
Se
urity analysis of the Gennaro-Halevi-Rabinsignature s
hemeNo Author Given
Abstra
t. We exhibit a feasible atta
k against a signature s
heme re-
ently proposed by Gennaro, Halevi and Rabin [8℄. The s
heme's se
urityis based on two assumptions namely the strong RSA assumption andthe existen
e of division-intra
table hash-fun
tions. For the latter, theauthors 
onje
tured a se
urity level exponential in the hash-fun
tion'sdigest size whereas our atta
k is sub-exponential with respe
t to the di-gest size. Moreover, sin
e the new atta
k is optimal, the length of thehash fun
tion 
an now be rigorously dimensionned. In parti
ular, to geta se
urity level equivalent to 1024-bit RSA, one should use a digest sizeof approximately 1024 bits instead of the 512 bits suggested in [8℄.Key words : Gennaro-Halevi-Rabin signature s
heme, Strong RSAproblem, division intra
tability.1 Introdu
tionThis paper analyses the se
urity of a signature s
heme presented by Gen-naro, Halevi and Rabin at Euro
rypt'99 [8℄. The 
on
erned s
heme (here-after GHR) uses a standard (publi
) RSA modulus n and a random publi
base s. To sign a message m, the signer 
omputes the e-th root modulo nof s with e = H(m) where H is a hash fun
tion. A signature � is veri�edwith �H(m) = s mod n.The s
heme is proven to be existentially unforgeable under 
hosenmessage atta
ks under two assumptions : the strong RSA assumptionand the existen
e of division-intra
table hash-fun
tions. The originalityof the 
onstru
tion lies in the fa
t that se
urity 
an be proven withoutusing the random ora
le model [3℄.In this paper we fo
us on the se
ond assumption, i.e. the existen
eof division-intra
table hash-fun
tions. Brie
y, a hash fun
tion is division-intra
table if it is 
omputationally infeasible to exhibit a hash value thatdivides the produ
t of other hash values. Assimilating the hash fun
-tion to a random ora
le, it is 
onje
tured [8℄ based on numeri
al experi-ments that the number of k-bits digests needed to �nd one that divides



the produ
t of the others is approximately 2k=8. Here we show that thenumber of ne
essary hash-values is a
tually subexponential in k, namelyexp((p2 log 2=2 + Æ(1))pk log k).The paper is organised as follows. We brie
y start by re
alling theGHR s
heme and its related se
urity assumptions. Then we des
ribe ouratta
k, evaluate its asymptoti
al 
omplexity and, by extrapolating fromrunning times observed for small digest sizes, estimate the pra
ti
al 
om-plexity of our atta
k. We also show that the atta
k is asymptoti
allyoptimal and estimate from a simple heuristi
 model the minimal 
om-plexity of �nding a hash value that divides the produ
t of the others.Finally, we show how to improve our atta
k for the spe
i�
 hash fun
tionproposed in [8℄.2 The Gennaro-Halevi-Rabin signature s
heme2.1 Constru
tionThe GHR s
heme is a hash-and-sign s
heme that shares some similaritieswith the standard RSA signature s
heme :Key generation : Generate an RSA modulus n = pq, produ
t of twoprimes p and q of about the same length and a random element s 2 ZZ�n.The publi
 key is fn; sg and the private key is fp; qg.Signature generation : To sign a messagem, 
ompute an odd exponente = H(m). The signature � is :� = se�1 mod �(n) mod nwhere �(n) = (p� 1)(q � 1) is Euler's fun
tion.Signature veri�
ation : Che
k that :�H(m) = s mod n2.2 GHR's se
urity proofThe originality of the GHR signature s
heme lies in the fa
t that its se-
urity 
an be proven without using the random ora
le model. Instead,the hash fun
tion must satisfy some well de�ned 
omputational assump-tions [8℄. In parti
ular, it is assumed that the hash fun
tion family isdivision-intra
table.



De�nition 1 (Division intra
tability [8℄). A hashing family H isdivision intra
table if �nding h 2 H and distin
t inputs X1; : : : Xn,Ysu
h that h(Y ) divides the produ
t of the h(Xi) values is 
omputationallyinfeasible.The GHR signature s
heme is proven to be existentially unforgeableunder an adaptive 
hosen message atta
k, assuming the strong RSA 
on-je
ture.Conje
ture 1 (Strong-RSA [2℄). Given a randomly 
hosen RSA mod-ulus n and a random s 2 ZZ�n, it is infeasible to �nd a pair (e; r) withe > 1 su
h that re = s mod n.An opponent willing to forge a signature without solving the strong-RSA problem must �nd messages m;m1; : : : ;mr su
h that H(m) dividesthe least 
ommon multiple of H(m1); : : : ;H(mr). In this 
ase, we saythat a division-
ollision for H was exhibited. Using Eu
lid's algorithmthe opponent 
an obtain a1; : : : ; ar; k su
h that :a1H(m1) + : : :+ arH(mr) = 1l
m(H(m1); : : : ;H(mr)) = 1k �H(m)and forge the signature � of m from the signatures �i of messages mi by :� = ( rYi=1 �aii )k mod nIfH is division-intra
table then it is infeasible for a polynomially boundedatta
ker to �nd a division 
ollision for a hash fun
tion inH. In parti
ular,a random ora
le is shown to be division-intra
table in [8℄.A natural question that arises is the 
omplexity of �nding a division
ollision, if one assumes that the hash fun
tion behaves as a random or-a
le. This question will 
ondition the 
hoi
e of the signature s
heme'sparameters. [8℄ 
onje
tures (based on numeri
al experiments) a se
uritylevel exponential is the length of the hash fun
tion namely that the num-ber of hash 
alls ne
essary to obtain a division-
ollision behaves asymp-toti
ally as 2k=8 where k is the hash size. To get equivalent se
urity to a1024-bit RSA, [8℄ suggests to use a hash size of about 512 bits. In the nextse
tion, we exhibit a sub-exponential forgery and study its 
onsequen
esfor the re
ommanded digest size.



3 A sub-exponential atta
kThe outline of our atta
k is the following : we �rst look among manydigests to �nd a smooth one, i.e. a hash value that fa
tors into moderate-size primes pi. Then for ea
h of the pi we look for a hash value divisibleby pi, so that the smooth hash value divides the least 
ommon multipleof the other hash values.3.1 Ba
kground on smooth numbersLet y be a positive integer. We say that an integer z is y-smooth if ea
hprime dividing z is � y. An integer z is y-powersmooth if all primespowers dividing z are � y. Letting  (x; y) denote the number of integersz � x su
h that z is y-smooth, the following theorem gives an estimateon the density of smooth numbers [5℄ :Theorem 1. If � is an arbitrary positive 
onstant, then uniformly forx � 10 and y � (log x)1+�, (x; y) = xu�u+Æ(u) as x!1where u = (log x)=(log y).In parti
ular, setting y = Lx[�℄ = exp ((�+ Æ(1))plog x log log x), theprobability that a random integer between one and x is Lx[�℄-smooth is : (x; y)x = Lx[� 12� ℄The proportion of squarefree integers is asymptoti
ally 6=�2. Letting 1(x; y) denote the number of squarefree integers z � x su
h that zis y-smooth, theorem 3 in [9℄ implies that the same proportion holds fory-smooth numbers :  1(x; y) � 6�2 (x; y) (1)under the growing 
ondition :log ylog log x !1; (x!1)Letting  0(x; y) denote the number of integers z � x su
h that z is y-powersmooth, we have for all x; y > 0 : 1(x; y) �  0(x; y) �  (x; y)



whi
h using (1) shows that for y = Lx[�℄, the probability that a randominteger between one and x is y-powersmooth is : 0(x; y)x = Lx[� 12� ℄3.2 The atta
kIn the following we assimilate the hash fun
tion to a random ora
lewhi
h outputs random integers between one and x. Given a set S ofrandom integers, we say that fe; e1; : : : ; erg is a division-
ollision for S ife; e1; : : : ; er 2 S and e divides the least 
ommon multiple of e1; : : : ; er.Theorem 2. Let S = fe1; : : : ; evg be a set of v random integers uni-formly distributed between one and x. If v = Lx[p2=2℄ then we 
an �nda division-
ollision for S in time Lx[p2=2℄.Proof. Using the following algorithm with � = p2=2, a division-
ollisionis found in time Lx[p2=2℄.Finding a division-
ollision Algorithm :Input : a set S = fe1; : : : ; evg of v = Lx[p2=2℄ random integersbetween one and x.Output : a division-
ollision for S.Step 1 : Look for a powersmooth ek 2 S with respe
t to y = Lx[�℄, us-ing Pollard-Brent's Method [4℄ or Lenstra's Ellipti
 Curve Method (ECM)[10℄ to obtain : ek = rYi=1 p�ii with pi�i � y for 1 � i � r (2)Step 2 : For ea
h prime fa
tor pi look for ej(i) 2 S with j(i) 6= ksu
h that ej(i) = 0 mod p�ii , whereby :ekj l
m(ej(1); : : : ; ej(r))Pollard-Brent's method �nds a fa
tor p of n in O(pp) expe
ted run-ning time, whereas the ECM extra
ts a fa
tor p of n in Lp[p2℄ ex-pe
ted running time. Using Pollard-Brent's method at step 1, a Lx[�℄-powersmoothH(m) is found in expe
ted Lx[1=(2�)℄�Lx[�=2℄= Lx[1=(2�)+�=2℄ time. Using the ECM a Lx[�℄-powersmooth H(m) is found inLx[1=(2�)℄ � Lx[Æ(1)℄ = Lx[1=(2�)℄ operations. Sin
e p�ii � y, the se
-ond stage requires less than y = Lx[�℄ operations.



The overall 
omplexity of the algorithm is thus minimal for � = 1when using Pollard-Brent's method, resulting in a time 
omplexity ofLx[1℄. The ECM's minimum 
omplexity o

urs for � = p2=2 giving atime 
omplexity of Lx[p2=2℄.Moreover, the following theorem shows that the previous algorithm isoptimal.Theorem 3. Let S = fe1; : : : ; evg be a set of v random integers uni-formly distributed between one and x. If v = Lx[�℄ with � < p2=2, thenthe probability that one integer in S divides the least 
ommon multiple ofthe others is negligible.Proof. See appendix A.Consequently, assuming that the hash fun
tion behaves as a randomora
le, the number of hash values ne
essary to exhibit a division-
ollisionwith non-negligible probability is asymptoti
ally Lx[p2=2℄ and this 
anbe done in time Lx[p2=2℄.3.3 Atta
k's pra
ti
al running timeUsing the ECM, the atta
k has an expe
ted time 
omplexity of :Lx[p2=2℄ = exp ((p22 + Æ(1))plog x log log x) (3)It appears diÆ
ult to give an a

urate formula for the atta
k's pra
-ti
al running time sin
e one would have to know the pre
ise value of theterm Æ(1) in equation (3). However, extrapolating from (3) and the run-ning times observed for small hash sizes, we have estimated the numberof hash 
alls ne
essary to mount the atta
k. We obtained the followingestimate for our implementation : the number of hash 
alls ne
essary isapproximately given by :exp ((p22 + 0:62 � (log x)�0:31)plog x log log x)The results summarized in table 3.3 suggest that in order to rea
h ase
urity level equivalent to a 1024-bit RSA, digests should also be ap-proximately 1024-bit long.



digest size log2 
omplexity128 25256 36512 53640 60768 661024 77Table 1. log2 
omplexity (number of hash 
alls) of the atta
k for various digest size.4 Division-intra
tability in the random ora
le modelIn the previous se
tion we have estimated the number of digests ne
essaryto exhibit a division-
ollision with the ECM, from its asymptoti
 runningtime (3) and the observed running times for small hash sizes. Needless tosay, our estimate depends on the pra
ti
al implementations of the hashfun
tion and the ECM : the slower is the ECM implementation, the highermust be the number of hash-
alls to exhibit a division-
ollision. In thisse
tion we derive heuristi
ally the minimal number of digests ne
essaryto �nd a division-
ollision, in the random ora
le model.The probability that given a set of random integers, one divides theleast 
ommon multiple of the others, 
an be derived from a simple heuris-ti
 model 
alled random bisse
tion. In this model, the relative length ofthe �rst prime fa
tor of a random number is obtained asymptoti
ally by
hoosing a random � uniformly in [0; 1℄, and then pro
eeding re
ursivelywith a random integer of relative size 1 � �. This model is used in [1℄to 
ompute a re
urren
e for F (�) = �(1=�), the asymptoti
 probabilitythat all prime fa
tors of n are smaller than n�. In the above formula � isDi
kman's rho fun
tion de�ned for real t � 0 by the relation [6℄ :�(t) = 8>><>>: 1 if 0 � t � 1�(n)� Z tn �(v � 1)v dv if n � t � n+ 1 (4)For an n�-smooth number n, all relative lengths � 
hosen by randombise
tions are smaller than �, and the remaining integer of relative size1�� is also n�-smooth. Consequently, we obtain equation (5) from whi
hwe derive (4) by substituting t = (1� �)=� and x = 1=�.F (�) = Z �0 F ( �1� �)d� (5)



Let PDIV[u; v℄ denote the probability that a random u-bit integer adivides the least 
ommon multiple of 2v other u-bit random integers. Let pbe a prime fa
tor of a of relative size �. The probability P that p dividesa u-bit integer is roughly 1=p. Consequently, the probability P that pdivides the least 
ommon multiple of 2v u-bit integers is approximately :P = 1� (1� 1p)2v ' 8>><>>: 1 if p� 2v2vp if p� 2vIn the following, for a prime fa
tor p of relative size �, we assume that :P = 8><>: 1 if �u � v2v�� u if �u > vConditioning on the relative length � of the �rst fa
tor of a, we getPDIV[u; v℄ = 8>>>>>>><>>>>>>>:
1 if u � vZ vu0 PDIV[u(1� �); v℄d�+Z 1vu PDIV[u(1� �); v℄2v�� ud� if u > vLetting S(�; v) = PDIV[�v; v℄, we have :S(�; v) = 8>><>>: 1 if � � 11� Z 10 S(�� s; v)ds+ 1� Z �1 S(�� s; v)2v(1�s)ds if � > 1We obtain :�S�� (�; v) = �v log 2�S(�; v) � 1� Z 10 S(�� s; v)ds�and : �2S��2 (�; v) = �v log 2� S(�� 1; v)� ( 1� + v log 2)�S�� (�; v) (6)S(�; v) for � � 0 is thus de�ned as the solution with 
ontinous derivativeof the delay di�erential equation (6) with initial 
ondition S(�; v) = 1 for0 � � � 1.



A division-
ollision o

urs if at least one integer divides the least
ommon multiple of the others. We assume these events to be statisti-
ally independent. Consequently, the probability PDC[u; v℄ that a division-
ollision o

urs in a set of 2v random u-bit integer 
an be expressed as :PDC[u; v℄ = 1� �1� S(uv ; v)�2v (7)The number a random u-bit integer required to obtain a division 
ollisionwith probability � is thus 2v where v is obtained by solving PDC[u; v℄ = �is equation (7).The fun
tion S(�; v) 
an be 
omputed by numeri
al integration from(6) and S(�; v) = 1 for 0 � � � 1. We used Runge-Kutta method oforder 4 to solve di�erential equation (6). We summarize in table 4 thenumber of u-bit integers required to obtain a division-
ollision with prob-ability 1=2. One 
an see that the number of integers needed to obtain adivision-
ollision (table 4) is a
tually smaller than the number of hash
alls ne
essary to mount the atta
k of se
tion 3.2 (table 3.3).integer size in bits log2 number of integers128 18256 28512 43640 50768 561024 671280 76Table 2. log2 number of random integers required to obtain a division-
ollision withprobability 1=2 as a fun
tion of their size.In [8℄ numeri
al experiments were performed to estimate the numberof integers needed to get a division-
ollision with probability 10�2. Figure1 shows on a base two logarithmi
 s
ale the requested number of integersas a fun
tion of their size in bits for :� The numeri
al experiments in [8℄ depi
ted by 
rosses.� The 2k=8 
onje
ture in [8℄, depi
ted by dots.� The a
tual value, 
omputed from (7), depi
ted by a plain line.The minimal number of digests ne
essary to obtain a division-
ollisionwith suÆ
ient probability is thus mu
h smaller than the 2k=8 
onje
turedin [8℄.
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Fig. 1. log2 
omplexity (number of hash 
alls) of �nding a division-
ollision with prob-ability � 10�2 as a fun
tion of the digest size for Gennaro et al.'s fore
ast vs. a
tual.5 Faster atta
ks on GHR's spe
i�
 hash fun
tionFinally, we show that our atta
k 
an even be improved for the spe
i�
hash fun
tion suggested in [8℄ :H(R1;R2;R3;R4;m) = f1(m;R1) � f2(m;R2) � f3(m;R3) � f4(m;R4)where a � b stands for the 
on
atenation of a and b and :f1(m;R) = 1� SHA(m � 1 � R)f2(m;R) = SHA(m � 2 � R)f3(m;R) = SHA(m � 3 � R)f4(m;R) = SHA(m � 4 � R) �1To show that this parti
ular fun
tion 
an be broken faster than thegeneral 
ase des
ribed in se
tion 3.2, we use the atta
k des
ribed in se
tion3.2 as a bla
k-box and feed it with shorter inputs, thereby redu
ing itsrunning time.Fix a target m and pro
eed as follows :



� Sele
t a moderate-size (e.g. 40-bit) odd number !, su
h that redu
-tions modulo ! are simple. In pra
ti
e we re
ommend ! = 240 � 1 forwhi
h redu
tions are simple.� For i = 1; 2; 3 and 4, exhaustive sear
h ` random Ri[0℄,: : :,Ri[`℄ su
hthat fi(M;Ri[j℄) = 0 mod !.We 
an now generate, by simple 
on
atenation, `4 di�erent hash valuessu
h that : H(R1;R2;R3;R4;m) = 0 mod !Sin
e all digests have a 
ommon 40-bit multiple, the atta
k des
ribedin the previous se
tions 
an be run on 602-bit digests (the digests dividedby !) instead of 642-bit ones. Sin
e for 602-bit hash values our atta
k isexpe
ted to require 258 di�erent hash values (instead of 260 for 642-bithash values), it appears that ` = 214:5 �= 23000 and we 
an expe
t to hash4�23000�240 �= 256:5 di�erent Ri[j℄ values before being able to 
onstru
tthe requested 258 hash values. Memory requirement is 4� 23000 = 92000table entries 
ontaining the various Ri[j℄ values.This shows that the se
urity of the spe
i�
 hash fun
tion suggested inse
tion 5.2 of [8℄ is lower than the general subexponential 
ase analyzedin the previous se
tions of this paper (where the hash fun
tion's outputwas assumed to be random). However, sin
e 258 hash values are requiredwhen using 602-bit integers instead of 260 when using 642-bits integer,the atta
k's eÆ
ien
y is only in
reased by a fa
tor of 4 for this spe
i�
hash fun
tion.6 Con
lusionWe have analysed the se
urity of the Gennaro-Halevi-Rabin signatures
heme of Euro
rypt'99. In parti
ular, we exhibited a sub-exponentialatta
kal that for
es to in
rease the se
urity parameters beyond 512 or 642bits up to appoximately 1024 bits in order to get a se
urity equivalent to1024-bits RSA. Another variant of the s
heme des
ribed in [8℄ 
onsists ingenerating prime digests only, by performing primality tests on the digestsuntil a prime is obtained. In this 
ase, a division-
ollision is equivalent toa 
ollision in the hash fun
tion, but the signature s
heme be
omes lessattra
tive from a 
omputational standpoint.Referen
es1. E. Ba
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urves, Ann. of Math. (2) 126(1987) pp. 649-673.A Proof of theorem 3Proof. Let S = fe1; : : : ; evg with v = Lx[�℄ and � < p2=2 be a set of vrandom integers uniformly distributed between 1 and x. Denote by P (v; x)the probability that one integer in S divides the least 
ommon multipleof the others and by B the event in whi
h e1 divides the least 
ommonmultiple of fe2; : : : ; evg. The proof's outline is the following : we 
onsiderthe possible smoothness degrees of e1 and 
ompute the probability of Bfor ea
h smoothness degree. Then we show that Pr[B℄ is smaller thanLx[�p2=2 + �℄ for � > 0 and 
on
lude that P (v; x) is negligible.The possible smoothness degrees of e1 are denoted :� Sm : e1 is Lx[p2=2℄-smooth. This happens with probabilityPr[Sm℄ = Lx[�p2=2℄and 
onsequently : Pr[B ^ Sm℄ = O(Lx[�p2=2℄) (8)



� Sm(
; �) : e1 is Lx[
 + �℄-smooth without being Lx[
℄ smooth, forp2=2 < 
 < p2 and � > 0. This happens with probability :Pr[Sm(
; �)℄ = Lx[ �12� (
 + �) ℄� Lx[ �12� 
 ℄ = Lx[ �12� (
 + �) ℄ (9)In this 
ase, e1 
ontains a prime fa
tor greater than Lx[
℄, whi
h appearsin the fa
torization of another ei with probability O(Lx[�
℄). Conse-quently e1 divides the least 
ommon multiple of fe2; : : : ; evg with proba-bility : Pr[BjSm(
; �)℄ = O(Lx[�� 
℄)With (9) and 
 + 12(
+�) � p2� � for all 
 > 0, we get :Pr[B ^ Sm(
; �)℄ = O(Lx[�p22 + �℄) (10)� :Sm : e1 is not Lx[p2℄-smooth. Consequently e1 
ontains a fa
torgreater than Lx[p2℄ and thus :Pr[B ^ :Sm℄ = O(Lx[��p2℄) = O(Lx[�p22 ℄) (11)Partitioning the segment [p2=2;p2℄ into segments [
; 
+�℄ and usingequations (8), (10) and (11), we get :Pr[B℄ = O(Lx[�p22 + �℄)Sin
e � < p2=2 we 
an 
hoose � > 0 su
h that p2=2��� � = Æ > 0 andobtain : P (v; x) = O(Lx[��p2=2 + �℄) = O(Lx[�Æ℄)whi
h shows that P (v; x) is negligible. ut


