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Abstract. In the recent years, DPA attacks have been widely investi-
gated. In particular, 2-nd order DPA have been improved and successfully
applied to break many masked implementations. In this context a higher
order masking scheme has been proposed by Schramm and Paar at CT-
RSA 2006. The authors claimed that the scheme is resistant against d-th
order DPA for any arbitrary chosen order d. In this paper, we prove that
this assertion is false and we exhibit several 3-rd order DPA attacks that
can defeat Schramm and Paar’s countermeasure for any value of d.
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1 Introduction

For a long time, cryptographic algorithms have been studied to thwart
mathematical attacks which try to recover secret keys from some cipher-
texts. Big efforts have been made to design resistant algorithms and to
prove their security. In recent years, new attacks have been developed
that target physical implementations of cryptographic algorithms. Those
physical attacks are referred to as side channel attacks and are often much
more efficient than the mathematical attacks.

Side channel attacks exploit information that leaks from physical im-
plementations of cryptographic algorithms. The analysis of this leakage
(e.g. the power consumption or the electro-magnetic emanations) re-
veals information on the secret data manipulated by the implementation.
Among the side channel attacks, the Differential Power Analysis (DPA)
[13] is one of the most powerful against unprotected cryptographic im-
plementations: it allows to recover the value of a secret key with only a



few leakage measurements. A DPA is a statistical attack that correlates
a physical leakage with the values of intermediate variables (called here
sensitive variables) that depend on both the plaintext and the secret key.
To avoid information leakage, the manipulation of sensitive variables must
be protected by adding countermeasures to the algorithm.

A very common countermeasure for block ciphers implementations is
to randomize sensitive variables by masking techniques [5,9]. All of these
are essentially based on the same principle which can be stated as follows:
every sensitive variable Y is randomly split into d shares V1,..., V; in such
a way that the completeness relation Y = Vix...xVy is satisfied for a group
operation x (e.g. the x-or or the modular addition). Such a technique, here
called d-th order masking, ensures that every single variable is masked
with at least one random value and then, a classical (1-st order) DPA
attack cannot be successfully carried out anymore. However other attacks,
such as the Higher Order DPA (HO-DPA) attacks, exist that can defeat
d-th order masking.

Higher order DPA are attacks that combine multiple leakage signals.
When a d-th order masking is used, a d-th order DPA can be performed to
combine the leakage signals L(V;) resulting from the manipulation of the
d shares V;. This enables the construction of a signal that is correlated
to the targeted sensitive variable Y. Such an attack can theoretically
bypass any d-th order masking. However, the noise effects imply that the
difficulty of carrying out a HO-DPA in practice increases exponentially
with its order and an attacker has to deal with several issues.

The main issue of HO-DPA is to determine how to combine the d
leakage signals L(V;) in such a way that the combination is highly corre-
lated to the sensitive variable Y. In [5], Chari et al. propose to perform the
product L(V7) x ... x L(Vy) of d leakage signals. Messerges proposes in [15]
another combining method for d = 2. It consists in processing the absolute
value of the difference of the two leakage signals |L(V}) — L(V2)|. This can
be generalized to the d-th order as |L(Vy) — ... |L(V4—1) — L(Vg)|...]. Such
attacks, which combine several leakage signals, will be called Combining
HO-DPA in this paper.

An alternative to these attacks exists when the attacker is allowed to
profile the leakage in order to exhibit a relationship between the statistical
distribution of the leakage and the value of a sensitive variable. Once this
relationship is determined, the likelthood of key guesses is estimated given
the distribution of the uplet (L(V7),---, L(Vy)). Such attacks are based
on the same principle as the Template attacks introduced by Chari et
al. in [6]. They have been successfully applied by Peeters et al. in [19]



and by Oswald et al. in [17] to break some masked implementations more
efficiently than any combining 2-nd order DPA. In this paper we will call
Profiling HO-DPA any HO-DPA attack that assumes a profiling of the
leakage.

The recent works [1,10,17-19, 24,23, 26] show that 2-nd order DPA
attacks not only allow to theoretically invalidate some countermeasures,
but can sometimes break them in practice. HO-DPA of order greater
than 2 will also likely become a real practical threat in foreseeable future.
Therefore, there is a need for countermeasures thwarting not only 2-nd
order DPA but more generally d-th order DPA for d > 2.

At CT-RSA 2006, Schramm and Paar propose in [23] a higher order
masking scheme of AES which aims to thwart d-th order DPA for any d.
However, we show in the present paper (Sections 3 and 4) that Schramm
and Paar’s Scheme admits several flaws which actually make it vulnerable
to 3-rd order DPA for any value of d. Therefore, as opposed to what is
claimed in [23], the countermeasure does not protect against d-th order
DPA for d > 3. In Section 5, the flaws of Schramm and Paar’s Scheme
are used to exhibit 3-rd order DPA attacks. Simulations are provided that
demonstrate the practicability of our attacks.

2 Preliminaries

DPA attacks exploit a dependency between a subpart of the secret key
and the variations of a physical leakage as function of the plaintext. This
dependency results from the manipulation of some sensitive variables by
the implementation. We say that a variable is sensitive if it depends on
both the plaintext and the secret key. For example, the x-or between a
key byte and a plaintext byte is a sensitive variable.

If an algorithm manipulates a sensitive variable directly, then a phys-
ical implementation of this algorithm can be broken by a 1-st order DPA.
The implementation can be rendered resistant against 1-st order DPA
by masking every sensitive variable with a single random mask. However
a higher order DPA is still possible. The next definition formalizes the
notion of security with respect to d-th order DPA for a cryptographic
algorithm.

Definition 1. A cryptographic algorithm A is secure against d-th order
DPA if every family of at most d intermediate variables of A is indepen-
dently distributed from any sensitive variable.

If a family of d intermediate variables depends on a sensitive variable
then we say that the algorithm admits a d-th order flaw. A DPA attack



that exploits such a flaw is a d-th order DPA. In Sections 3 and 4, we
recall the Schramm and Paar’s Scheme and we show that it has 3-rd order
flaws.

In the rest of the paper, we will use the calligraphic letters, like X,
to denote finite sets. The corresponding large letter X will then be used
to denote a random variable over X', while the lowercase letter x - a
particular element from X.

3 The Generic Masking Scheme

3.1 Description

Schramm and Paar propose in [23] a masking scheme for AES [7] which
aims to thwart d-th order DPA for any arbitrary chosen d. Every sensitive
byte Y appearing in the algorithm is never directly manipulated and is
represented by d+1 values My, M1, ..., M. To ensure the DPA-resistance,
the shares (M;);>1 take random values and to ensure completeness, My
satisfies

d
My=YoPM . (1)
i=1
When a transformation S must be applied to Y, d+ 1 new values Ny, N1,
..., Ny must be processed from the M;’s such that

d
NOZS(Y)@@]\Q : (2)
i=1
The critical point of such a method is to deduce the N;’s from the M;’s
when S is non-linear, without compromising the security of the scheme
against d-th order DPA.

To tackle this issue, Schramm and Paar propose to adapt a method,
called table re-computation, which has been widely used to protect im-
plementations against 1-st order DPA (see for instance [14,2]). In their
proposal, the d output masks (N;);>1 are randomly generated and a new
table S* is derived from M, ..., My and Ny, ..., Ny in such a way that
S* satisfies for every x:

d d
S*(m)zS(ac@@Mi) PN . (3)
i=1 i=1

Then, one lets Ny < S*(Mp); using (1) this gives No = S(Y) & @?:1 N;

as required.



To ensure that the design of S* induces no flaw with respect to d-th
order DPA, it involves d successive table re-computations from Sy = S
to Sq = S*. For every j € {1,---,d}, the j-th re-computation produces
a new S-Box S; from S;_1 such that for every x:

J J
Sj(@) = Sja(wo M) @ N; = § (:v@ GBMz) oD,

i=1 i=1

which for j = d satisfies (3).
In [23], different table re-computation algorithms are proposed. The
attack described in this paper focus on the straightforward algorithm re-

called below. We discuss the security of the other algorithms in Appendix
A.

Algorithm 1 re-computation
INPUT: the look-up table S;_1, the input mask M;, the output mask N;
OuTPUT: the look-up table S;

1. for z from 0 to 255 do
2. S](l‘)<— j—1($@Mj)@N]'
3. end

3.2 The 3-rd Order Flaw

Before describing the flaw, and to simplify the presentation, we will denote
M =@, M; and N = @2, N;.

During the re-computation of S; from S;_i, the variables S4(0) =
S(M)@&N and S4(1) = S(M&1)@ N are respectively manipulated during
the first iteration and the second iteration of the loop (see Algorithm 1).
The manipulation of these two variables together with My induces a 3-rd
order flaw. In fact, recalling that M satisfies My =Y @& M, we have

(Mo, Sq(0),S4(1)) =Y e M,S(M)®N,S(M@1)dN) . (5)

It can be checked from (5) that (Mjy,Sq(0),S¢(1)) and Y are not in-
dependent, which implies that a 3-rd order DPA is potentially feasible.
Namely, given S4(0) and Sg(1), one can compute A = S4(0) @& Sy(1) =
S(M) & S(M & 1). This allows to recover M with high probability since
the number of values z satisfying A = S(z) ® S(z @ 1) is small when S
has good cryptographic properties (e.g. this equation admits at most 4
solutions if S is the AES S-Box). Then, knowing the value of M allows



to recover Y from M)y since they satisfy Y = My & M.

The discussion above demonstrates that the use of Algorithm 1 to
perform the table re-computations makes Schramm and Paar’s Counter-
measure vulnerable to 3-rd order DPA for any value d.

Even if the 3-rd order flaw above has been exhibited for the first
and the second loop iterations, the generic scheme admits more generally
a flaw (Mg, Sq(e1), Sq(ea)) for every pair (e1,es) € {0,..,255}2 of loop
indices such that ey # es.

The importance of the 3-rd order flaw depends on the amount of in-
formation that (Mo, Sy(e1), Sq(e2)) provides about Y. As proved in Ap-
pendix B, this amount depends on the cryptographic properties of S
and on the value e; @ ez. In fact for every S-Box S defined from [}
into F3* and for every sub-set {ej,ea} C F3, the mutual information
Z(Y, (Mo, Sq(e1), Sa(e2))) between Y and (Mo, Sg(e1), Sq(ez)) satisfies

n —log(d) < Z(Y, (Mo, Sa(e1), Sa(ez))) <n , (6)

where ¢ denotes max cpp+ .cpp {2 € F3; S(z)®S(zde) = z} (see Propo-
sition 2 in Appendix B).

To resist against differential cryptanalysis [3], the AES S-Box (n =8,
m = 8) has been designed in such a way that § = 4. Consequently, if S is
the AES S-Box then (6) implies that the mutual information between Y
and (Mo, Sy(e1), Sq(ez2)) is lower bounded by 6. In fact, we computed that
this mutual information equals 7 — &; ~ 6.98 for every sub-set {e1,e2} C
F%, which means that knowing the values of My, Sy(e1) and Sy(ez2) reveals
almost 7 bits of Y (out of 8).

4 The Improved Masking Scheme

4.1 Description

Schramm and Paar’s generic Scheme recalled in Section 3.1 is very costly
as it involves d table re-computations for each S-Box access for each round
of the cipher (which implies 160 x d table re-computations for AES).
Therefore, Schramm and Paar propose in [23] an improvement of the
method. In the new solution, d successive re-computations are still pre-
formed to process the first masked S-Box in the first round. Then, each
time S must be applied on a new byte M) = Y’@@le M/, a new masked

S-Box S%,,,, satisfying S%.,(z) = S(z @ @, M!) & @%_, N/ for every



byte z, is derived from the previous S* with a single re-computation.
This re-computation firstly requires to process two values called chains
of masks in [23] and denoted here by ICM and OCM:

d d
IcM =@ M; e P} (7)
lzl l;l
ocM =P N e PN . 8)
i=1 =1

Once the values of the chains of masks have been computed, the masked
S-Box S}, is derived from S* by performing one single re-computation

such that the following relation is satisfied for every x:

*
STL@’LU

() =S*(z® ICM)®OCM . (9)
To construct a S-Box S}, that satisfies (9), a re-computation algorithm
may be called with the input parameters (S*, ICM,OCM). The variable
ICM removes the previous sum of input masks @?:1 M; and adds the
new sum of input masks @?:1 M while OCM removes the previous sum
of output masks @?:1 N; and adds the new sum of output masks @?:1 N}
For the whole AES implementation, this improved scheme replaces the
160 x d table re-computations required in the generic scheme by d + 159
table re-computations. For d > 2, this represents a substantial gain.

4.2 The 3-rd Order Flaws

Here we show that the computation of the chains of masks induces two
3-rd order flaws. In fact, one obtains from (1) and (7) that the input chain
of masks IC'M satisfies

YooY =ICM & My & M) . (10)

Since Y @ Y’ is a sensitive variable (because it depends on both the
plaintext and the secret key), and since the variables ICM, My and M
are manipulated by the implementation, this immediately gives a 3-rd
order flaw.

The second 3-rd order flaw is derived as follows: from (2) and (8) we
deduce that the output chain of masks OCM satisfies

SY)® S(Y')=0CM & Ny & N . (11)



This shows that the manipulation of OCM, Ny and N{ gives a 3-rd order
flaw which leaks information on the sensitive variable S(Y') & S(Y”).

To summarize, we have shown that the improved Schramm and Paar’s
countermeasure is vulnerable to 3-rd order DPA for any value of d.

5 The 3-rd Order DPA Attacks

In previous sections, we have shown that an attacker who can obtain
the exact values of 3 intermediate variables of the (generic or improved)
Schramm and Paar’s masking Scheme, can recover the value (or a part of
the value) of a sensitive variable. This is sufficient to show that the coun-
termeasure is theoretically vulnerable to 3-rd order DPA. However, the
physical leakage of an implementation does not reveal the exact values of
the variables manipulated but a noisy function of them. Thus, a leakage
model must be considered when DPA attacks are addressed. In this sec-
tion, we firstly recall two generic d-th order DPA attacks in a classical
leakage model. Then we apply each of them against Schramm and Paar’s
Countermeasure and we present experimental results.

5.1 Leakage Model

We assume that the physical leakage L(V};) resulting from the manipula-
tion of a variable V; at a time t satisfies

L(V) = 0(V) + By, (12)

where ¢;(V}) is the deterministic leakage of V; and B, is a noise. In the
sequel, we refer to the oy as leakage functions.

In the next section, two generic d-th order DPA attacks are described
for the leakage model (12). Both of them assume that there exists a
d-uplet (V1,...,Vy) of variables manipulated by the algorithm which is
correlated to a sensitive variable Y = f(X, K). The V;’s depend on a
part of the plaintext X, on a part of the secret key K and possibly
on random values generated during the execution of the algorithm. The
random values involved in the V;’s are represented by a random variable
R which is assumed to be uniformly distributed over R. Thus, the V;
variables considered in the rest of the paper can be expressed as functions
of (X, K, R), which will be denoted V;(X, K, R).



5.2 Two Generic Higher Order DPA

We recall hereafter two generic d-th order DPA attacks: the combining
higher order DPA and the profiling higher order DPA. In the first one, the
attacker combines the d leakage signals and performs a 1-st order DPA
on the obtained combined signal. The second one assumes a stronger
adversary model where the attacker is able to profile the implementation
leakage. Once it is computed, the profile is involved to launch an optimal
probabilistic attack.

Combining Higher Order DPA. A combining d-th order DPA first
applies a combining function C (e.g. the product or the absolute differ-
ence -see Section 1-) to the d leakage signals L(V1), ..., L(Vy). Then it
uses classical DPA techniques (see for instance [4]) to exhibit a correla-
tion between the combined signal C (L(V}), ..., L(Vy)) and the prediction
P, of this signal, according to a guess k£ on the value of the targeted key
part K. To perform such a prediction, the attacker needs a mathemati-
cal representation of the leakage functions ;. Usually, he supposed that
@i(v) is an affine function of the Hamming weight H(v) for every pair
(¢,v). Thus, we will consider in the sequel that for every (k,z) € K x X
the attacker prediction equals the expected value of the random variable
C(HWVi(z,k,R)),...,H (Vi(z,k,R))) when R ranges over R:

Py(z) = ER[C(H (Vi (2,k, R)),... H (Vq(2,k, R)))] . (13)
The attack consists in the following steps:

1. Perform the leakage measurements (1;(v1), .., 1;(vq))j=1..N correspond-
ing to random plaintexts (z;)j=1..n.
2. For every z € X, process the average leakage:

A(m):#{ﬂx]_x}zc (v1), -5 L(va)) - (14)

3. For every key guess k € I, compute the empirical correlation coeffi-
cient pr, between the prediction and the average leakage:

2" Pi(x) - Alx) — >, P(z) - Z A(z)

VT RGP (5 BT, AR (5, A
(15)

4. Select the key guess k such that p; is maximal.



Profiling Higher Order DPA. In a profiling attack (see for instance
[6,22]), the attacker has unrestricted access to an implementation for
which he knows all the parameters (i.e. the plaintext, the secret key and
eventually the random values generated). The attack consists in two steps.
In the first step (the profiling step), the leakage functions and the noises
are characterized wvia the implementation under control. This allows to
precisely estimate the leakage distribution according to some manipulated
variables. In the second step, the leakage of the implementation under
attack is measured and a mazimum likelihood test [8] is performed to
recover the secret parameter (namely the secret key).

We assume hereafter that the profiling step provides the attacker with
the exact distribution (L(V;)), of the leakage corresponding to the ma-
nipulation of the V;’s. The knowledge of this distribution allows him to
compute the probability density function f(.|z, k) of (L(V;)); given X =z
and K = k. As the V;’s satisfy (12) for every i, assuming that the B;’s
have independent Gaussian distributions, f(.|z, k) satisfies

f(U(v1), -, Wva)lz, k) = # ZH% (vi) = @i(Vi(z, k,7))) ,  (16)

reRi=1

where #R denotes the cardinality of R and ¢, denotes the probabil-

ity density function of the Gaussian distribution N (0, ) which satisfies
2

I ey

Then, the attack consists in the following steps:

1. Perform the leakage measurements (I;(v1), ..,1j(vq));=1,. 5 correspond-
ing to random plaintexts (z;)j=1, n.

2. For every k € K, process the likelihood L(k|(l;,2;);) of the key guess
k given the observations of the leakage (I;(v1),..,1;(vq))j=1,. N corre-
sponding to the plaintexts (z;)j=1,. n:

—

L(k|(lj,25);) = | | fFli(v1), . Li(va)|ws, k) - (17)

1

J

3. Select the key guess k such that £(k|(l;,z;);) is maximal.

5.3 Application to Schramm and Paar’s Scheme

We launch hereafter the two attacks described in Section 5.2 against the
Schramm and Paar’s countermeasure recalled in Sections 3 and 4. Each



attack is a 3-rd order DPA targeting three variables V7, Vo and V3 appear-
ing during the computation. The measurements (I;(v1),l;(v2),l;(v3)); are
simulated according to a noisy Hamming weight model. Thus for our sim-
ulations, the leakage is assumed to satisfy

L(Vi) = eH(Vi) + B; , (18)

where the B;’s have independent Gaussian distributions N (0,0). The
coefficient ¢ is set to 3.72 and the noise standard deviation o is set to
1.96°.

For the combining 30-DPA attacks, we selected among the product
and the absolute difference, the combining function which allows the most
efficient attack.

Before presenting the attacks, we recall that during the first round,
every input Y of the S-Box S satisfies Y = X @ K, where X is a plaintext
byte and K is a secret key byte.

Attacks on the Generic Scheme. We have shown in Section 3.2 that
a 3-rd order flaw results from the manipulation of V; = My, Vo = Sy(e1)
and V3 = Sy(e2). Hereafter, we apply our attacks for e; = 0 and ep = 1.
In this case, we recall that Vi, Vo and V3 satisfy:

VWX, K,R)=Xa KoM,
Vo(X,K,R)=S(M)& N ,
V3(X,K,R)=S(M&1)& N .

where R denotes the pair (M, N) of involved random masks.

Figure 1 shows the result of a combining 30-DPA which uses the
product as combining function to exploit the flaw. The different curves
represent the different key guesses; the curve corresponding to the correct
key guess is plotted in black. We noticed that this curve also corresponds
to three other wrong key hypotheses (additionally, four wrong key hy-
potheses result in correlation peaks with equal magnitude and opposite
sign). It can be observed that the correlation for the correct key guess
comes out after about 4.10° measurements. This implies that several mil-
lions of measurements are required to recover the secret key byte. However
this assertion must be mitigated. Indeed, we noticed that the correlation
curve corresponding to the correct key guess is quickly among the top
curves, which implies a significant loss of entropy for the secret key value.

3 These values are the ones used by Schramm and Paar in their experiments [23].
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Fig. 1. Combining 30-DPA : evolu-
tion of the correlation (ordinate axis)
over an increasing number of measure-
ments (abscissa axis).
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Fig. 2. Profiling 30-DPA : evolution
of the likelihood (ordinate axis) over
an increasing number of measurements
(abscissa axis).

Figure 2 shows the results of a profiling 30-DPA. The likelihood of
the correct key guess is clearly remarkable after 2800 measurements which
shows that the profiling 30-DPA is much more efficient than the combin-
ing 30-DPA.

These attacks allow to recover the value of the targeted key byte K.
They must be performed 16 times to recover the whole first round key.

Attacks on the Improved Scheme. As argued in Section 4.2, a 3-rd
order flaw results from the manipulation of Vi = ICM, Vo = My and
V3 = M|,. We recall that these 3 variables satisfy

‘/1<X//7KII7R) :X//@K” @MO @M(/] ,
‘/2(XH7KH7R) = My )
Vi(X", K", R) = M, .

where X denotes the plaintext part X @ X', K" denotes the secret key
part K @ K’ and R denotes the pair (M, M{) of involved random masks.

The flaw above corresponds to a “standard” 3-rd order flaw since the
sensitive variable X” @& K" is masked with two random masks (M, and
Mj).

Figure 3 shows the result of a combining 30-DPA which uses the
absolute difference as combining function and Figure 4 shows the result
of a profiling 30-DPA. The combining 30-DPA allows to recover the
targeted secret key part with 2.10° measurements, whereas the profiling
30-DPA only requires 600 measurements.

These attacks allow to recover the value of the targeted key part
K" = K ® K', where K and K’ correspond to two successive key bytes.
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Fig. 3. Combining 30-DPA : evolu-
tion of the correlation (ordinate axis)
over an increasing number of measure-
ments (abscissa axis).
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Fig. 4. Profiling 30-DPA : evolution
of the likelihood (ordinate axis) over
an increasing number of measurements
(abscissa axis).

As for the attacks against the generic scheme, the entropy of the round
key is decreased by 8 bits. If performed for the 15 pairs of successive key
bytes, the attacks decrease the entropy of the first round key by 120 bits
and an exhaustive search can be carried out to recover the remaining 8

bits.

Implementation Attack Measurements
No countermeasure DPA 100
S&P generic scheme | combining 30-DPA 6.10°
S&P generic scheme profiling 30-DPA 2.10°
S&P improved scheme | combining 30-DPA 10°
S&P improved scheme | profiling 30-DPA 103

Table 1. Number of measurements required to achieve a success rate of 50%.

Results Analysis. We performed each attack 100 times and we recorded
the obtained success rates*. Table 1 summarizes the number of measure-
ments required to reach a success rate equal to 50%. We list hereafter our

observations:

— The most efficient of our 30-DPA requires a number of measurements
which is only 10 times larger than for a 1-st order DPA against an

unprotected implementation.

4 A success is obtained if the attack selects the correct key guess.



— The profiling 30-DPA is much more efficient than the combining 30-
DPA. This result was predictable. Indeed, the profiling 30-DPA ex-
ploits all the information provided by the 3 leakage signals to derive
the likelihood of a key candidate, whereas combining the 3 leakage sig-
nals in a single signal implies a significant loss of information whatever
the combining function. However, the adversary model of profiling 30-
DPA is very strong and in such a model, an attacker may break an
implementation without exploiting the kind of flaws exhibited in the
paper.

— The profiling 30-DPA requires a quite small number of measurements.
This shows the practicability of such an attack when the attacker owns
a profile that matches well the real leakage of the implementation.

— The combining 30-DPA is fairly efficient against the improved scheme
but is less suitable against the generic scheme. This is not surpris-
ing: combining techniques have been especially designed to attack
Boolean masking and the flaw in the improved scheme involves a dou-
bly masked variable and two Boolean masks. The flaw in the generic
scheme has not this particularity and the combining techniques in-
volved in this paper are less appropriate to exploit it.

6 Conclusion

In this paper, we have exhibited several flaws in Schramm and Paar’s
higher order masking scheme that makes it vulnerable to 3-rd order DPA.
In particular, the general approach consisting in processing d table re-
computations has been invalidated. Indeed, we have pointed out that
such an approach is vulnerable to 3-rd order DPA. We have also invali-
dated the Schramm and Paar’s improvement of the general approach and
we have argued that its use also makes the countermeasure vulnerable to
3-rd order DPA. Finally, simulations have been provided which show the
practicability of our attacks. To summarize, the scheme is always vulner-
able to 3-rd order DPA for any value of d, but it can be used for d = 2
to thwart 2-nd order DPA.

The conclusion of this paper is that the design of a higher order DPA-
resistant scheme is still an open problem. Moreover, we think that the
DPA-resistance of the future proposals should be proved as other secu-
rity properties. This field needs to be more investigated to determine the
best efficiency /security trade-offs.
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A Further Re-computation Algorithms

In this appendix we focus on the different re-computation algorithms
given by Schramm and Paar in [23] and we analyze how they impact the
security of the Schramm and Paar’s countermeasure recalled in Sections
3.1 and 4.1.

In [23], a variant of Algorithm 1 is given in which Step 2 is replaced
by

Sj(e @ Mj) — Sj1(x) ® Nj .

If this variant is used in Schramm and Paar’s countermeasure, the 3-rd
order flaw presented in Section 3.2 becomes a 4-th order flaw. Indeed, the
values stored in memory during the first and the second loop iteration of
the d-th table re-computation are not more Sz(0) and Sy(1) but Sg(My)
and Sg(My @ 1). The two last variables satisfy

Sd(Md):S(M@Md)@N and Sd(Md@l):S(M@Md@l)@N.



Thus, by analogy with Section 3.2, knowing the values of these two vari-
ables reveals information about M @ M, (instead of M in Section 3.2).
Therefore, in addition to these two variables, an attacker needs to target
not only My =Y & M but also My in order to unmask Y. This results in
a 4-th order flaw.

Schramm and Paar recall in [23] another algorithm which has been
introduced in [25]. However, this algorithm is not suitable as its execution
time depends on the input mask value. Such a dependency induces a flaw
with respect to 1-st order DPA. Indeed, as the re-computation duration
depends on the mask value, the manipulation date of the masked variable
after the re-computation also depends on the mask value. This implies
that the distribution of the mask given the manipulation date of the
masked variable is not uniform. Consequently, a first order flaw occurs at
this date.

Finally, Schramm and Paar propose in [23] a new table re-computation
algorithm. This algorithm does not require to allocate memory for the
output table because it modifies the input table itself to compute the
new one.

Algorithm 2 Schramm and Paar’s re-computation
INPUT: the look-up table S, the input mask Mj, the output mask N;
OuTPUT: the modified look-up table S*

1. 1 = [logy(M,)]
2. for z; from 0 to 255 by 2!*! do
3. for z; from 0 to 2! —1 do
A — S*(Jn D xg) (S5} N]'
B — 8" (z1 ®x2® M;) ® N;
S*(z1 ® x2) «— B N;
S*(x1 ®r2@® M;) — ABN;
end

© ® N> o

. end

Despite its practical interest, this algorithm cannot be used because it
does not take the case M; = 0 into account. This is problematic since the
mask M; must be uniformly distributed to ensure the DPA-resistance.
Moreover Algorithm 2 cannot be patched to take this case into account.
Indeed, when M; equals 0, the re-computation should apply the output
mask N; to every value in the table : S*(z) «— S*(x) & N;. However, for
M; = 0 and whatever the value of [, it can be checked that Steps 4 to 7 of
Algorithm 2 perform twice the operation S*(z1 @ x2) « S*(x1 ©x2) B N;.
Thus, when M; equals 0, Steps 2 to 9 apply the output mask IN; only to



the half of the table values. Therefore the only solution to patch Algorithm
2 is to perform a particular re-computation when M; equals 0. This would
induce a dependency between the value of M; and the execution time of
the re-computation algorithm which, as remarked above, is a flaw with
respect to 1-st order DPA.

B The Flaw vs. the S-Box Properties

In what follows, we show how the 3-rd order flaw presented in Section 3.2
interestingly depends on the S-Box properties. We firstly notice that the
mutual information Z(Y, (Y & M,S(M @ e1) ® N,S(M @& e2) ® N)) can
be rewritten Z(Y, (Y & M,S(M) & N,S(M @ e; ® e2) & N)) when M is
uniformly distributed and mutually independent with Y and V.

Proposition 1. Let S be a (n,m)-function and let e be an element of
Fy. Let Y and M be two random variables defined over Fy and let N be a
random variable defined over F5'. If the three variables Y, M and N are
mutually independent and have a uniform distribution, then the mutual
information Z((Y & M,S(M) ® N,S(M ®e) ® N),Y) satisfies:

1Y, (Y&M, S(M)&N, S(Mae)dN)) = n_2in S e, 2) log (9s(e, 2))

zelFy?

where, for every z € F3', ds(e, z) denotes the cardinality of the set {x €
F2: D.S(x) = z}

Proof. Let V denote the 3-uplet (Y & M,S(M) & N,S(M @& e) ® N)
and let us denote by H() the entropy of a random variable. The mutual
information Z(V,Y') equals H(V)—H(V|Y). As V equals (Y@M, S(M)®
N,S(M @ e) @ N), it can be easily checked that the conditional entropy
H(V|Y) equals H(M) + H(N), which is equivalent to

HVIY)=m+n . (19)

From H(V) = — ZU:(UI,W%) P(V = (v1,v2,v3))log(P(V = (v1,v2,v3)),
we deduce that the probability P(V = (v1,v2,v3)) can be rewritten
PM=Y@®v,N=SY ®v1) D ve, D.S(Y ®vy) = vy P v3), we have

P(V =v|Y =y) = P(M = y®v1, N = S(ydv1)dva, DS(ydv1) = vadus)

As M and N are independent, the right-hand side of the relation above
equals PI(M =y @ v )P(N = S(y®v1) ®ve) if v € {x € Fy; D.S(x ®



y) = vy @ vs} and equals 0 otherwise. After noticing that M and N are
uniformly distributed over Fy and F5' respectively, we get

1 n

= _ o m Huefzely; DS(@dy) = v @ vz}
PV =v]Y=y) { 0  otherwise.

(20)

From relation P(V = v) = Zyng P(YY = y)P(V =v | Y = y) and

since Y has a uniform distribution over Fy, (20) implies P(V = v) =

%, One deduces H(V) = _ﬁ ZleFg sz,vgngl (5,5'(6,1)2 D

v3) log <%> that is

H(V) =2n+m—-2"" E 55(67 U3) log(és(e? U3)) ) (21)

v3 GFE'L

since Z%@F%ﬂ ds(e,v3) equals 2.
As a consequence of (19) and (21), the mutual information Z(V,Y")
satisfies the Inequality of Proposition 1.

O

From Proposition 1, one deduces that the greater the summation
EZGF? ds(e, z)log (ds(e, 2)), the smaller the amount of information (Y @&
M,S(M)® N,S(M @& e) & N) brings about Y. The summation is upper
bounded by n2™ and the bound is tight for e = 0 whatever the func-
tion S. Indeed, if e equals 0, then D.S is the null function and dg(e, z)
equals 2" if z = 0 and equals 0 otherwise. However, the case e = 0 has
no interest from an attacker viewpoint, since it is already clear that the
mutual information between (Y & M, S(M)& N) and Y is null. For every
e € F*, summation ZZGF? ds(e, z)log (ds(e, 2)) is smaller than or equal

to ZZGFQL ds(e, z) max(e . ern= xry (log (ds(e, 2))) and we get

Z ds(e,z)log (ds(e,2)) < 2™  max  (log(ds(e, z)),

o (e,2)EFL* xFL

since Ezngn ds(e, z) equals 2". The value max . .)erp*xry ds(e, 2) is usu-
ally denoted by ¢ and S is said to be J-uniform. It plays a central role
in the area of block ciphers since differentially J-uniform SBoxes with
smallest possible value of ¢ are those (n, m)-functions which contribute
to a maximum resistance to differential cryptanalysis [16]. The number
0 is lower bounded by 2"~™ and the bound is tight if and only if S is
perfect nonlinear.



In the following proposition, we exhibit a relationship between the
differential properties of S and the mutual information Z((Y @& M, S(M)®
N,S(M &e)®N),Y).

Proposition 2. Let S be a §-uniform (n,m)-function. Let Y and M be
two random variables defined over Fy and let N be a random variable
defined over 3. If the three variables Y, M and N are mutually inde-
pendent and have uniform distributions, then for every e # 0, we have

I(YOM,S(M)®N,S(M@e)dN),Y)>n—1log(d) . (22)

Moreover, if S is perfect nonlinear then Z((Y & M,S(M)® N, S(M @&
e)® N),Y) equals m for every e € F3*.

The proposition above shows that the quantity of information the
uplet (Y @S M,S(M)&N,S(M&e)®N) provides on Y increases when the
value § decreases. This establishes that the resistance against differential
attacks and the resistance against the attack described in Section 3.2 are
two opposite notions.



