
On the exat seurity of Full Domain HashJean-S�ebastien CoronEole Normale Sup�erieure Gemplus Card International45 rue d'Ulm 34 rue GuynemerParis, F-75230, Frane Issy-les-Moulineaux, F-92447, Franeoron�lipper.ens.fr jean-sebastien.oron�gemplus.omAbstrat. The Full Domain Hash (FDH) sheme is a RSA-based signa-ture sheme in whih the message is hashed onto the full domain of theRSA funtion. The FDH sheme is provably seure in the random oralemodel, assuming that inverting RSA is hard. In this paper we exhibit aslightly di�erent proof whih provides a tighter seurity redution. Thisin turn improves the eÆieny of the sheme sine smaller RSA modulian be used for the same level of seurity. The same method an be usedto obtain a tighter seurity redution for Rabin signature sheme, Pailliersignature sheme, and the Gennaro-Halevi-Rabin signature sheme.1 IntrodutionSine the disovery of publi-key ryptography by DiÆe and Hellman [3℄,one of the most important researh topis is the design of pratial andprovably seure ryptosystems. A proof of seurity is usually a omputa-tional redution from solving a well established problem to breaking theryptosystem. Well established problems inlude fatoring large integers,omputing the disrete logarithm modulo a prime p, or extrating a rootmodulo a omposite integer. The RSA ryptosystem [9℄ is based on thislast problem.A very ommon pratie for signing with RSA is to �rst hash the mes-sage, add some padding, and then exponentiate it with the deryptionexponent. This \hash and derypt" paradigm is the basis of numerousstandards suh as PKCS #1 v2.0 [10℄. In this paradigm, the simplestsheme onsists in taking a hash funtion, the output size of whih is ex-atly the size of the modulus : this is the Full Domain Hash sheme (FDH),introdued by Bellare and Rogaway in [1℄. The FDH sheme is provablyseure in the random orale model, assuming that inverting RSA, i.e. ex-trating a root modulo a omposite integer, is hard. The random orale



methodology was introdued by Bellare and Rogaway in [1℄ where theyshow how to design provably seure signature shemes from any trapdoorpermutation. In the random orale model, the hash funtion is seen as anorale whih produes a random value for eah new query.The seminal work of Bellare and Rogaway in [1℄ and [2℄ highlightsthe importane, for pratial appliations of provable seurity, of takinginto aount the tightness of the seurity redution. A seurity redutionis tight when breaking the signature sheme leads to solving the wellestablished problem with suÆient probability, ideally with probabilityone. In this ase, the signature sheme is almost as seure as the wellestablished problem. On the ontrary, if the redution is \loose", i.e. theabove probability is too small, the guarantee on the signature sheme anbe quite weak.In this paper, we exhibit a better seurity redution for the FDHsignature sheme, whih gives a tighter seurity bound. The redution in[2℄ bounds the probability � of breaking FDH in time t by �0 � (qhash+qsig)where �0 is the probability of inverting RSA in time t0 omparable to tand qhash and qsig are the number of hash queries and signature queriesrequested by the forger. The new redution bounds the probability � ofbreaking FDH by roughly �0 � qsig with the same running time t and t0.This is signi�antly better in pratie sine qsig is usually muh less thanqhash. Full domain hash is thus more seure than originally foreseen. Witha tighter provable seurity one an safely use a smaller modulus size, whihin turn improves the eÆieny of the sheme.2 De�nitions2.1 Signature shemesA digital signature of a message is a bit string dependent on some se-ret known only to the signer, and on the ontent of the message beingsigned. Signatures must be veri�able : anyone an hek the validity ofthe signature. The following de�nitions are based on [5℄.De�nition 1 (signature sheme). A signature sheme is de�ned bythe following :- The key generation algorithm Gen is a probabilisti algorithm whihgiven 1k, outputs a pair of mathing publi and seret keys, (pk; sk).- The signing algorithm Sign takes the message M to be signed andthe seret key sk and returns a signature x = Signsk(M). The signingalgorithm may be probabilisti.



- The veri�ation algorithm V erify takes a message M , a andidatesignature x0 and the publi key pk. It returns a bit V erifypk(M;x0), equalto 1 if the signature is aepted, and 0 otherwise. We require that if x Signsk(M), then V erifypk(M;x) = 1.Signature shemes most often use hash funtions. In the following, thehash funtion is seen as a random orale : the output of the hash funtionh is a uniformly distributed point in the range of h. Of ourse, if the sameinput is invoked twie, idential outputs are returned.2.2 Seurity of signature shemesThe seurity of signature shemes was formalized in an asymptoti settingby Goldwasser, Miali and Rivest [5℄. Here we use the de�nitions of [1℄and [2℄ whih take into aount the presene of an ideal hash funtion, andgive a onrete seurity analysis of digital signatures. Resistane againstadaptive hosen-message attaks is onsidered : a forger F an dynami-ally obtain signatures of messages of its hoie and attempts to outputa valid forgery. A valid forgery is a message/signature pair (M;x) suhthat V erifypk(M;x) = 1 but the signature of M was never requested byF .De�nition 2. A forger F is said to (t; qsig; qhash; �)-break the signaturesheme (Gen; Sign; V erify) if after at most qhash(k) queries to the hashorale, qsig(k) signatures queries and t(k) proessing time, it outputs avalid forgery with probability at least �(k) for all k 2 N.De�nition 3. A signature sheme (Gen; Sign; V erify) is (t; qsig; qhash,�)-seure if there is no forger who (t; qsig; qhash; �)-breaks the sheme.2.3 The RSA ryptosystemThe RSA ryptosystem [9℄ is the most widely used publi-key ryp-tosytem. It an be used to provide both serey and digital signatures.De�nition 4 (The RSA ryptosystem). The RSA ryptosystem is afamily of trapdoor permutations. It is spei�ed by :- The RSA generator RSA, whih on input 1k, randomly selets 2distint k=2-bit primes p and q and omputes the modulus N = p � q.It randomly piks an enryption exponent e 2 Z��(N) and omputes theorresponding deryption exponent d suh that e � d = 1 mod �(N). Thegenerator returns (N; e; d).



- The enryption funtion f : Z�N ! Z�N de�ned by f(x) = xe mod N .- The deryption funtion f�1 : Z�N ! Z�N de�ned by f�1(y) =yd mod N .2.4 Quantifying the seurity of RSAWe follow the de�nitions of [2℄. An inverting algorithm I for RSA getsinput N; e; y and tries to �nd f�1(y). Its suess probability is the prob-ability to output f�1(y) when N; e; d are obtained by running RSA(1k)and y is set to f(x) for an x hosen at random in Z�N.De�nition 5. An inverting algorithm I is said to (t; �)-break RSA ifafter at most t(k) proessing time its suess probability is at least �(k)for all k 2 N.De�nition 6. RSA is said to be (t; �) seure if there is no inverter whih(t; �)-breaks RSA.3 The Full Domain Hash signature sheme3.1 De�nitionThe Full Domain Hash (GenFDH, SignFDH, V erifyFDH) signaturesheme [1℄ is de�ned as follows. The key generation algorithm, on input 1k,runs RSA(1k) to obtain (N; e; d). It outputs (pk; sk), where pk = (N; e)and sk = (N; d). The signing and verifying algorithm have orale aessto a hash funtion HFDH : f0; 1g� ! Z�N. Signature generation andveri�ation are as follows :SignFDHN;d(M)y  HFDH(M)return yd mod NV erifyFDHN;e(M;x)y  xe mod N ; y0  HFDH(M)if y = y0 then return 1 else return 0.The onrete seurity analysis of the FDH sheme is provided by thefollowing theorem [1℄ :Theorem 1. Suppose RSA is (t0; �0)-seure. Then the Full Domain Hashsignature sheme is (t; �)-seure where t = t0 � (qhash + qsig + 1) � O(k3)and � = (qhash + qsig) � �0.



As stated in [2℄, the disadvantage of this result is that �0 ould bemuh smaller than �. For example, if we assume like in [2℄ that the forgeris allowed to request qsig = 230 signatures and omputes hashes on qhash =260 messages, even if the RSA inversion probability is as low as 2�61, thenall we obtain is that the forging probability is at most 1=2, whih is notsatisfatory. To obtain an aeptable level of seurity, we must use a largermodulus, whih will a�et the eÆieny of the sheme.To obtain a better seurity bound, Bellare and Rogaway designed anew sheme, the probabilisti signature sheme (PSS), whih ahieves atight seurity redution : the probability of forging a signature is almostequally low as inverting RSA (� ' �0). Instead, we show in the next setionthat a better seurity bound an be obtained for the original FDH sheme.3.2 The new seurity redutionWe exhibit a di�erent redution whih gives a better seurity bound forFDH. Namely, we prove the following theorem :Theorem 2. Suppose RSA is (t0; �0)-seure. Then the Full Domain Hashsignature sheme is (t; �)-seure wheret = t0 � (qhash + qsig + 1) � O(k3)� = 1(1� 1qsig+1)qsig+1 � qsig � �0For large qsig, � ' exp(1) � qsig � �0Proof. Let F be a forger that (t; qsig; qhash; �)-breaks FDH. We assumethat F never repeats a hash query or a signature query. We build aninverter I whih (t0; �0)-breaks RSA.The inverter I reeives as input (N; e; y) where (N; e) is the publi keyand y is hosen at random in ZZ�N . The inverter I tries to �nd x = f�1(y)where f is the RSA funtion de�ned byN; e. The inverter I starts runningF for this publi key. Forger F makes hash orale queries and signingqueries. I will answer hash orale queries and signing queries itself. Weassume for simpliity that when F requests a signature of the messageM , it has already made the orresponding hash query on M . If not, Igoes ahead and makes the hash query itself. I uses a ounter i, initiallyset to zero.



When F makes a hash orale query forM , the inverter I inrements i,setsMi =M and piks a random ri in ZZ�N . I then returns hi = rei mod Nwith probability p and hi = y � rei mod N with probability 1 � p. Here pis a �xed probability whih will be determined later.When F makes a signing query for M , it has already requested thehash of M , so M =Mi for some i. If hi = rei mod N then I returns ri asthe signature. Otherwise the proess stops and the inverter has failed.Eventually, F halts and outputs a forgery (M;x). We assume thatF has requested the hash of M before. If not, I goes ahead and makesthe hash query itself, so that in any ase M = Mi for some i. Thenif hi = y � rei mod N we have x = hdi = yd � ri mod N and I outputsyd = x=ri mod N as the inverse for y. Otherwise the proess stops andthe inverter has failed.The probability that I answers to all signature queries is at leastpqsig . Then I outputs the inverse of y for f with probability 1 � p. Sowith probability at least �(p) = pqsig � (1� p), I outputs the inverse of yfor f . The funtion �(p) is maximal for pmax = 1� 1=(qsig + 1) and�(pmax) = 1qsig�1� 1qsig + 1�qsig+1Consequently we obtain :�(k) = 1(1� 1qsig+1)qsig+1 � qsig � �0(k)and for large qsig, �(k) ' exp(1) � qsig � �0(k).The running time of I is the running time of F added to the timeneeded to ompute the hi values. This is essentially one RSA omputa-tion, whih is ubi time (or better). This gives the formula for t. ut3.3 DisussionIn many seurity proofs in the random orale model (inluding [2℄), theinverter has to \guess" whih hash query will be used by the adversary toprodue its forgery, resulting in a fator of qhash in the suess probability.This paper shows that a better method is to inlude the hallenge y inthe answer of many hash queries so that the forgery is useful to theinverter with greater probability. This observation also applies to theRabin signature sheme [8℄, the Paillier signature sheme [7℄ and also theGennaro-Halevi-Rabin signature sheme [4℄, for whih the qhash fator inthe random orale seurity proof an also be redued to qsig.
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