose
that for a call Adapt(x`−2, x`−1, x`+2, x`+3, `) it holds that x`−1 /∈ G`−1 and x`+2 /∈ G`+2 before
the call.

Then, the following properties hold:

(a) For both calls ForceVal(x, ·, j) we have x /∈ Gj before the call.

(b) Let C be a table-defined chain before the call to Adapt, i ∈ {1, . . . , 14}. Then, vali(C) stays
constant during both calls to ForceVal.

(c) If the chains C and D are table-defined before the call to Adapt, then C ≡ D before the calls
to ForceVal if and only if C ≡ D after the calls to ForceVal.

Proof. Before Adapt is called, EvaluateForward and EvaluateBackward make sure that
all the values x`−1, x`−2, . . . , x0, x15, . . . , x`+3, x`+2 corresponding to (x`−2, x`−1, ` − 2) are defined
in P and G. By Lemma 3.23 (b), all partial chains defined by these values are equivalent to
(x`−2, x`−1, ` − 2). Furthermore, since x`−1 /∈ G`−1 and x`+2 /∈ G`+2, these are the only partial
chains that are equivalent to (x`−2, x`−1, `− 2) at this point.

By our assumption, x`−1 /∈ G`−1 and x`+2 /∈ G`+2, and thus the procedure Adapt defines
G`−1(x`−1) := f(`− 1, x`−1) and G`+2(x`+2) := f(`+ 2, x`+2). These assignments lead to x` /∈ G`
and x`+1 /∈ G`+1, as otherwise the event BadlyHit would occur. This shows (a).

We next show (b), i.e., for any C the values vali(C) stay constant. For this, note first that this
is true for table-defined chains C that are equivalent to (x`−2, x`−1, `−2) before the call to Adapt:
vali gives exactly xi both before and after the calls to ForceVal.

Now consider the table-defined chains that are not equivalent to (x`−2, x`−1, ` − 2) before the
call to Adapt. We show that for such a chain C, even val+i (C) and val−i (C) stay constant, as
otherwise BadlyCollide would occur. A value valσi (C) can only change during the execution of
ForceVal(x`, ·, `) if valσ` (C) = x`. But this implies that the assignment G(x`−1) := f(`− 1, x`−1)
in Adapt made the two partial chains C and (x`−2, x`−1, ` − 2) badly collide. For this, note
that C is table-defined even before the assignment, since it was table-defined before the call to
Adapt. Moreover, (x`−2, x`−1, ` − 2) is table-defined after the assignment. The argument for
ForceVal(x`+1, ·, `+ 1) is the same. Thus, this establishes (b).

We now show (c). First, suppose that C ≡ D before the calls to ForceVal. The sequence of
chains given by Lemma 3.24 is not changed during the calls to ForceVal, since by (a), no value
is overwritten. Thus, the chains are still equivalent after the calls.

Now suppose that C ≡ D after the calls to ForceVal. As by Lemma 3.23 (c), ≡ is sym-
metric, we may distinguish the following two cases. In the first case, C and D are equivalent to
(x`−2, x`−1, `− 2). By definition of Adapt, the only partial chains equivalent to (x`−2, x`−1, `− 2)
after the Adapt call are the partial chains with the values x0, x1, . . . , x14, x15 corresponding to
(x`−2, x`−1, ` − 2). Only the partial chains on the values x`−2, . . . , x0, x15, . . . , x`+3 were table-
defined before the call to Adapt, and as we observed in the first paragraph, these chains were
equivalent before the calls to ForceVal.

In the second case, C and D are not equivalent to (x`−2, x`−1, ` − 2). Let C1, . . . , Cr be the
sequence given by Lemma 3.24. If C and D were not equivalent before the calls to ForceVal, there
is i such that before the call, Ci was table-defined, but Ci+1 was not. Then, val+(Ci) changes during

36

a call to ForceVal, contradicting the proof of (b). Thus, the chains must have been equivalent
before the calls.

Equivalent chains are put into CompletedChains simultaneously:

Lemma 3.27. Suppose that (f, p) is good. Fix a point in the execution of S2(f, p), and suppose
that until this point, for no call to ForceVal of the form ForceVal(x, ·, `) we had x ∈ G` before
the call. Suppose that at this point C = (xk, xk+1, k) with k ∈ {1, 7} and D = (ym, ym+1,m) with
m ∈ {1, 7} are equivalent. Then, C ∈ CompletedChains if and only if D ∈ CompletedChains.

Proof. We may assume k = 1. We first show that the lemma holds right after C was added to
CompletedChains. Since the chain was just adapted, and using Lemma 3.23 (b), the only chains
which are equivalent to C are those of the form (vali(C), vali+1(C), i). Thus both C and D are
added to CompletedChains, and D is the only chain with index m = 7 that is equivalent to C.

Now, the above property can only be lost if the event BadP occurs or else if a value is overwritten
by ForceVal. Thus, we get the lemma.

If the simulator detects a chain (x7, x8, 7) for which val+ is defined for sufficiently many values,
a chain equivalent to it was previously enqueued:

Lemma 3.28. Consider an execution of S2(f, p) with a good pair (f, p). Suppose that at some
point, a chain C = (x7, x8, 7) is enqueued for which val+2 (C) ∈ G2 or val−13(C) ∈ G13. Then, there
is a chain equivalent to C which was previously enqueued.

Proof. We only consider the case val+2 (C) ∈ G2, the other case is symmetric. Define (x0, x1, x2, x13,
x14, x15) := (val+0 (C), val+1 (C), val+2 (C), val+13(C), val+14(C), val+15(C)). All these must be different
from ⊥, since otherwise val+2 (C) = ⊥.

At some point in the execution, all the following entries are set in their respective hashtables:
G1(x1), G2(x2), G13(x13), G14(x14), and P (↑, x14, x15). The last one of these must have been G2(x2)
or G13(x13): if it was P (↑, x14, x15), then the event BadP must have happened. If it was G1(x1),
then the event BadlyHit must have happened (as (x0, x1, 0) is table-defined after the assignment).
Analogously, G14(x14) cannot have been the last one. Thus, since G2(x2) or G13(x13) was defined
last among those, the simulator will detect the chain and enqueue it.

If a chain C is enqueued for which previously no equivalent chain has been enqueued, then
the assumptions of Lemma 3.26 actually do hold in good executions. The following two lemmas
state that these assumptions hold at the moment the chains are enqueued (this is captured by
Lemma 3.29), and then that they still hold when the chains are dequeued (this is captured by
Lemma 3.30).

Lemma 3.29. Consider an execution of S2(f, p) with a good pair (f, p). Let C be a partial chain
which is enqueued in the execution at some time and to be adapted at position `. Suppose that at
the moment the chain is enqueued, no equivalent chain has been previously enqueued.

Then, before the assignment Gk(xk) := f(k, xk) happens which just precedes C being enqueued,
val`−1(C) = ⊥ and val`+2(C) = ⊥.

Proof. We have ` ∈ {4, 10}. We will assume ` = 4, and due to symmetry of the construction, this
also implies the lemma in case ` = 10 for the corresponding rounds.

The assignment sets either the value of G7(x7) or G2(x2) uniformly at random (otherwise,
enqueueNewChains is not called in the simulator). Consider first the case that G2(x2) was
just set. Then, before this happened, val+3 (C) = ⊥, since x2 /∈ G2. Furthermore, val−6 (C) = ⊥,

37

since otherwise, val−7 (C) ∈ G7, and then (val−7 (C), val−8 (C), 7) would be an equivalent, previously
enqueued chain. This implies the statement in case G2(x2) is just set. The second case is if
G7(x7) was just set. Then, before the assignment, val−6 (C) = ⊥, as x7 /∈ G7, and val+3 (C) = ⊥,
since otherwise val+2 (C) ∈ G2 and so an equivalent chain would have been previously enqueued,
according to Lemma 3.28.

Lemma 3.30. Consider an execution of S2(f, p) with a good pair (f, p). Let C be a partial chain
which is enqueued in the execution at some time and to be adapted at position `. Then, either (i)
or (ii) holds:

(i) At the moment C is dequeued, we have C ∈ CompletedChains.

(ii) At the moment C is dequeued, we have C /∈ CompletedChains, and just before the call to
Adapt for C, we have (val`−1(C) /∈ G`−1) ∧ (val`+2(C) /∈ G`+2).

Proof. Suppose that the lemma is wrong, and let C be the first chain for which it fails. Because this
is the first chain for which it fails, Lemma 3.26(a) implies that until the moment C is dequeued, no
call to ForceVal overwrote a value. Now, consider the set C of table-defined chains at some point
in the execution that is not in an Adapt call, and before C is dequeued. Because of Lemmas 3.25
and 3.26(c), the equivalence relation among chains in C stays constant from this point until the
moment C is dequeued.

We distinguish two cases to prove the lemma. Consider first the case that at the moment C
is enqueued, an equivalent chain D was previously enqueued. The point in the execution where
C is enqueued is clearly not in an Adapt call, and both C and D are table-defined. Then, at
the moment C is dequeued, clearly D ∈ CompletedChains. Thus, because of Lemma 3.27 and the
remark about equivalence classes of C above, this implies that C ∈ CompletedChains when it is
dequeued.

The second case is when C has no equivalent chain which was previously enqueued. It is
sufficient to show (val`−1(C) /∈ G`−1) ∧ (val`+2(C) /∈ G`+2) at the moment C is dequeued: this
property still holds after executing EvaluateBackward and EvaluateForward, as otherwise
BadlyHit or BadP occurs.

To simplify notation we assume ` = 4 and show val3(C) /∈ G3, but the argument is completely
generic. From Lemma 3.29 we get that before the assignment which led to C being enqueued,
val3(C) = ⊥. Suppose val3(C) ∈ G3 at the time C is dequeued. This cannot have been true just
after the assignment which led to C being enqueued, as this would imply that BadlyHit occurred.
So it must be that G3(val3(C)) was set during completion of a chain D. This chain D was enqueued
before C was enqueued and dequeued after C was enqueued. Also, at the moment C is dequeued,
val3(C) = val3(D). From the point C is enqueued, at any point until C is dequeued, it is not
possible that C ≡ D: We assumed that there is no chain in the queue that is equivalent to C when
C is enqueued, and at the point C is enqueued both C and D are table-defined. Furthermore,
this point in the execution is not during an Adapt call. Therefore, by our initial remark, the
equivalence relation between C and D stays constant until the moment C is dequeued.

Consider the last assignment to a table before val3(C) = val3(D) 6= ⊥ was true. We first
argue that this assignment cannot have been of the form Gi(xi) := f(i, xi), as otherwise the event
BadlyCollide would have happened. To see this, we check the conditions for BadlyCollide for C and
D. By Lemma 3.29, the assignment happens earliest right before C is enqueued, in which case C
is table-defined after the assignment. Since D is enqueued before C, also D is table-defined after
the assignment. If the assignment happens later, both C and D are table-defined even before the
assignment. Furthermore, we have already seen that C ≡ D is not possible. Clearly, val3(C) = ⊥
or val3(D) = ⊥ before the assignment, and val3(C) = val3(D) 6= ⊥ after the assignment.

38

The assignment cannot have been of the form P (↓, x0, x1) = (x14, x15) or P (↑, x14, x15) =
(x0, x1), since val can be evaluated at most one step further by Lemma 3.23(a). Finally, the
assignment cannot have been in a call to ForceVal, because of Lemma 3.26(b).

Thus, val3(C) /∈ G3 when C is dequeued, and the same argument holds for the other cases as
well.

The following lemma is an important intermediate goal. It states that the simulator never
overwrites a value in G in case (f, p) is good.

Lemma 3.31. Consider an execution of S2(f, p) with a good pair (f, p). Then, for any call to
ForceVal of the form ForceVal(x, ·, `) we have x /∈ G` before the call.

Proof. Assume otherwise, and let C be the first chain during completion of which the lemma fails.
Since the lemma fails for C, C /∈ CompletedChains when it is dequeued. Thus, Lemma 3.30
implies that val`−1(C) /∈ G`−1 and val`+2(C) /∈ G`+2 just before Adapt is called for C, and so by
Lemma 3.26(a) we get the result.

We say that a distinguisher completes all chains, if, at the end of the execution, it emulates a
call to EvaluateForward(x0, x1, 0, 14) for all queries to P(x0, x1) or to (x0, x1) = P−1(x14, x15)
which it made during the execution.

Lemma 3.32. Consider an execution of S2(f, p) with a good pair (f, p) in which the distinguisher
completes all chains. Suppose that during the execution P(x0, x1), resp. P−1(x14, x15) is queried
by the simulator or the distinguisher. Then, at the end of the execution it holds that P (↓, x0, x1) =(
val+14(x0, x1, 0), val+15(x0, x1, 0)

)
, resp. P (↑, x14, x15) =

(
val−0 (x14, x15, 14), val−1 (x14, x15, 14)

)
.

Proof. If the query P(x0, x1) was made by the simulator at some point, then this was while it
was completing a chain. Then, right after it finished adapting we clearly have the result. By
Lemma 3.31 no value is ever overwritten. Since the event BadP does not occur, the conclusion of
the lemma must also be true at the end of the execution.

Consider the case that P(x0, x1) was queried by the distinguisher at some point. Since it
eventually issues the corresponding Feistel queries, it must query the corresponding values x7 and
x8 at some point. Thus, x7 ∈ G7 and x8 ∈ G8 at the end of the execution. One of the two
values was defined later, and in that moment, (x7, x8, 7) was enqueued by the simulator. Thus, it
is dequeued at some point. If it was not in CompletedChains at this point, it is now completed and
the conclusion of the lemma holds right after this completion. Otherwise, it was completed before
it was inserted in CompletedChains, and the conclusion of the lemma holds after this completion.
Again, by Lemma 3.31 no value is ever overwritten, and again BadP never occurs; hence, the
conclusion also holds at the end of the execution.

The case of a query P−1(x14, x15) is handled in the same way.

Lemma 3.33. Consider an execution of S2(f, p) with a good pair (f, p) in which the distinguisher
completes all chains. Then, the number of calls to Adapt by the simulator equals the number of
queries to p(·, ·, ·) made by the two-sided random function.

Proof. Since the event BadP does not occur, the number of queries to p(·, ·, ·) equals half the number
of entries in P at the end of the execution.

For each call to Adapt, there is a corresponding pair of entries in P : just before Adapt was
called, such an entry was read either in EvaluateForward or EvaluateBackward. Further-
more, for no other call to Adapt the same entry was read, as otherwise a value would have to be
overwritten, contradicting Lemma 3.31.

39

For each query to p(·, ·, ·), there was a corresponding call to Adapt: if the query to p occurred
in a call to P by the simulator, then we consider the call to Adapt just following this call (as
the simulator only queries P right before it adapts). If the query to p occurred in a call by the
distinguisher, the distinguisher eventually queries the corresponding Feistel chain. At the moment
it queries G8(x8), consider the set of chains that have been enqueued until now and are equivalent
to (x7, x8, 7) at this point. Let C be the chain that was enqueued first among the chains in
this set. By Lemma 3.31 no values are overwritten, and thus the query to p made in one of
EvaluateBackward or EvaluateForward during the completion of C is exactly the query we
are interested in, and we associate the subsequent Adapt call to it.

3.5.6 Mapping randomness of S2 to randomness of S3

We next define a map τ which maps a pair of tables (f, p) either to the special symbol λ in case
(f, p) is not good, or to a partial table h. A partial table h : {1, . . . , 14} × {0, 1}n 7→ {0, 1}n ∪ {⊥}
either has an actual entry for a pair (i, x), or a symbol ⊥ which indicates that the entry is unused.
This map will be such that S2(f, p) and S3(τ(f, p)) have “exactly the same behavior” for good
(f, p). In the following, whenever we talk about executions of S2(f, p) and S3(h), we assume that
they are executed for the same distinguisher.

Definition 3.34. The function τ(f, p) is defined as follows: If (f, p) is good, run a simulation of
S2(f, p) in which the distinguisher completes all chains. Consider the tables G at the end of this
execution, and for any i and x let h(i, x) := Gi(x) in case x ∈ Gi, and h(i, x) := ⊥ otherwise. If
(f, p) is not good, let τ(f, p) := λ. ♦

For a table h 6= λ we say “h has a good preimage” if there exists (f, p) such τ(f, p) = h (in
which case (f, p) is good).

Lemma 3.35. Suppose h has a good preimage. Consider any execution of S3(h) and suppose
the distinguisher completes all chains. Then, S3(h) never queries h on an index (i, x) for which
h(i, x) = ⊥. Furthermore, the following two conditions on (f, p) are equivalent:

(1) The pair (f, p) is good and τ(f, p) = h.

(2) The queries and answers to the two-sided random function in S2(f, p) are exactly the same as
the queries and answers to the Feistel construction in S3(h); and h(i, x) = f(i, x) for any query
(i, x) issued to f or h by the simulator.

Proof. We first show that (1) implies (2). It is sufficient to show the following:

• When the simulator sets Gi(x) := f(i, x) in S2(f, p), then Gi(x) = f(i, x) in the end of the
execution (and thus by definition of τ we have h(i, x) = f(i, x)).

• When the simulator or the distinguisher queries P(x0, x1) or P−1(x14, x15) it gets the same
answer in S2(f, p) and S3(h).

To see the first point, note that if the simulator sets Gi(xi) := f(i, xi) in S2(f, p), this value
will remain unchanged until the end of the execution since table entries in G are never overwritten
(Lemma 3.31), and thus h will be set accordingly by definition of τ .

Now consider a query to P(x0, x1) by the simulator or the distinguisher (queries to P−1 are
handled in the same way). Recall that we assume that the distinguisher completes all chains.
Because of Lemma 3.32, the answer of the query to P is exactly what we obtain by evaluating

40

the Feistel construction at the end in scenario S2. But each query in the evaluation of the Feistel
construction was either set as Gi(xi) := f(i, xi) or in a ForceVal call, and in both cases the values
of h must agree, since in good executions no value is ever overwritten (Lemma 3.31). Thus, the
query to P is answered by the Feistel in S3(h) in the same way.

We now show that (2) implies (1). So assume that (2) holds, and let (fh, ph) be a good preimage
of h. As (fh, ph) satisfies (1), and (1) implies (2) as shown above, condition (2) holds for (fh, ph).
As we assume that (2) holds for (f, p), we see that in the two executions S2(fh, ph) and S2(f, p) all
queries to the two-sided random function are the same, and also the entries f(i, x) and fh(i, x) for
values considered match. This implies that (i) (f, p) is good, and (ii) τ(f, p) = τ(fh, ph). To see
this, note that the simulator’s behavior only depends on the query answers it sees, and so all the
steps of the simulator in S2(f, p) and S2(fh, ph) are identical. So (i) follows because if a bad event
occurred in S2(f, p), it would also occur in S2(fh, ph), and (ii) follows because the tables G must
be identical in the end of the executions of S2(f, p) and S2(fh, ph).

Finally, we argue that S3(h) never queries h on an index (i, x) for which h(i, x) = ⊥. Let (fh, ph)
be a good preimage of h. Clearly (1) holds for h and (fh, ph), which implies (2) as shown above.
Thus, it cannot be that a query to h in S3(h) returns ⊥, as otherwise the answers in S2(fh, ph) and
S3(h) would differ.

Lemma 3.36. Suppose h has a good preimage. Pick (f, p) uniformly at random. Then,

Pr
(f,p)

[(f, p) is good ∧ τ(f, p) = h] = 2−n|h| , (1)

where |h| is the number of pairs (i, x) for which h(i, x) 6= ⊥.

Proof. Let (fh, ph) be a good preimage of h. We first show that

Pr
(f,p)

[all queries and answers in S2(f, p) and S2(fh, ph) are identical] = 2−n|h|. (2)

To see this, note that every query to f is answered the same with probability 2−n, and every query
to p with probability 2−2n. Because of Lemma 3.33 the number |h| of non-nil entries in h is exactly
the number of queries to f plus twice the number of queries to p.

We now conclude that

2−n|h| = Pr
(f,p)

[all queries and answers in S2(f, p) and S2(fh, ph) are identical]

= Pr
(f,p)

[all queries and answers in S2(f, p) and S3(h) are identical]

= Pr
(f,p)

[(f, p) is good ∧ τ(f, p) = h].

The first equality is Equation 2 above. The second equality follows because (fh, ph) is good and
τ(fh, ph) = h, which by Lemma 3.35 (direction (1) =⇒ (2)) gives that all queries and answers in
S2(fh, ph) and S3(h) are identical. The third equality then follows by Lemma 3.35, where we use
the equivalence (1) ⇐⇒ (2).

Lemma 3.37 (Transition from S2 to S3). The probability that a fixed distinguisher D answers 1
in S2(f, p) for uniform random (f, p) differs at most by 1021·q10

2n from the probability that it answers
1 in S3(h) for uniform random h.

41

Proof. First, modify D such that it completes all chains, i.e., for each query to P(x0, x1) or to
(x0, x1) = P−1(x14, x15) which it made during the execution (to either the two-sided random
function in S2 or the Feistel construction in S3), it issues the corresponding Feistel queries to F
in the end (i.e., it emulates a call to EvaluateForward(x0, x1, 0, 14)). We denote the modified
distinguisher by D′. This increases the number of queries of the distinguisher by at most a factor
of 15. Furthermore, any unmodified distinguisher D that achieves some advantage will achieve the
same advantage as the modified distinguisher D′, and it is thus sufficient to bound the advantage
of D′.

We now consider the following distribution that outputs values h∗. To pick an element h∗,
we pick a pair (f, p) uniformly at random. If τ(f, p) = λ, we set h∗ := λ. Otherwise, we let
h := τ(f, p), and then for each entry in h where h(i, x) = ⊥ we replace the entry by a string that
is chosen independently and uniformly at random from {0, 1}n. The result is h∗. Let H be the
random variable that takes values according to this distribution.

We now claim that the probability that any fixed table h∗ 6= λ is output is at most 2−n|h∗|.
To prove this, we first show that it cannot be that two different values h 6= λ which both have a
good preimage can yield the same h∗. Towards a contradiction assume that h 6= λ and h′ 6= λ are
different and both have a good preimage, and they yield the same h∗. Let (fh, ph) and (fh′ , ph′)
be good preimages of h and h′, respectively. Then, Lemma 3.35 (direction (1) =⇒ (2)) implies
that the queries and answers in S2(fh, ph) and S3(h) are the same. Furthermore, since S3(h) never
queries h on an index (i, x) where h(i, x) = ⊥ (Lemma 3.35), we get that the queries and answers
in S3(h) and S3(h∗) are the same. Arguing symmetrically for (fh′ , ph′), we see that the queries
and answers in S3(h′) and S3(h∗) are the same, and so the queries and answers in S2(fh, ph) and
S2(fh′ , ph′) must be the same. Since the simulator’s behavior only depends on the query answers it
sees, we get that all the steps of the simulator in S2(f, p) and S2(fh, ph) are identical. In particular,
the tables G must be identical in the end of the execution, and thus by definition of τ , this implies
that h = h′, a contradiction.

We now calculate the probability of getting a fixed table h∗ 6= λ. In the first case, suppose there
exists h with a good preimage that can lead to h∗. Let ρ be the randomness that is used to replace
the ⊥ entries in h by random entries. We have

Pr
(f,p),ρ

[H = h∗] = Pr
(f,p),ρ

[(f, p) is good ∧ h = τ(f, p) can lead to h∗ ∧ filling with ρ leads to h∗] .

Now, as we have seen above, no two different values for h can yield the same h∗. Thus, we can
assume that h∗ = (h, ρ∗), where h is the unique table that leads to h∗, and ρ∗ stands for the entries
that occur in h∗, but are ⊥ in h. Then, the above probability equals

Pr
(f,p),ρ

[(f, p) is good ∧ τ(f, p) = h ∧ ρ = ρ∗]

= Pr
(f,p)

[(f, p) is good ∧ τ(f, p) = h] · Pr
ρ

[ρ = ρ∗]

= 2−n|h| · 2−n(|h∗|−|h|) = 2−n|h∗| .

The first equality above holds because ρ is chosen independently and uniformly at random, and the
second equality follows by Lemma 3.36 and since ρ is chosen uniformly at random.

In the second case, there exists no h with a good preimage that can lead to h∗. Then we have
Pr(f,p),ρ[H = h∗] = 0, and so in both cases

Pr
(f,p),ρ

[H = h∗] ≤ 2−n|h∗| . (3)

42

This implies that the statistical distance of the distribution over h∗ which we described to the
uniform distribution is exactly the probability that (f, p) is not good. For completeness, we give
a formal argument for this. Consider H as above, and let U be a random variable taking uniform
random values from {0, 1}|h∗|. We have

d(U,H) = 1
2
∑
h∗

∣∣Pr[U = h∗]− Pr
(f,p),ρ

[H = h∗]
∣∣

= 1
2
∣∣Pr[U = λ]︸ ︷︷ ︸

=0

− Pr
(f,p),ρ

[H = λ]︸ ︷︷ ︸
=Pr(f,p)[(f,p) is not good]

∣∣+ 1
2
∑
h∗ 6=λ

∣∣Pr[U = h∗]− Pr
(f,p),ρ

[H = h∗]
∣∣

= 1
2 Pr

(f,p)
[(f, p) is not good] + 1

2
∑
h∗ 6=λ

Pr[U = h∗]

︸ ︷︷ ︸
=1

−1
2

∑
h∗ 6=λ

Pr
(f,p),ρ

[H = h∗]

︸ ︷︷ ︸
=1−Pr(f,p)[(f,p) is not good]

= Pr
(f,p)

[(f, p) is not good] ,

where the third equality uses (3).
We proceed to argue that Pr(f,p)[(f, p) is not good] is small. In S2(f, p), by Lemma 3.4 we have

that |Gi| ≤ 6 · (15 · q)2 and |P | ≤ 6 · (15 · q)2, where the additional factor of 15 comes in because
the distinguisher completes all chains. By Lemma 3.22,

Pr
(f,p)

[(f, p) is not good] ≤ 18 000 · (6 · (15 · q)2)5

2n <
1020 · q10

2n .

By Lemma 3.35 (direction (1) =⇒ (2)), for good (f, p), the behavior of S2(f, p) and S3(H) is
identical. Thus,∣∣ Pr

(f,p)
[D′ outputs 1 in S2(f, p)]− Pr

(f,p),ρ
[D′ outputs 1 in S3(H)]

∣∣ ≤ Pr
(f,p)

[(f, p) is not good] .

Furthermore,∣∣ Pr
(f,p),ρ

[D′ outputs 1 in S3(H)]− Pr[D′ outputs 1 in S3(U)]
∣∣ ≤ d(H,U) = Pr

(f,p)
[(f, p) is not good] ,

and therefore∣∣ Pr
(f,p)

[D′ outputs 1 in S2(f, p)]− Pr[D′ outputs 1 in S3(U)]
∣∣ ≤ 2 · Pr

(f,p)
[(f, p) is not good]

<
1021 · q10

2n ,

using our bound on the probability that (f, p) is good above.

3.6 Equivalence of the Third and the Fourth Scenarios

In S3, the distinguisher accesses the random functions through the simulator. We want to show
that the distinguisher can instead access the random functions directly.

Lemma 3.38. Suppose that in S3(h) the simulator T(h) eventually answers a query F(i, x). Then,
it is answered with h(i, x).

43

Proof. The simulator T(h) either sets Gi(x) := h(i, x) or Gi(xi) := xi−1⊕xi+1 in a call to Adapt.
For pairs (i, x) which are set by the first call the lemma is clear. Otherwise, consider the Adapt
call: just before the call, the Feistel construction was evaluated either forward or backward in a
call to Ψ(h).P(x0, x1) or Ψ(h).P−1(x14, x15). Since Ψ(h) evaluates P and P−1 with calls to h, the
value Gi(xi) must be h(i, x) as well.

Lemma 3.39 (Transition from S3 to S4). The probability that a fixed distinguisher answers 1 in
S3(h) for uniformly chosen h differs at most by 1021·q10

2n from the probability that it answers 1 in S4.

Proof. By Lemma 3.37, the probability that the distinguisher outputs 1 does not differ by more
than 1021·q10

2n in S2 and S3. As the simulator is efficient in S2 by Lemma 3.5, this implies that
with probability 1 − 1021·q10

2n the simulator must give an answer in S3. Thus, using Lemma 3.38
we get that that the probability that the distinguisher answers 1 differs in S3 and S4 by at most
1021·q10

2n .

Acknowledgements

It is a pleasure to thank Ueli Maurer for his insightful feedback. We also would like to thank
the reviewers of the Journal of Cryptology for their very detailed comments, which helped us in
substantially improving the presentation of the paper. Robin Künzler was partially supported by
the Swiss National Science Foundation (SNF), project no. 200021-132508.

References

[ABD+13] Elena Andreeva, Andrey Bogdanov, Yevgeniy Dodis, Bart Mennink, and John P. Stein-
berger. On the Indifferentiability of Key-Alternating Ciphers. In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013 (Proceedings, Part
I), volume 8042 of LNCS, pages 531–550. Springer, 2013. Full version available at
http://eprint.iacr.org/2013/061.

[BDPA08] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the In-
differentiability of the Sponge Construction. In Nigel P. Smart, editor, Advances in
Cryptology - EUROCRYPT 2008, volume 4965 of LNCS, pages 181–197. Springer,
2008.

[BF03] Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from the Weil Pair-
ing. SIAM J. Comput., 32(3):586–615, 2003.

[BK03] Mihir Bellare and Tadayoshi Kohno. A Theoretical Treatment of Related-Key Attacks:
RKA-PRPs, RKA-PRFs, and Applications. In Eli Biham, editor, Advances in Cryp-
tology - EUROCRYPT 2003, volume 2656 of LNCS, pages 491–506. Springer, 2003.

[BKL+12] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, François-Xavier Standaert,
John P. Steinberger, and Elmar Tischhauser. Key-Alternating Ciphers in a Provable
Setting: Encryption Using a Small Number of Public Permutations - (Extended Ab-
stract). In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology
- EUROCRYPT 2012, volume 7237 of LNCS, pages 45–62. Springer, 2012.

44

http://eprint.iacr.org/2013/061

[Bla06] John Black. The Ideal-Cipher Model, Revisited: An Uninstantiable Blockcipher-Based
Hash Function. In Matthew J.B. Robshaw, editor, Fast Software Encryption - FSE
’06, volume 4047 of LNCS, pages 328–340. Springer, 2006.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short Signatures from the Weil Pairing.
Journal of Cryptology, 17(4):297–319, 2004.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated Key Exchange
Secure against Dictionary Attacks. In Bart Preneel, editor, Advances in Cryptology -
EUROCRYPT 2000, volume 1807 of LNCS, pages 139–155. Springer, 2000.

[BR93] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm for
Designing Efficient Protocols. In ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

[BR94] Mihir Bellare and Phillip Rogaway. Optimal Asymmetric Encryption. In Alfredo De
Santis, editor, Advances in Cryptology - EUROCRYPT ’94, volume 950 of LNCS, pages
92–111. Springer, 1994.

[BR96] Mihir Bellare and Phillip Rogaway. The Exact Security of Digital Signatures - How
to Sign with RSA and Rabin. In Ueli M. Maurer, editor, Advances in Cryptology -
EUROCRYPT ’96, volume 1070 of LNCS, pages 399–416. Springer, 1996.

[BR02] John Black and Phillip Rogaway. Ciphers with Arbitrary Finite Domains. In Bart
Preneel, editor, Topics in Cryptology - CT-RSA 2002, volume 2271 of LNCS, pages
114–130. Springer, 2002.

[BR06] Mihir Bellare and Phillip Rogaway. The Security of Triple Encryption and a Framework
for Code-Based Game-Playing Proofs. In Serge Vaudenay, editor, Advances in Cryp-
tology - EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer, 2006.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box Analysis of the Block-
Cipher-Based Hash-Function Constructions from PGV. In Moti Yung, editor, Advances
in Cryptology - CRYPTO 2002, volume 2442 of LNCS, pages 320–335. Springer, 2002.

[Can01] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In Symposium on Foundations of Computer Science - FOCS 2001, pages
136–145. IEEE Computer Society, 2001.

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-
Damgård Revisited: How to Construct a Hash Function. In Victor Shoup, editor, Ad-
vances in Cryptology - CRYPTO 2005, volume 3621 of LNCS, pages 430–448. Springer,
2005.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, 2004.

[CLL+14] Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John P. Stein-
berger. Minimizing the Two-Round Even-Mansour Cipher. In Juan A. Garay and
Rosario Gennaro, editors, Advances in Cryptology - CRYPTO 2014 (Proceedings, Part
I), volume 8616 of LNCS, pages 39–56. Springer, 2014. Full version available at
http://eprint.iacr.org/2014/443.

45

http://eprint.iacr.org/2014/443

[CPS08a] Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The Random Oracle
Model and the Ideal Cipher Model Are Equivalent. In David Wagner, editor, Advances
in Cryptology - CRYPTO 2008, volume 5157 of LNCS, pages 1–20. Springer, 2008.

[CPS08b] Jean-Sebastien Coron, Jacques Patarin, and Yannick Seurin. The Random Oracle
Model and the Ideal Cipher Model are Equivalent. Cryptology ePrint Archive, Re-
port 2008/246, August 2008. Version: 20080816:121712, http://eprint.iacr.org/.
Extended Abstract at CRYPTO 2008.

[CS14] Shan Chen and John Steinberger. Tight Security Bounds for Key-Alternating Ciphers.
In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EU-
ROCRYPT 2014, volume 8441 of LNCS, pages 327–350. Springer, 2014. Full version
available at http://eprint.iacr.org/2013/222.

[Dam89] Ivan Damgård. A Design Principle for Hash Functions. In Gilles Brassard, editor,
Advances in Cryptology - CRYPTO ’89, volume 435 of LNCS, pages 416–427. Springer,
1989.

[DGHM13] Grégory Demay, Peter Gazi, Martin Hirt, and Ueli Maurer. Resource-Restricted In-
differentiability. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in
Cryptology - EUROCRYPT 2013, volume 7881 of LNCS, pages 664–683. Springer,
2013. Full version available at http://eprint.iacr.org/2012/613.

[DP06] Yevgeniy Dodis and Prashant Puniya. On the Relation Between the Ideal Cipher
and the Random Oracle Models. In Shai Halevi and Tal Rabin, editors, Theory of
Cryptography Conference - TCC 2006, volume 3876 of LNCS, pages 184–206. Springer,
2006.

[DPW10] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-Malleable Codes. In
Andrew Chi-Chih Yao, editor, Innovations in Computer Science - ICS 2010, pages
434–452. Tsinghua University Press, 2010.

[DRRS09] Yevgeniy Dodis, Leonid Reyzin, Ronald L. Rivest, and Emily Shen. Indifferentiability
of Permutation-Based Compression Functions and Tree-Based Modes of Operation,
with Applications to MD6. In Orr Dunkelman, editor, Fast Software Encryption - FSE
2009, volume 5665 of LNCS, pages 104–121. Springer, 2009.

[EM97] Shimon Even and Yishay Mansour. A Construction of a Cipher from a Single Pseudo-
random Permutation. Journal of Cryptology, 10(3):151–162, 1997.

[FS86] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In Andrew M. Odlyzko, editor, Advances in Cryptology -
CRYPTO ’86, volume 263 of LNCS, pages 186–194. Springer, 1986.

[HKT11] Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The Equivalence of the
Random Oracle Model and the Ideal Cipher Model, Revisited. In Lance Fortnow and
Salil P. Vadhan, editors, Symposium on Theory of Computing - STOC 2011, pages
89–98. ACM, 2011. Full version available at http://arxiv.org/abs/1011.1264.

[KR01] Joe Kilian and Phillip Rogaway. How to Protect DES Against Exhaustive Key Search
(an Analysis of DESX). Journal of Cryptology, 14(1):17–35, 2001.

46

http://eprint.iacr.org/
http://eprint.iacr.org/2013/222
http://eprint.iacr.org/2012/613
http://arxiv.org/abs/1011.1264

[KSS00] Jeff Kahn, Michael E. Saks, and Clifford D. Smyth. A Dual Version of Reimer’s In-
equality and a Proof of Rudich’s Conjecture. In IEEE Conference on Computational
Complexity, pages 98–103. IEEE Computer Society, 2000.

[LR88] Michael Luby and Charles Rackoff. How to Construct Pseudorandom Permutations
from Pseudorandom Functions. SIAM Journal on Computing, 17(2):373–386, 1988.

[LS13] Rodolphe Lampe and Yannick Seurin. How to Construct an Ideal Cipher from a Small
Set of Public Permutations. In Kazue Sako and Palash Sarkar, editors, Advances
in Cryptology - ASIACRYPT 2013 (Proceedings, Part I), volume 8269 of LNCS, pages
444–463. Springer, 2013. Full version available at http://eprint.iacr.org/2013/255.

[LZ09] Yehuda Lindell and Hila Zarosim. Adaptive Zero-Knowledge Proofs and Adaptively Se-
cure Oblivious Transfer. In Omer Reingold, editor, Theory of Cryptography Conference
- TCC 2009, volume 5444 of LNCS, pages 183–201. Springer, 2009.

[Mau02] Ueli M. Maurer. Indistinguishability of Random Systems. In Lars R. Knudsen, editor,
Advances in Cryptology - EUROCRYPT 2002, volume 2332 of LNCS, pages 110–132.
Springer, 2002.

[Mer89] Ralph C. Merkle. One Way Hash Functions and DES. In Gilles Brassard, editor,
Advances in Cryptology - CRYPTO ’89, volume 435 of LNCS, pages 428–446. Springer,
1989.

[MPS12] Avradip Mandal, Jacques Patarin, and Yannick Seurin. On the Public Indifferentiability
and Correlation Intractability of the 6-Round Feistel Construction. In Ronald Cramer,
editor, Theory of Cryptography Conference - TCC 2012, volume 7194 of LNCS, pages
285–302. Springer, 2012. Full version available at http://eprint.iacr.org/2011/496.

[MR11] Ueli Maurer and Renato Renner. Abstract Cryptography. In Bernard Chazelle, editor,
Innovations in Computer Science - ICS 2010, pages 1–21. Tsinghua University Press,
2011.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, Impos-
sibility Results on Reductions, and Applications to the Random Oracle Methodology.
In Moni Naor, editor, Theory of Cryptography Conference- TCC 2004, volume 2951 of
LNCS, pages 21–39. Springer, 2004.

[RS08a] Phillip Rogaway and John P. Steinberger. Constructing Cryptographic Hash Functions
from Fixed-Key Blockciphers. In David Wagner, editor, Advances in Cryptology -
CRYPTO 2008, volume 5157 of LNCS, pages 433–450. Springer, 2008.

[RS08b] Phillip Rogaway and John P. Steinberger. Security/Efficiency Tradeoffs for Permuta-
tion-Based Hashing. In Nigel P. Smart, editor, Advances in Cryptology - EUROCRYPT
2008, volume 4965 of LNCS, pages 220–236. Springer, 2008.

[RSS11] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with Composi-
tion: Limitations of the Indifferentiability Framework. In Kenneth G. Paterson, editor,
Advances in Cryptology - EUROCRYPT 2011, volume 6632 of LNCS, pages 487–506.
Springer, 2011.

[Rud89] Steven Rudich. Limits on the Provable Consequences of One-way Functions. PhD
thesis, 1989.

47

http://eprint.iacr.org/2013/255
http://eprint.iacr.org/2011/496

[Seu09] Yannick Seurin. Primitives et protocoles cryptographiques à sécurité prouvée. PhD
thesis, Université de Versailles Saint-Quentin-en-Yvelines, France, 2009.

[Seu11] Yannick Seurin. A Note on the Indifferentiability of the 10-Round Feistel Construction,
March 2011. Unpublished note available from the author.

[Sha49] Claude Shannon. Communication Theory of Secrecy Systems. Bell System Technical
Journal, 28(4):656–715, 1949.

[Sho04] Victor Shoup. Sequences of Games: A Tool for Taming Complexity in Security Proofs.
IACR ePrint Archive, Report 2004/332, 2004. Available at http://eprint.iacr.org/
2004/332.pdf.

A A Note on Honest-but-Curious Indifferentiability

In this section, we show that the Feistel construction with up to a logarithmic number of rounds is
not indifferentiable from a random permutation in the honest-but-curious model [DP06]. Combined
with our main result in the general model, this shows that honest-but-curious indifferentiability
is not implied in general by full indifferentiability. This does not contradict any result of [DP06],
where it was shown that the Feistel construction with a super-logarithmic number of rounds is
indifferentiable from a random permutation in the honest-but-curious model (we note, though,
that [DP06] proved that for up to a logarithmic number of rounds of the Feistel construction,
indifferentiability in the honest-but-curious model would have implied indifferentiability in the
general model; but since we show in the following that the premise is false, the implication becomes
void).

Informally, in the honest-but-curious indifferentiability model, the distinguisher cannot query
the round functions of the Feistel construction directly. It can only make two types of queries: direct
queries to the construction, and queries to the construction where in addition the intermediate round
function values are provided. When interacting with a random permutation P and a simulator S,
the first type of queries are sent directly to P, while the second type are sent to S which makes
the corresponding query to P, and in addition provides a simulated transcript of the intermediate
round function values. Note that the simulator S is not allowed to make additional queries to P
apart from forwarding the queries from the distinguisher; see [DP06] for a precise definition.

The authors of [DP06] introduced the notion of transparent construction. A construction CF

is said to be transparent if for any x, the value of F(x) can be computed efficiently by making a
polynomial number of queries to CF, where in addition to CF(y) one gets the inputs and outputs
of F used by C to compute the answer to each query y. It is shown in [DP06] that the Feistel
construction with up to a logarithmic number of rounds is a transparent construction. Namely,
the authors construct an extracting algorithm E achieving the following: given oracle access to ΨF

and the intermediate round function values Fi(x) used to compute the answer to any query to the
construction, E can compute the value of Fi(x) for any round i and any x ∈ {0, 1}n. An important
property of E is that it only makes forward queries to the Feistel construction.

Algorithm E implies that for a Feistel construction with up to a logarithmic number of rounds
r, it is possible to find an input message (x0, x1) such that the left half of the output (xr, xr+1)
has an arbitrary value xr (say, 0n), by only making forward queries to ΨF: this corresponds to
how algorithm E can obtain Fr(xr), where r is the last round. But this task is clearly impossible
with a random permutation P: namely, it is infeasible to find (x0, x1) such that the left half of
P(x0, x1) has a fixed arbitrary value by making only forward queries to P. This implies that a

48

http://eprint.iacr.org/2004/332.pdf
http://eprint.iacr.org/2004/332.pdf

simulator in the honest-but-curious model will necessarily fail (recall that such a simulator only
forwards queries from the distinguisher to P and cannot make additional queries). Therefore,
the Feistel construction with up to a logarithmic number of rounds is not indifferentiable from a
random permutation in the honest-but-curious model. Since our main result is that the Feistel
construction with fourteen rounds is fully indifferentiable from a random permutation, this shows
that honest-but-curious indifferentiability does not imply in general full indifferentiability.

B Building an Ideal Cipher from a Random Oracle

Theorem 3.2. The fourteen-round keyed Feistel construction using a random oracle is indifferen-
tiable from an ideal cipher. For an ideal cipher with κ-bit key and 2n-bit inputs, and any distin-
guisher that issues at most q queries, except with probability 108·q17

22n , the simulator makes at most
1400q8 queries and runs in time O(q8). The distinguishing advantage is at most 108·q17

22n + 1022·q11

2n .

Proof (Sketch). The simulator S is built in a nearly black-box way from simulator S from the proof
of Theorem 3.1. In particular, for all κ-bit keys k, we run an independent copy of the simulator S,
called Sk, each one maintaining its own state—the only difference between Sk and S is that queries
to P and P−1 are replaced by queries to Ek and E−1

k .10 Upon a query x ∈ {0, 1}∗, S first checks
whether it can be parsed as x = 〈i〉‖k‖x′ for i ∈ {1, . . . , 14}, k ∈ {0, 1}κ, and x′ ∈ {0, 1}n. If so,
it calls Sk.F(i, x′), and returns the resulting answer. Otherwise, S perfectly simulates the random
oracle by keeping an appropriate random table.

We say that a key k is associated with a query Q (and symmetrically, a query Q is associated
with the key k) if it is a query of the form Q = (k, ·) to the Feistel construction or to the ideal
cipher, or it is a query of the form Q = 〈i〉‖k‖x′ to the random oracle or its simulation. For all
integers i ≥ 0, we define a system Hi which keeps track of keys associated with queries. For the first
i distinct keys associated with some query, queries associated with these keys are always answered
by either E or SE depending on the query type, whereas queries associated with later appearing
keys are answered by either ΨR

14 or R, depending on the query type. Now, for a distinguisher D
making overall at most q queries, we can easily see by inspection that

Pr[D(H0) = 1] = Pr[D(ΨR
14,R) = 1] and Pr[D(Hq) = 1] = Pr[D(E,SE) = 1] ,

and therefore, using the triangle inequality

∆D((ΨR
14,R), (E,SE)) ≤

q−1∑
i=0

∆D(Hi,Hi+1) .

For all i ∈ {0, 1, . . . , q− 1}, a 2n-bit random permutation P, and F = (F1, . . . ,F14) being indepen-
dent n-bit to n-bit random functions, it is now easy to construct a distinguisher Di making at most
q queries to either of (ΨF

14,F) and (P,SP) such that ∆Di((ΨF
14,F), (P,SP)) = ∆D(Hi,Hi+1): The

distinguisher uses the given system to simulate queries associated with the i-th key, and simulates
the answers to all queries associated with other keys internally. The indistinguishability bound
follows using the one from Theorem 3.1 for ∆D(Hi,Hi+1).

By Theorem 3.1, every Sk can issue too many queries and run for too long with probability
at most 108·q16

22n , and the overall probability that this happens for some k is obtained via the union
10Of course, to avoid running an exponential number of simulator instances, we use lazy evaluation, running only

Sk for keys k that are actually queried.

49

bound. Now, assuming this event does not happen, let qk be the number of queries associated with
key k the distinguisher has made in an execution—hence

∑
k qk ≤ q. Then, the simulator S has

made at most
∑
k 1400q8

k ≤ 1400q8 queries, and similarly, has run for time at most O(q8).

The resulting concrete parameters incur an additional factor q loss with respect to the original
bound for the random permutation case. This is however just to ease exposition—the same bounds
as in Theorem 3.1 can be obtained by giving a more direct proof adding the handling of keys to
the proof of the random permutation case.

50

	Introduction
	Random Oracles, Random Permutations, and Ideal Ciphers
	Building Ideal Primitives and Indifferentiability
	Our Main Result: Ideal Ciphers Via the Feistel Construction
	Technical Overview
	Five rounds are not enough
	Indifferentiability of the fourteen-round Feistel construction

	Model and Notational Conventions

	The Five-Round Feistel Construction is not Sufficient
	Indifferentiability of the Fourteen-Round Feistel Construction
	Simulator Definition
	Informal description
	The simulator in pseudocode
	An example of chain completion

	Proof of Indifferentiability
	Overview
	Detailed description of the second scenario
	Detailed description of the third scenario
	Indifferentiability

	Complexity of the Simulator
	Equivalence of the First and the Second Scenarios
	Equivalence of the Second and the Third Scenarios
	Overview and intuition
	Partial chains
	Bad events and good executions
	Bad events are unlikely
	Properties of good executions
	Mapping randomness of S2 to randomness of S3

	Equivalence of the Third and the Fourth Scenarios

	References
	A Note on Honest-but-Curious Indifferentiability
	Building an Ideal Cipher from a Random Oracle

