
Seurity analysis of the Gennaro-Halevi-Rabinsignature shemeNo Author Given
Abstrat. We exhibit a feasible attak against a signature sheme re-ently proposed by Gennaro, Halevi and Rabin [8℄. The sheme's seurityis based on two assumptions namely the strong RSA assumption andthe existene of division-intratable hash-funtions. For the latter, theauthors onjetured a seurity level exponential in the hash-funtion'sdigest size whereas our attak is sub-exponential with respet to the di-gest size. Moreover, sine the new attak is optimal, the length of thehash funtion an now be rigorously dimensionned. In partiular, to geta seurity level equivalent to 1024-bit RSA, one should use a digest sizeof approximately 1024 bits instead of the 512 bits suggested in [8℄.Key words : Gennaro-Halevi-Rabin signature sheme, Strong RSAproblem, division intratability.1 IntrodutionThis paper analyses the seurity of a signature sheme presented by Gen-naro, Halevi and Rabin at Eurorypt'99 [8℄. The onerned sheme (here-after GHR) uses a standard (publi) RSA modulus n and a random publibase s. To sign a message m, the signer omputes the e-th root modulo nof s with e = H(m) where H is a hash funtion. A signature � is veri�edwith �H(m) = s mod n.The sheme is proven to be existentially unforgeable under hosenmessage attaks under two assumptions : the strong RSA assumptionand the existene of division-intratable hash-funtions. The originalityof the onstrution lies in the fat that seurity an be proven withoutusing the random orale model [3℄.In this paper we fous on the seond assumption, i.e. the existeneof division-intratable hash-funtions. Briey, a hash funtion is division-intratable if it is omputationally infeasible to exhibit a hash value thatdivides the produt of other hash values. Assimilating the hash fun-tion to a random orale, it is onjetured [8℄ based on numerial experi-ments that the number of k-bits digests needed to �nd one that divides



the produt of the others is approximately 2k=8. Here we show that thenumber of neessary hash-values is atually subexponential in k, namelyexp((p2 log 2=2 + Æ(1))pk log k).The paper is organised as follows. We briey start by realling theGHR sheme and its related seurity assumptions. Then we desribe ourattak, evaluate its asymptotial omplexity and, by extrapolating fromrunning times observed for small digest sizes, estimate the pratial om-plexity of our attak. We also show that the attak is asymptotiallyoptimal and estimate from a simple heuristi model the minimal om-plexity of �nding a hash value that divides the produt of the others.Finally, we show how to improve our attak for the spei� hash funtionproposed in [8℄.2 The Gennaro-Halevi-Rabin signature sheme2.1 ConstrutionThe GHR sheme is a hash-and-sign sheme that shares some similaritieswith the standard RSA signature sheme :Key generation : Generate an RSA modulus n = pq, produt of twoprimes p and q of about the same length and a random element s 2 ZZ�n.The publi key is fn; sg and the private key is fp; qg.Signature generation : To sign a messagem, ompute an odd exponente = H(m). The signature � is :� = se�1 mod �(n) mod nwhere �(n) = (p� 1)(q � 1) is Euler's funtion.Signature veri�ation : Chek that :�H(m) = s mod n2.2 GHR's seurity proofThe originality of the GHR signature sheme lies in the fat that its se-urity an be proven without using the random orale model. Instead,the hash funtion must satisfy some well de�ned omputational assump-tions [8℄. In partiular, it is assumed that the hash funtion family isdivision-intratable.



De�nition 1 (Division intratability [8℄). A hashing family H isdivision intratable if �nding h 2 H and distint inputs X1; : : : Xn,Ysuh that h(Y ) divides the produt of the h(Xi) values is omputationallyinfeasible.The GHR signature sheme is proven to be existentially unforgeableunder an adaptive hosen message attak, assuming the strong RSA on-jeture.Conjeture 1 (Strong-RSA [2℄). Given a randomly hosen RSA mod-ulus n and a random s 2 ZZ�n, it is infeasible to �nd a pair (e; r) withe > 1 suh that re = s mod n.An opponent willing to forge a signature without solving the strong-RSA problem must �nd messages m;m1; : : : ;mr suh that H(m) dividesthe least ommon multiple of H(m1); : : : ;H(mr). In this ase, we saythat a division-ollision for H was exhibited. Using Eulid's algorithmthe opponent an obtain a1; : : : ; ar; k suh that :a1H(m1) + : : :+ arH(mr) = 1lm(H(m1); : : : ;H(mr)) = 1k �H(m)and forge the signature � of m from the signatures �i of messages mi by :� = ( rYi=1 �aii )k mod nIfH is division-intratable then it is infeasible for a polynomially boundedattaker to �nd a division ollision for a hash funtion inH. In partiular,a random orale is shown to be division-intratable in [8℄.A natural question that arises is the omplexity of �nding a divisionollision, if one assumes that the hash funtion behaves as a random or-ale. This question will ondition the hoie of the signature sheme'sparameters. [8℄ onjetures (based on numerial experiments) a seuritylevel exponential is the length of the hash funtion namely that the num-ber of hash alls neessary to obtain a division-ollision behaves asymp-totially as 2k=8 where k is the hash size. To get equivalent seurity to a1024-bit RSA, [8℄ suggests to use a hash size of about 512 bits. In the nextsetion, we exhibit a sub-exponential forgery and study its onsequenesfor the reommanded digest size.



3 A sub-exponential attakThe outline of our attak is the following : we �rst look among manydigests to �nd a smooth one, i.e. a hash value that fators into moderate-size primes pi. Then for eah of the pi we look for a hash value divisibleby pi, so that the smooth hash value divides the least ommon multipleof the other hash values.3.1 Bakground on smooth numbersLet y be a positive integer. We say that an integer z is y-smooth if eahprime dividing z is � y. An integer z is y-powersmooth if all primespowers dividing z are � y. Letting  (x; y) denote the number of integersz � x suh that z is y-smooth, the following theorem gives an estimateon the density of smooth numbers [5℄ :Theorem 1. If � is an arbitrary positive onstant, then uniformly forx � 10 and y � (log x)1+�, (x; y) = xu�u+Æ(u) as x!1where u = (log x)=(log y).In partiular, setting y = Lx[�℄ = exp ((�+ Æ(1))plog x log log x), theprobability that a random integer between one and x is Lx[�℄-smooth is : (x; y)x = Lx[� 12� ℄The proportion of squarefree integers is asymptotially 6=�2. Letting 1(x; y) denote the number of squarefree integers z � x suh that zis y-smooth, theorem 3 in [9℄ implies that the same proportion holds fory-smooth numbers :  1(x; y) � 6�2 (x; y) (1)under the growing ondition :log ylog log x !1; (x!1)Letting  0(x; y) denote the number of integers z � x suh that z is y-powersmooth, we have for all x; y > 0 : 1(x; y) �  0(x; y) �  (x; y)



whih using (1) shows that for y = Lx[�℄, the probability that a randominteger between one and x is y-powersmooth is : 0(x; y)x = Lx[� 12� ℄3.2 The attakIn the following we assimilate the hash funtion to a random oralewhih outputs random integers between one and x. Given a set S ofrandom integers, we say that fe; e1; : : : ; erg is a division-ollision for S ife; e1; : : : ; er 2 S and e divides the least ommon multiple of e1; : : : ; er.Theorem 2. Let S = fe1; : : : ; evg be a set of v random integers uni-formly distributed between one and x. If v = Lx[p2=2℄ then we an �nda division-ollision for S in time Lx[p2=2℄.Proof. Using the following algorithm with � = p2=2, a division-ollisionis found in time Lx[p2=2℄.Finding a division-ollision Algorithm :Input : a set S = fe1; : : : ; evg of v = Lx[p2=2℄ random integersbetween one and x.Output : a division-ollision for S.Step 1 : Look for a powersmooth ek 2 S with respet to y = Lx[�℄, us-ing Pollard-Brent's Method [4℄ or Lenstra's Ellipti Curve Method (ECM)[10℄ to obtain : ek = rYi=1 p�ii with pi�i � y for 1 � i � r (2)Step 2 : For eah prime fator pi look for ej(i) 2 S with j(i) 6= ksuh that ej(i) = 0 mod p�ii , whereby :ekj lm(ej(1); : : : ; ej(r))Pollard-Brent's method �nds a fator p of n in O(pp) expeted run-ning time, whereas the ECM extrats a fator p of n in Lp[p2℄ ex-peted running time. Using Pollard-Brent's method at step 1, a Lx[�℄-powersmoothH(m) is found in expeted Lx[1=(2�)℄�Lx[�=2℄= Lx[1=(2�)+�=2℄ time. Using the ECM a Lx[�℄-powersmooth H(m) is found inLx[1=(2�)℄ � Lx[Æ(1)℄ = Lx[1=(2�)℄ operations. Sine p�ii � y, the se-ond stage requires less than y = Lx[�℄ operations.



The overall omplexity of the algorithm is thus minimal for � = 1when using Pollard-Brent's method, resulting in a time omplexity ofLx[1℄. The ECM's minimum omplexity ours for � = p2=2 giving atime omplexity of Lx[p2=2℄.Moreover, the following theorem shows that the previous algorithm isoptimal.Theorem 3. Let S = fe1; : : : ; evg be a set of v random integers uni-formly distributed between one and x. If v = Lx[�℄ with � < p2=2, thenthe probability that one integer in S divides the least ommon multiple ofthe others is negligible.Proof. See appendix A.Consequently, assuming that the hash funtion behaves as a randomorale, the number of hash values neessary to exhibit a division-ollisionwith non-negligible probability is asymptotially Lx[p2=2℄ and this anbe done in time Lx[p2=2℄.3.3 Attak's pratial running timeUsing the ECM, the attak has an expeted time omplexity of :Lx[p2=2℄ = exp ((p22 + Æ(1))plog x log log x) (3)It appears diÆult to give an aurate formula for the attak's pra-tial running time sine one would have to know the preise value of theterm Æ(1) in equation (3). However, extrapolating from (3) and the run-ning times observed for small hash sizes, we have estimated the numberof hash alls neessary to mount the attak. We obtained the followingestimate for our implementation : the number of hash alls neessary isapproximately given by :exp ((p22 + 0:62 � (log x)�0:31)plog x log log x)The results summarized in table 3.3 suggest that in order to reah aseurity level equivalent to a 1024-bit RSA, digests should also be ap-proximately 1024-bit long.



digest size log2 omplexity128 25256 36512 53640 60768 661024 77Table 1. log2 omplexity (number of hash alls) of the attak for various digest size.4 Division-intratability in the random orale modelIn the previous setion we have estimated the number of digests neessaryto exhibit a division-ollision with the ECM, from its asymptoti runningtime (3) and the observed running times for small hash sizes. Needless tosay, our estimate depends on the pratial implementations of the hashfuntion and the ECM : the slower is the ECM implementation, the highermust be the number of hash-alls to exhibit a division-ollision. In thissetion we derive heuristially the minimal number of digests neessaryto �nd a division-ollision, in the random orale model.The probability that given a set of random integers, one divides theleast ommon multiple of the others, an be derived from a simple heuris-ti model alled random bissetion. In this model, the relative length ofthe �rst prime fator of a random number is obtained asymptotially byhoosing a random � uniformly in [0; 1℄, and then proeeding reursivelywith a random integer of relative size 1 � �. This model is used in [1℄to ompute a reurrene for F (�) = �(1=�), the asymptoti probabilitythat all prime fators of n are smaller than n�. In the above formula � isDikman's rho funtion de�ned for real t � 0 by the relation [6℄ :�(t) = 8>><>>: 1 if 0 � t � 1�(n)� Z tn �(v � 1)v dv if n � t � n+ 1 (4)For an n�-smooth number n, all relative lengths � hosen by randombisetions are smaller than �, and the remaining integer of relative size1�� is also n�-smooth. Consequently, we obtain equation (5) from whihwe derive (4) by substituting t = (1� �)=� and x = 1=�.F (�) = Z �0 F ( �1� �)d� (5)



Let PDIV[u; v℄ denote the probability that a random u-bit integer adivides the least ommon multiple of 2v other u-bit random integers. Let pbe a prime fator of a of relative size �. The probability P that p dividesa u-bit integer is roughly 1=p. Consequently, the probability P that pdivides the least ommon multiple of 2v u-bit integers is approximately :P = 1� (1� 1p)2v ' 8>><>>: 1 if p� 2v2vp if p� 2vIn the following, for a prime fator p of relative size �, we assume that :P = 8><>: 1 if �u � v2v�� u if �u > vConditioning on the relative length � of the �rst fator of a, we getPDIV[u; v℄ = 8>>>>>>><>>>>>>>:
1 if u � vZ vu0 PDIV[u(1� �); v℄d�+Z 1vu PDIV[u(1� �); v℄2v�� ud� if u > vLetting S(�; v) = PDIV[�v; v℄, we have :S(�; v) = 8>><>>: 1 if � � 11� Z 10 S(�� s; v)ds+ 1� Z �1 S(�� s; v)2v(1�s)ds if � > 1We obtain :�S�� (�; v) = �v log 2�S(�; v) � 1� Z 10 S(�� s; v)ds�and : �2S��2 (�; v) = �v log 2� S(�� 1; v)� ( 1� + v log 2)�S�� (�; v) (6)S(�; v) for � � 0 is thus de�ned as the solution with ontinous derivativeof the delay di�erential equation (6) with initial ondition S(�; v) = 1 for0 � � � 1.



A division-ollision ours if at least one integer divides the leastommon multiple of the others. We assume these events to be statisti-ally independent. Consequently, the probability PDC[u; v℄ that a division-ollision ours in a set of 2v random u-bit integer an be expressed as :PDC[u; v℄ = 1� �1� S(uv ; v)�2v (7)The number a random u-bit integer required to obtain a division ollisionwith probability � is thus 2v where v is obtained by solving PDC[u; v℄ = �is equation (7).The funtion S(�; v) an be omputed by numerial integration from(6) and S(�; v) = 1 for 0 � � � 1. We used Runge-Kutta method oforder 4 to solve di�erential equation (6). We summarize in table 4 thenumber of u-bit integers required to obtain a division-ollision with prob-ability 1=2. One an see that the number of integers needed to obtain adivision-ollision (table 4) is atually smaller than the number of hashalls neessary to mount the attak of setion 3.2 (table 3.3).integer size in bits log2 number of integers128 18256 28512 43640 50768 561024 671280 76Table 2. log2 number of random integers required to obtain a division-ollision withprobability 1=2 as a funtion of their size.In [8℄ numerial experiments were performed to estimate the numberof integers needed to get a division-ollision with probability 10�2. Figure1 shows on a base two logarithmi sale the requested number of integersas a funtion of their size in bits for :� The numerial experiments in [8℄ depited by rosses.� The 2k=8 onjeture in [8℄, depited by dots.� The atual value, omputed from (7), depited by a plain line.The minimal number of digests neessary to obtain a division-ollisionwith suÆient probability is thus muh smaller than the 2k=8 onjeturedin [8℄.
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Fig. 1. log2 omplexity (number of hash alls) of �nding a division-ollision with prob-ability � 10�2 as a funtion of the digest size for Gennaro et al.'s foreast vs. atual.5 Faster attaks on GHR's spei� hash funtionFinally, we show that our attak an even be improved for the spei�hash funtion suggested in [8℄ :H(R1;R2;R3;R4;m) = f1(m;R1) � f2(m;R2) � f3(m;R3) � f4(m;R4)where a � b stands for the onatenation of a and b and :f1(m;R) = 1� SHA(m � 1 � R)f2(m;R) = SHA(m � 2 � R)f3(m;R) = SHA(m � 3 � R)f4(m;R) = SHA(m � 4 � R) �1To show that this partiular funtion an be broken faster than thegeneral ase desribed in setion 3.2, we use the attak desribed in setion3.2 as a blak-box and feed it with shorter inputs, thereby reduing itsrunning time.Fix a target m and proeed as follows :



� Selet a moderate-size (e.g. 40-bit) odd number !, suh that redu-tions modulo ! are simple. In pratie we reommend ! = 240 � 1 forwhih redutions are simple.� For i = 1; 2; 3 and 4, exhaustive searh ` random Ri[0℄,: : :,Ri[`℄ suhthat fi(M;Ri[j℄) = 0 mod !.We an now generate, by simple onatenation, `4 di�erent hash valuessuh that : H(R1;R2;R3;R4;m) = 0 mod !Sine all digests have a ommon 40-bit multiple, the attak desribedin the previous setions an be run on 602-bit digests (the digests dividedby !) instead of 642-bit ones. Sine for 602-bit hash values our attak isexpeted to require 258 di�erent hash values (instead of 260 for 642-bithash values), it appears that ` = 214:5 �= 23000 and we an expet to hash4�23000�240 �= 256:5 di�erent Ri[j℄ values before being able to onstrutthe requested 258 hash values. Memory requirement is 4� 23000 = 92000table entries ontaining the various Ri[j℄ values.This shows that the seurity of the spei� hash funtion suggested insetion 5.2 of [8℄ is lower than the general subexponential ase analyzedin the previous setions of this paper (where the hash funtion's outputwas assumed to be random). However, sine 258 hash values are requiredwhen using 602-bit integers instead of 260 when using 642-bits integer,the attak's eÆieny is only inreased by a fator of 4 for this spei�hash funtion.6 ConlusionWe have analysed the seurity of the Gennaro-Halevi-Rabin signaturesheme of Eurorypt'99. In partiular, we exhibited a sub-exponentialattakal that fores to inrease the seurity parameters beyond 512 or 642bits up to appoximately 1024 bits in order to get a seurity equivalent to1024-bits RSA. Another variant of the sheme desribed in [8℄ onsists ingenerating prime digests only, by performing primality tests on the digestsuntil a prime is obtained. In this ase, a division-ollision is equivalent toa ollision in the hash funtion, but the signature sheme beomes lessattrative from a omputational standpoint.Referenes1. E. Bah and R. Peralta, Asymptoti semismoothness probabilities, Mathematisof omputation, vol. 65, no. 216, pp. 1701{1715, 1996.
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� Sm(; �) : e1 is Lx[ + �℄-smooth without being Lx[℄ smooth, forp2=2 <  < p2 and � > 0. This happens with probability :Pr[Sm(; �)℄ = Lx[ �12� ( + �) ℄� Lx[ �12�  ℄ = Lx[ �12� ( + �) ℄ (9)In this ase, e1 ontains a prime fator greater than Lx[℄, whih appearsin the fatorization of another ei with probability O(Lx[�℄). Conse-quently e1 divides the least ommon multiple of fe2; : : : ; evg with proba-bility : Pr[BjSm(; �)℄ = O(Lx[�� ℄)With (9) and  + 12(+�) � p2� � for all  > 0, we get :Pr[B ^ Sm(; �)℄ = O(Lx[�p22 + �℄) (10)� :Sm : e1 is not Lx[p2℄-smooth. Consequently e1 ontains a fatorgreater than Lx[p2℄ and thus :Pr[B ^ :Sm℄ = O(Lx[��p2℄) = O(Lx[�p22 ℄) (11)Partitioning the segment [p2=2;p2℄ into segments [; +�℄ and usingequations (8), (10) and (11), we get :Pr[B℄ = O(Lx[�p22 + �℄)Sine � < p2=2 we an hoose � > 0 suh that p2=2��� � = Æ > 0 andobtain : P (v; x) = O(Lx[��p2=2 + �℄) = O(Lx[�Æ℄)whih shows that P (v; x) is negligible. ut


