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Abstract. We exhibit a feasible attack against a signature scheme re-
cently proposed by Gennaro, Halevi and Rabin [8]. The scheme’s security
is based on two assumptions namely the strong RSA assumption and
the existence of division-intractable hash-functions. For the latter, the
authors conjectured a security level exponential in the hash-function’s
digest size whereas our attack is sub-exponential with respect to the di-
gest size. Moreover, since the new attack is optimal, the length of the
hash function can now be rigorously dimensionned. In particular, to get
a security level equivalent to 1024-bit RSA| one should use a digest size
of approximately 1024 bits instead of the 512 bits suggested in [8].

Key words : Gennaro-Halevi-Rabin signature scheme, Strong RSA
problem, division intractability.

1 Introduction

This paper analyses the security of a signature scheme presented by Gen-
naro, Halevi and Rabin at Eurocrypt’99 [8]. The concerned scheme (here-
after GHR) uses a standard (public) RSA modulus n and a random public
base s. To sign a message m, the signer computes the e-th root modulo n
of s with e = H(m) where H is a hash function. A signature o is verified
with ¢(™) = s mod n.

The scheme is proven to be existentially unforgeable under chosen
message attacks under two assumptions : the strong RSA assumption
and the existence of division-intractable hash-functions. The originality
of the construction lies in the fact that security can be proven without
using the random oracle model [3].

In this paper we focus on the second assumption, i.e. the existence
of division-intractable hash-functions. Briefly, a hash function is division-
intractable if it is computationally infeasible to exhibit a hash value that
divides the product of other hash values. Assimilating the hash func-
tion to a random oracle, it is conjectured [8] based on numerical experi-
ments that the number of k-bits digests needed to find one that divides



the product of the others is approximately 2¥/8. Here we show that the
number of necessary hash-values is actually subexponential in &k, namely
exp((v/21log2/2 + o(1))v/klogk).

The paper is organised as follows. We briefly start by recalling the
GHR scheme and its related security assumptions. Then we describe our
attack, evaluate its asymptotical complexity and, by extrapolating from
running times observed for small digest sizes, estimate the practical com-
plexity of our attack. We also show that the attack is asymptotically
optimal and estimate from a simple heuristic model the minimal com-
plexity of finding a hash value that divides the product of the others.
Finally, we show how to improve our attack for the specific hash function
proposed in [8].

2 The Gennaro-Halevi-Rabin signature scheme

2.1 Construction

The GHR scheme is a hash-and-sign scheme that shares some similarities
with the standard RSA signature scheme :

Key generation : Generate an RSA modulus n = pq, product of two
primes p and ¢ of about the same length and a random element s € ZZ, .
The public key is {n, s} and the private key is {p, ¢}.

Signature generation : To sign a message m, compute an odd exponent
e = H(m). The signature o is :

e~ ! mod ¢(n)

o=235 mod n

where ¢(n) = (p — 1)(¢ — 1) is Euler’s function.

Signature verification : Check that :

H(m) — ¢ mod n

2.2 GHR’s security proof

The originality of the GHR signature scheme lies in the fact that its se-
curity can be proven without using the random oracle model. Instead,
the hash function must satisfy some well defined computational assump-
tions [8]. In particular, it is assumed that the hash function family is
division-intractable.



Definition 1 (Division intractability [8]). A hashing family H is
division intractable if finding h € H and distinct inputs Xy,... Xp,Y
such that h(Y') divides the product of the h(X;) values is computationally
infeasible.

The GHR signature scheme is proven to be existentially unforgeable
under an adaptive chosen message attack, assuming the strong RSA con-
jecture.

Conjecture 1 (Strong-RSA [2]). Given a randomly chosen RSA mod-
ulus n and a random s € ZZ}, it is infeasible to find a pair (e,r) with
e > 1 such that r® = s mod n.

An opponent willing to forge a signature without solving the strong-
RSA problem must find messages m,myq, ..., m, such that H(m) divides
the least common multiple of H(mq),..., H(m,). In this case, we say
that a division-collision for H was exhibited. Using Euclid’s algorithm
the opponent can obtain a1, ..., a,,k such that :

ai ar 1 _ 1
Hony) Y Hm) T lem(H(my), . H(m)) k< H(m)

and forge the signature o of m from the signatures o; of messages m; by :

T
o= (Ha;‘i)k mod n
i=1

If H is division-intractable then it is infeasible for a polynomially bounded
attacker to find a division collision for a hash function in . In particular,
a random oracle is shown to be division-intractable in [8].

A natural question that arises is the complexity of finding a division
collision, if one assumes that the hash function behaves as a random or-
acle. This question will condition the choice of the signature scheme’s
parameters. [8] conjectures (based on numerical experiments) a security
level exponential is the length of the hash function namely that the num-
ber of hash calls necessary to obtain a division-collision behaves asymp-
totically as 2¥/8 where k is the hash size. To get equivalent security to a
1024-bit RSA, [8] suggests to use a hash size of about 512 bits. In the next
section, we exhibit a sub-exponential forgery and study its consequences
for the recommanded digest size.



3 A sub-exponential attack

The outline of our attack is the following : we first look among many
digests to find a smooth one, i.e. a hash value that factors into moderate-
size primes p;. Then for each of the p;, we look for a hash value divisible
by p;, so that the smooth hash value divides the least common multiple
of the other hash values.

3.1 Background on smooth numbers

Let y be a positive integer. We say that an integer z is y-smooth if each
prime dividing z is < y. An integer z is y-powersmooth if all primes
powers dividing z are < y. Letting 1 (xz,y) denote the number of integers
z < z such that z is y-smooth, the following theorem gives an estimate
on the density of smooth numbers [5] :

Theorem 1. If € is an arbitrary positive constant, then uniformly for
x> 10 and y > (logz)' T,

Y(z,y) = zu M as 2 - o

where u = (logx)/(logy).
In particular, setting y = L[] = exp ((8 + o(1))v/1og z loglog ), the

probability that a random integer between one and x is L,[/]-smooth is :

Pz, y) -t

~25

The proportion of squarefree integers is asymptotically 6/72. Letting
1(x,y) denote the number of squarefree integers z < 1z such that z
is y-smooth, theorem 3 in [9] implies that the same proportion holds for
y-smooth numbers :

6
under the growing condition :
1
loglog =

Letting 1'(z,y) denote the number of integers z < x such that z is y-
powersmooth, we have for all z,y > 0 :



which using (1) shows that for y = L,[f], the probability that a random
integer between one and z is y-powersmooth is :
!
1
V(Y _

= L,[

3.2 The attack

In the following we assimilate the hash function to a random oracle
which outputs random integers between one and z. Given a set S of
random integers, we say that {e,ei,...,e,} is a division-collision for § if
e,e1,...,e €8S and e divides the least common multiple of ey, ..., e,.

Theorem 2. Let S = {e1,...,e,} be a set of v random integers uni-
formly distributed between one and z. If v = Ly[v/2/2] then we can find
a division-collision for S in time L,[\/2/2].

Proof. Using the following algorithm with 8 = 1/2/2, a division-collision
is found in time L,[v/2/2].

Finding a division-collision Algorithm :

Input : a set S = {e1,...,e,} of v = L,[v/2/2] random integers
between one and z.

Output : a division-collision for S.

Step 1 : Look for a powersmooth e, € S with respect to y = L;[3], us-
ing Pollard-Brent’s Method [4] or Lenstra’s Elliptic Curve Method (ECM)
[10] to obtain :

r
ek:Hpg” with p;% <gyfor1 <i<r (2)
i=1

Step 2 : For each prime factor p; look for e;;) € S with j(i) # k

such that e;;) = 0 mod p{**, whereby :
ek\ lcm(ejm, .. ,ej(r))

Pollard-Brent’s method finds a factor p of n in O(,/p) expected run-
ning time, whereas the ECM extracts a factor p of n in L,[v2] ex-
pected running time. Using Pollard-Brent’s method at step 1, a L,[8]-
powersmooth H (m) is found in expected L. [1/(28)]x L3 [5/2]= L4[1/(25)
+//2] time. Using the ECM a L,[f]-powersmooth H(m) is found in
L,[1/(28)] x Lglo(1)] = Lg[1/(25)] operations. Since pi" < y, the sec-
ond stage requires less than y = L,[] operations.



The overall complexity of the algorithm is thus minimal for g = 1
when using Pollard-Brent’s method, resulting in a time complexity of
L;[1]. The ECM’s minimum complexity occurs for f = v/2/2 giving a
time complexity of L;[v/2/2].

Moreover, the following theorem shows that the previous algorithm is
optimal.

Theorem 3. Let S = {e1,...,e,} be a set of v random integers uni-
formly distributed between one and x. If v = Ly[a] with o < \/2/2, then
the probability that one integer in S divides the least common multiple of
the others is negligible.

Proof. See appendix A.

Consequently, assuming that the hash function behaves as a random
oracle, the number of hash values necessary to exhibit a division-collision
with non-negligible probability is asymptotically I,[v/2/2] and this can
be done in time L,[v2/2].

3.3 Attack’s practical running time

Using the ECM, the attack has an expected time complexity of :

LV2/2] = exp (%2 + o(1)) Vg Tog g ) 5

It appears difficult to give an accurate formula for the attack’s prac-
tical running time since one would have to know the precise value of the
term o(1) in equation (3). However, extrapolating from (3) and the run-
ning times observed for small hash sizes, we have estimated the number
of hash calls necessary to mount the attack. We obtained the following
estimate for our implementation : the number of hash calls necessary is
approximately given by :

2
exp ((% +0.62 x (log z)~%31)\/log z log log x)

The results summarized in table 3.3 suggest that in order to reach a
security level equivalent to a 1024-bit RSA, digests should also be ap-
proximately 1024-bit long.



digest size|log, complexity
128 25
256 36
512 53
640 60
768 66
1024 77

Table 1. log, complexity (number of hash calls) of the attack for various digest size.

4 Division-intractability in the random oracle model

In the previous section we have estimated the number of digests necessary
to exhibit a division-collision with the ECM, from its asymptotic running
time (3) and the observed running times for small hash sizes. Needless to
say, our estimate depends on the practical implementations of the hash
function and the ECM : the slower is the ECM implementation, the higher
must be the number of hash-calls to exhibit a division-collision. In this
section we derive heuristically the minimal number of digests necessary
to find a division-collision, in the random oracle model.

The probability that given a set of random integers, one divides the
least common multiple of the others, can be derived from a simple heuris-
tic model called random bissection. In this model, the relative length of
the first prime factor of a random number is obtained asymptotically by
choosing a random A uniformly in [0, 1], and then proceeding recursively
with a random integer of relative size 1 — A. This model is used in [1]
to compute a recurrence for F'(a) = p(1/a), the asymptotic probability
that all prime factors of n are smaller than n®. In the above formula p is
Dickman’s rho function defined for real ¢ > 0 by the relation [6] :

1 if 0<t<1

p(t) = (4)

p(n)/thu it n<t<n+1
n v
For an n®-smooth number n, all relative lengths A chosen by random
bisections are smaller than «, and the remaining integer of relative size
1 — X is also n®-smooth. Consequently, we obtain equation (5) from which
we derive (4) by substituting ¢ = (1 — A\)/a and z = 1/a.

F(a) = '/Oa F(%)(D\ (5)



Let Ppyv[u,v] denote the probability that a random wu-bit integer a
divides the least common multiple of 2 other u-bit random integers. Let p
be a prime factor of a of relative size A. The probability P that p divides
a u-bit integer is roughly 1/p. Consequently, the probability P that p
divides the least common multiple of 2V u-bit integers is approximately :

1 if p2°
1 g0
P=1-(1--)"~ o0
p Zoifp> Y
p

In the following, for a prime factor p of relative size A, we assume that :

1 if Au<wo
P=
2V i Nu > w

Conditioning on the relative length A of the first factor of a, we get

(1 if u<wo
PDIV[Ua'U] = /u PDI\/[U(I — )\),1)](1)\4—
Jo
1
/ Porv[u(l — X),v]2° A4dX\ if u>w

Letting S(a,v) = Pprv[aw,v], we have :

1 if a<1
S(a,v) = L | o
—/ S(a—s,v)ds + —/ S(a—s,0)2°079ds if a>1
@ Jo o Jq
We obtain :
oS 1 /!
%(O{, v) = —v logQ(S((Jz, v) — o /0 S — s,v)ds)
and :
2
8—5(04,1)) = 71)10{2;25((1 —1,v) — (l + v log2)8—S(a,v) (6)
O «@ «@ O

S(a,v) for @ > 0 is thus defined as the solution with continous derivative
of the delay differential equation (6) with initial condition S(«,v) = 1 for
0<a<l.



A division-collision occurs if at least one integer divides the least
common multiple of the others. We assume these events to be statisti-
cally independent. Consequently, the probability Ppc|[u, v] that a division-
collision occurs in a set of 2¥ random wu-bit integer can be expressed as :

Ppclu,v] =1— (1 - S(%,?)))QU (7)

The number a random u-bit integer required to obtain a division collision
with probability g is thus 2” where v is obtained by solving Ppclu,v] =
is equation (7).

The function S(a,v) can be computed by numerical integration from
(6) and S(a,v) =1 for 0 < a < 1. We used Runge-Kutta method of
order 4 to solve differential equation (6). We summarize in table 4 the
number of u-bit integers required to obtain a division-collision with prob-
ability 1/2. One can see that the number of integers needed to obtain a
division-collision (table 4) is actually smaller than the number of hash
calls necessary to mount the attack of section 3.2 (table 3.3).

integer size in bits|log, number of integers
128 18
256 28
512 43
640 50
768 56
1024 67
1280 76

Table 2. log, number of random integers required to obtain a division-collision with
probability 1/2 as a function of their size.

In [8] numerical experiments were performed to estimate the number
of integers needed to get a division-collision with probability 10~2. Figure
1 shows on a base two logarithmic scale the requested number of integers
as a function of their size in bits for :

e The numerical experiments in [8] depicted by crosses.

e The 2¥/8 conjecture in [8], depicted by dots.

e The actual value, computed from (7), depicted by a plain line.

The minimal number of digests necessary to obtain a division-collision
with sufficient probability is thus much smaller than the 28/ conjectured
in [8].
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Fig. 1. log, complexity (number of hash calls) of finding a division-collision with prob-
ability > 1072 as a function of the digest size for Gennaro et al.’s forecast vs. actual.

5 Faster attacks on GHR’s specific hash function

Finally, we show that our attack can even be improved for the specific
hash function suggested in [8] :

H(Ry; Ro; R3; Ry;m) = fi(m, Ry) - fa(m, Ra) - f3(m, R3) - fa(m, Ry)
where q - b stands for the concatenation of ¢ and b and :

)

fi(m
fa(m
fs(m, R
fa(m

FEEEEEEE
@p)
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)

To show that this particular function can be broken faster than the
general case described in section 3.2, we use the attack described in section
3.2 as a black-box and feed it with shorter inputs, thereby reducing its
running time.

Fix a target m and proceed as follows :



e Select a moderate-size (e.g. 40-bit) odd number w, such that reduc-
tions modulo w are simple. In practice we recommend w = 240 — 1 for
which reductions are simple.

e For i = 1,2,3 and 4, exhaustive search ¢ random R;[0],...,R;[¢] such
that f;(M, R;[j]) = 0 mod w.

We can now generate, by simple concatenation, ¢* different hash values
such that :
H(R1; Ro; R3; Ry;m) = 0 mod w

Since all digests have a common 40-bit multiple, the attack described
in the previous sections can be run on 602-bit digests (the digests divided
by w) instead of 642-bit ones. Since for 602-bit hash values our attack is
expected to require 2°% different hash values (instead of 2°0 for 642-bit
hash values), it appears that ¢ = 2!4% = 23000 and we can expect to hash
4 x 23000 x 249 = 2565 different R;[j] values before being able to construct
the requested 2°® hash values. Memory requirement is 4 x 23000 = 92000
table entries containing the various R;[j] values.

This shows that the security of the specific hash function suggested in
section 5.2 of [8] is lower than the general subexponential case analyzed
in the previous sections of this paper (where the hash function’s output
was assumed to be random). However, since 2°° hash values are required
when using 602-bit integers instead of 20 when using 642-bits integer,
the attack’s efficiency is only increased by a factor of 4 for this specific
hash function.

6 Conclusion

We have analysed the security of the Gennaro-Halevi-Rabin signature
scheme of Eurocrypt’99. In particular, we exhibited a sub-exponential
attackal that forces to increase the security parameters beyond 512 or 642
bits up to appoximately 1024 bits in order to get a security equivalent to
1024-bits RSA. Another variant of the scheme described in [8] consists in
generating prime digests only, by performing primality tests on the digests
until a prime is obtained. In this case, a division-collision is equivalent to
a collision in the hash function, but the signature scheme becomes less
attractive from a computational standpoint.
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Proof of theorem 3

Proof. Let S = {e1,...,e,} with v = L.[a] and o < v/2/2 be a set of v
random integers uniformly distributed between 1 and z. Denote by P(v, x)
the probability that one integer in S divides the least common multiple
of the others and by B the event in which e; divides the least common
multiple of {es, ..., e,}. The proof’s outline is the following : we consider
the possible smoothness degrees of ¢; and compute the probability of B
for each smoothness degree. Then we show that Pr[B] is smaller than
Ly[—V2/2 + €] for € > 0 and conclude that P(v,z) is negligible.

The possible smoothness degrees of e; are denoted :

e Sm : e; is L;[v/2/2]-smooth. This happens with probability

Pr[Sm] = L,[—v/2/2]

and consequently :

Pr[B A Sm] = O(L,[—V?2/2]) (8)



e Sm(v,€) : ey is Ly[y + €]-smooth without being L[] smooth, for
V2/2 <y < /2 and € > 0. This happens with probability :

-1 —1 —1
L

Pr{Sm(,e)) = Llgs o] - Mo

w[m] = )
In this case, e; contains a prime factor greater than L,[vy], which appears
in the factorization of another e; with probability O(L,[—7]). Conse-
quently ey divides the least common multiple of {es,...,e,} with proba-
bility :

Pr(BISm(7,€)] = O(Lyla — 7))

With (9) and'y+ﬁ2\/§—eforallv>0, we get :

Pr[B A Sm(y,€)] = O(Lz[——— +€]) (10)

e —Sm : e is not L,[v/2]-smooth. Consequently e; contains a factor
greater than L,[v/2] and thus :

Pr[B A ~Sm] = O(Lafo — v2)) = O(L, [ %2)) (11)

Partitioning the segment [v/2/2, /2] into segments [,y + €] and using
equations (8), (10) and (11), we get :
V2

Pr[B] = O(Lm[*T +¢])

Since o < v/2/2 we can choose € > 0 such that v/2/2 —a —e = § > 0 and
obtain :

P(v,z) = O(Lgla — vV2/2 4 €]) = O(L,[-4])
which shows that P(v,x) is negligible. 0



