
On the exa
t se
urity of Full Domain HashJean-S�ebastien CoronE
ole Normale Sup�erieure Gemplus Card International45 rue d'Ulm 34 rue GuynemerParis, F-75230, Fran
e Issy-les-Moulineaux, F-92447, Fran
e
oron�
lipper.ens.fr jean-sebastien.
oron�gemplus.
omAbstra
t. The Full Domain Hash (FDH) s
heme is a RSA-based signa-ture s
heme in whi
h the message is hashed onto the full domain of theRSA fun
tion. The FDH s
heme is provably se
ure in the random ora
lemodel, assuming that inverting RSA is hard. In this paper we exhibit aslightly di�erent proof whi
h provides a tighter se
urity redu
tion. Thisin turn improves the eÆ
ien
y of the s
heme sin
e smaller RSA moduli
an be used for the same level of se
urity. The same method 
an be usedto obtain a tighter se
urity redu
tion for Rabin signature s
heme, Pailliersignature s
heme, and the Gennaro-Halevi-Rabin signature s
heme.1 Introdu
tionSin
e the dis
overy of publi
-key 
ryptography by DiÆe and Hellman [3℄,one of the most important resear
h topi
s is the design of pra
ti
al andprovably se
ure 
ryptosystems. A proof of se
urity is usually a 
omputa-tional redu
tion from solving a well established problem to breaking the
ryptosystem. Well established problems in
lude fa
toring large integers,
omputing the dis
rete logarithm modulo a prime p, or extra
ting a rootmodulo a 
omposite integer. The RSA 
ryptosystem [9℄ is based on thislast problem.A very 
ommon pra
ti
e for signing with RSA is to �rst hash the mes-sage, add some padding, and then exponentiate it with the de
ryptionexponent. This \hash and de
rypt" paradigm is the basis of numerousstandards su
h as PKCS #1 v2.0 [10℄. In this paradigm, the simplests
heme 
onsists in taking a hash fun
tion, the output size of whi
h is ex-a
tly the size of the modulus : this is the Full Domain Hash s
heme (FDH),introdu
ed by Bellare and Rogaway in [1℄. The FDH s
heme is provablyse
ure in the random ora
le model, assuming that inverting RSA, i.e. ex-tra
ting a root modulo a 
omposite integer, is hard. The random ora
le



methodology was introdu
ed by Bellare and Rogaway in [1℄ where theyshow how to design provably se
ure signature s
hemes from any trapdoorpermutation. In the random ora
le model, the hash fun
tion is seen as anora
le whi
h produ
es a random value for ea
h new query.The seminal work of Bellare and Rogaway in [1℄ and [2℄ highlightsthe importan
e, for pra
ti
al appli
ations of provable se
urity, of takinginto a

ount the tightness of the se
urity redu
tion. A se
urity redu
tionis tight when breaking the signature s
heme leads to solving the wellestablished problem with suÆ
ient probability, ideally with probabilityone. In this 
ase, the signature s
heme is almost as se
ure as the wellestablished problem. On the 
ontrary, if the redu
tion is \loose", i.e. theabove probability is too small, the guarantee on the signature s
heme 
anbe quite weak.In this paper, we exhibit a better se
urity redu
tion for the FDHsignature s
heme, whi
h gives a tighter se
urity bound. The redu
tion in[2℄ bounds the probability � of breaking FDH in time t by �0 � (qhash+qsig)where �0 is the probability of inverting RSA in time t0 
omparable to tand qhash and qsig are the number of hash queries and signature queriesrequested by the forger. The new redu
tion bounds the probability � ofbreaking FDH by roughly �0 � qsig with the same running time t and t0.This is signi�
antly better in pra
ti
e sin
e qsig is usually mu
h less thanqhash. Full domain hash is thus more se
ure than originally foreseen. Witha tighter provable se
urity one 
an safely use a smaller modulus size, whi
hin turn improves the eÆ
ien
y of the s
heme.2 De�nitions2.1 Signature s
hemesA digital signature of a message is a bit string dependent on some se-
ret known only to the signer, and on the 
ontent of the message beingsigned. Signatures must be veri�able : anyone 
an 
he
k the validity ofthe signature. The following de�nitions are based on [5℄.De�nition 1 (signature s
heme). A signature s
heme is de�ned bythe following :- The key generation algorithm Gen is a probabilisti
 algorithm whi
hgiven 1k, outputs a pair of mat
hing publi
 and se
ret keys, (pk; sk).- The signing algorithm Sign takes the message M to be signed andthe se
ret key sk and returns a signature x = Signsk(M). The signingalgorithm may be probabilisti
.



- The veri�
ation algorithm V erify takes a message M , a 
andidatesignature x0 and the publi
 key pk. It returns a bit V erifypk(M;x0), equalto 1 if the signature is a

epted, and 0 otherwise. We require that if x Signsk(M), then V erifypk(M;x) = 1.Signature s
hemes most often use hash fun
tions. In the following, thehash fun
tion is seen as a random ora
le : the output of the hash fun
tionh is a uniformly distributed point in the range of h. Of 
ourse, if the sameinput is invoked twi
e, identi
al outputs are returned.2.2 Se
urity of signature s
hemesThe se
urity of signature s
hemes was formalized in an asymptoti
 settingby Goldwasser, Mi
ali and Rivest [5℄. Here we use the de�nitions of [1℄and [2℄ whi
h take into a

ount the presen
e of an ideal hash fun
tion, andgive a 
on
rete se
urity analysis of digital signatures. Resistan
e againstadaptive 
hosen-message atta
ks is 
onsidered : a forger F 
an dynami-
ally obtain signatures of messages of its 
hoi
e and attempts to outputa valid forgery. A valid forgery is a message/signature pair (M;x) su
hthat V erifypk(M;x) = 1 but the signature of M was never requested byF .De�nition 2. A forger F is said to (t; qsig; qhash; �)-break the signatures
heme (Gen; Sign; V erify) if after at most qhash(k) queries to the hashora
le, qsig(k) signatures queries and t(k) pro
essing time, it outputs avalid forgery with probability at least �(k) for all k 2 N.De�nition 3. A signature s
heme (Gen; Sign; V erify) is (t; qsig; qhash,�)-se
ure if there is no forger who (t; qsig; qhash; �)-breaks the s
heme.2.3 The RSA 
ryptosystemThe RSA 
ryptosystem [9℄ is the most widely used publi
-key 
ryp-tosytem. It 
an be used to provide both se
re
y and digital signatures.De�nition 4 (The RSA 
ryptosystem). The RSA 
ryptosystem is afamily of trapdoor permutations. It is spe
i�ed by :- The RSA generator RSA, whi
h on input 1k, randomly sele
ts 2distin
t k=2-bit primes p and q and 
omputes the modulus N = p � q.It randomly pi
ks an en
ryption exponent e 2 Z��(N) and 
omputes the
orresponding de
ryption exponent d su
h that e � d = 1 mod �(N). Thegenerator returns (N; e; d).



- The en
ryption fun
tion f : Z�N ! Z�N de�ned by f(x) = xe mod N .- The de
ryption fun
tion f�1 : Z�N ! Z�N de�ned by f�1(y) =yd mod N .2.4 Quantifying the se
urity of RSAWe follow the de�nitions of [2℄. An inverting algorithm I for RSA getsinput N; e; y and tries to �nd f�1(y). Its su

ess probability is the prob-ability to output f�1(y) when N; e; d are obtained by running RSA(1k)and y is set to f(x) for an x 
hosen at random in Z�N.De�nition 5. An inverting algorithm I is said to (t; �)-break RSA ifafter at most t(k) pro
essing time its su

ess probability is at least �(k)for all k 2 N.De�nition 6. RSA is said to be (t; �) se
ure if there is no inverter whi
h(t; �)-breaks RSA.3 The Full Domain Hash signature s
heme3.1 De�nitionThe Full Domain Hash (GenFDH, SignFDH, V erifyFDH) signatures
heme [1℄ is de�ned as follows. The key generation algorithm, on input 1k,runs RSA(1k) to obtain (N; e; d). It outputs (pk; sk), where pk = (N; e)and sk = (N; d). The signing and verifying algorithm have ora
le a

essto a hash fun
tion HFDH : f0; 1g� ! Z�N. Signature generation andveri�
ation are as follows :SignFDHN;d(M)y  HFDH(M)return yd mod NV erifyFDHN;e(M;x)y  xe mod N ; y0  HFDH(M)if y = y0 then return 1 else return 0.The 
on
rete se
urity analysis of the FDH s
heme is provided by thefollowing theorem [1℄ :Theorem 1. Suppose RSA is (t0; �0)-se
ure. Then the Full Domain Hashsignature s
heme is (t; �)-se
ure where t = t0 � (qhash + qsig + 1) � O(k3)and � = (qhash + qsig) � �0.



As stated in [2℄, the disadvantage of this result is that �0 
ould bemu
h smaller than �. For example, if we assume like in [2℄ that the forgeris allowed to request qsig = 230 signatures and 
omputes hashes on qhash =260 messages, even if the RSA inversion probability is as low as 2�61, thenall we obtain is that the forging probability is at most 1=2, whi
h is notsatisfa
tory. To obtain an a

eptable level of se
urity, we must use a largermodulus, whi
h will a�e
t the eÆ
ien
y of the s
heme.To obtain a better se
urity bound, Bellare and Rogaway designed anew s
heme, the probabilisti
 signature s
heme (PSS), whi
h a
hieves atight se
urity redu
tion : the probability of forging a signature is almostequally low as inverting RSA (� ' �0). Instead, we show in the next se
tionthat a better se
urity bound 
an be obtained for the original FDH s
heme.3.2 The new se
urity redu
tionWe exhibit a di�erent redu
tion whi
h gives a better se
urity bound forFDH. Namely, we prove the following theorem :Theorem 2. Suppose RSA is (t0; �0)-se
ure. Then the Full Domain Hashsignature s
heme is (t; �)-se
ure wheret = t0 � (qhash + qsig + 1) � O(k3)� = 1(1� 1qsig+1)qsig+1 � qsig � �0For large qsig, � ' exp(1) � qsig � �0Proof. Let F be a forger that (t; qsig; qhash; �)-breaks FDH. We assumethat F never repeats a hash query or a signature query. We build aninverter I whi
h (t0; �0)-breaks RSA.The inverter I re
eives as input (N; e; y) where (N; e) is the publi
 keyand y is 
hosen at random in ZZ�N . The inverter I tries to �nd x = f�1(y)where f is the RSA fun
tion de�ned byN; e. The inverter I starts runningF for this publi
 key. Forger F makes hash ora
le queries and signingqueries. I will answer hash ora
le queries and signing queries itself. Weassume for simpli
ity that when F requests a signature of the messageM , it has already made the 
orresponding hash query on M . If not, Igoes ahead and makes the hash query itself. I uses a 
ounter i, initiallyset to zero.



When F makes a hash ora
le query forM , the inverter I in
rements i,setsMi =M and pi
ks a random ri in ZZ�N . I then returns hi = rei mod Nwith probability p and hi = y � rei mod N with probability 1 � p. Here pis a �xed probability whi
h will be determined later.When F makes a signing query for M , it has already requested thehash of M , so M =Mi for some i. If hi = rei mod N then I returns ri asthe signature. Otherwise the pro
ess stops and the inverter has failed.Eventually, F halts and outputs a forgery (M;x). We assume thatF has requested the hash of M before. If not, I goes ahead and makesthe hash query itself, so that in any 
ase M = Mi for some i. Thenif hi = y � rei mod N we have x = hdi = yd � ri mod N and I outputsyd = x=ri mod N as the inverse for y. Otherwise the pro
ess stops andthe inverter has failed.The probability that I answers to all signature queries is at leastpqsig . Then I outputs the inverse of y for f with probability 1 � p. Sowith probability at least �(p) = pqsig � (1� p), I outputs the inverse of yfor f . The fun
tion �(p) is maximal for pmax = 1� 1=(qsig + 1) and�(pmax) = 1qsig�1� 1qsig + 1�qsig+1Consequently we obtain :�(k) = 1(1� 1qsig+1)qsig+1 � qsig � �0(k)and for large qsig, �(k) ' exp(1) � qsig � �0(k).The running time of I is the running time of F added to the timeneeded to 
ompute the hi values. This is essentially one RSA 
omputa-tion, whi
h is 
ubi
 time (or better). This gives the formula for t. ut3.3 Dis
ussionIn many se
urity proofs in the random ora
le model (in
luding [2℄), theinverter has to \guess" whi
h hash query will be used by the adversary toprodu
e its forgery, resulting in a fa
tor of qhash in the su

ess probability.This paper shows that a better method is to in
lude the 
hallenge y inthe answer of many hash queries so that the forgery is useful to theinverter with greater probability. This observation also applies to theRabin signature s
heme [8℄, the Paillier signature s
heme [7℄ and also theGennaro-Halevi-Rabin signature s
heme [4℄, for whi
h the qhash fa
tor inthe random ora
le se
urity proof 
an also be redu
ed to qsig.



4 Con
lusionWe have improved the se
urity redu
tion of the FDH signature s
heme inthe random ora
le model. The quality of the new redu
tion is independentfrom the number of hash 
alls performed by the forger, and depends onlyon the number of signatures queries. This is of pra
ti
al signi�
an
e sin
ein real-world appli
ations, the number of hash 
alls is only limited bythe 
omputational power of the forger, whereas the number of signaturequeries 
an be deliberately limited : the signer 
an refuse to sign morethan 220 or 230 messages. However, the redu
tion is still not tight andthere remains a sizable gap between the exa
t se
urity of FDH and theexa
t se
urity of PSS.5 A
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