© 2006 International Association for Cryptologic Research

Deterministic Polynomial-Time Equivalence of Computing the RSA Secret Key and Factoring

Jean-Sébastien Coron
University of Luxembourg,
162a avenue de la Faiencerie, L-1511 Luxembourg
coron@clipper.ens.fr

Alexander May
Department of Computer Science, TU Darmstadt,
64289 Darmstadt, Germany
may@informatik.tu-darmstadt.de

Communicated by Dan Boneh
Received 30 August 2004 and revised 3 January 2006
Online publication 6 October 2006

Abstract

We address one of the most fundamental problems concerning the RSA cryptosystem: does the knowledge of the RSA public and secret key pair (e, d) yield the factorization of $N=p q$ in polynomial time? It is well known that there is a probabilistic polynomial-time algorithm that on input (N, e, d) outputs the factors p and q. We present the first deterministic polynomial-time algorithm that factors N given (e, d) provided that $e, d<\varphi(N)$. Our approach is an application of Coppersmith's technique for finding small roots of univariate modular polynomials.

Key words. RSA, Coppersmith's theorem.

1. Introduction

The most basic security requirement for a public key cryptosystem is that it should be hard to recover the secret key from the public key. To establish this property, one usually identifies a well-known hard problem P and shows that recovering the secret key from the public key is polynomial-time equivalent to solving P.

In this paper we consider the RSA cryptosystem [11]. We denote by $N=p q$ the modulus, product of two primes p and q of the same bit-size. Furthermore, we denote by e, d the public and private exponents, such that $e \cdot d=1 \bmod \varphi(N)$, where $\varphi(N)=$ $(p-1) \cdot(q-1)$ is Euler's totient function. The public key is then (N, e) and the secret key is (N, d).

It is well known that there exists a probabilistic polynomial-time equivalence between computing d and factoring N. The proof is given in the original RSA paper by Rivest, Shamir and Adleman [11] and is based on a work by Miller [8].

In this paper we show that the equivalence can actually be made deterministic, namely we present the first deterministic polynomial-time algorithm that on input (N, e, d) outputs the factors p and q, provided that $e \cdot d \leq N^{2}$. Since, for standard RSA, the exponents e and d are defined modulo $\varphi(N)$, we have that $e d<\varphi(N)^{2}<N^{2}$ as required. Our result is mainly of theoretical interest, since our deterministic algorithm is much less efficient than the probabilistic one. However, we also present an algorithm that recovers the factors p and q deterministically in time $\mathcal{O}\left(\log ^{2} N\right)$ when $e \cdot d \leq N^{3 / 2}$; this happens when e is small and $d<\varphi(N)$, which is common in practice.

Our technique is a variant of Coppersmith's theorem for finding small roots of univariate polynomial equations [2]. Coppersmith's theorem is based on the LLL lattice reduction algorithm [6], and has found numerous applications in cryptanalysis (see [10] for a survey). We use a variant in which one considers polynomials modulo an unknown integer (instead of the known modulus). This variant was introduced by Boneh et al. in [1] for factoring moduli of the form $p^{r} q$ in polynomial time for large r. This approach was also used by Howgrave-Graham in [5] to compute approximate integer common divisors. Our technique is actually a direct application of Howgrave-Graham's algorithm, but for completeness we also provide a full description of our algorithm.

This article is an extended version of a paper published by May [7] at Crypto 2004. The difference with [7] is that our analysis is based on univariate modular polynomials instead of bivariate integer polynomials, which leads to a simpler algorithm. Moreover, we generalize our analysis to the case of unbalanced prime factors p and q. Quite expectedly, we obtain that the upper bound on ed gets larger when the prime factors are more imbalanced. For example, if $p<N^{1 / 4}$, then the modulus N can be factored in polynomial time given (e, d) for $e \cdot d \leq N^{8 / 3}$ (instead of N^{2} for prime factors of equal size).

2. Background on Lattices

Let $u_{1}, \ldots, u_{\omega} \in \mathbb{Z}^{n}$ be linearly independent vectors with $\omega \leq n$. The lattice L spanned by $\left\langle u_{1}, \ldots, u_{\omega}\right\rangle$ consists of all integral linear combinations of $u_{1}, \ldots, u_{\omega}$, that is,

$$
L=\left\{\sum_{i=1}^{\omega} n_{i} \cdot u_{i} \mid n_{i} \in \mathbb{Z}\right\}
$$

Such a set $\left\{u_{1}, \ldots, u_{\omega}\right\}$ of vectors is called a lattice basis. All the bases have the same number of elements, called the dimension or rank of the lattice. We say that the lattice is full rank if $\omega=n$. Any two bases of the same lattice can be transformed into each other by a multiplication with some integral matrix of determinant ± 1. Therefore, all the bases have the same Gramian determinant $\operatorname{det}_{1 \leq i, j \leq d}\left\langle u_{i}, u_{j}\right\rangle$. One defines the determinant of the lattice as the square root of the Gramian determinant. If the lattice is full rank, then the determinant of L is equal to the absolute value of the determinant of the $\omega \times \omega$ matrix whose rows are the basis vectors $u_{1}, \ldots, u_{\omega}$.

The LLL algorithm [6] computes a short vector in a lattice:
Theorem 1 (LLL). Let L be a lattice spanned by $\left(u_{1}, \ldots, u_{\omega}\right) \in \mathbb{Z}^{n}$, where the Euclidean norm of each of the vectors $u_{1}, \ldots, u_{\omega}$ is bounded by B. Given $\left(u_{1}, \ldots, u_{\omega}\right)$,
the $L L L$ algorithm finds a vector b_{1} such that

$$
\left\|b_{1}\right\| \leq 2^{(\omega-1) / 4} \operatorname{det}(L)^{1 / \omega}
$$

in time $\mathcal{O}\left(\omega^{5} n \log ^{3} B\right)$
In order to improve the complexity of our algorithm, we use an improved version of LLL, called the L^{2} algorithm and due to Nguyen and Stehlé [9]. The L^{2} algorithm achieves the same bound on $\left\|b_{1}\right\|$ but in time $\mathcal{O}\left(\omega^{4} n(\omega+\log B) \log B\right)$.

3. An Algorithm for $e d \leq N^{3 / 2}$

In this section we consider the standard RSA setting, i.e. we assume that N is the product of two different prime factors p, q of the same bit-size. We also assume that $e d \leq N^{3 / 2}$. This is a practical case since for RSA one generally uses a small public exponent e (for example, $e=3$ or $e=2^{16}+1$). The following theorem shows that the factorization of N can then be recovered in deterministic time $\mathcal{O}\left(\log ^{2} N\right)$:

Theorem 2. Let $N=p \cdot q$, where p and q are two prime integers of the same bit-size. Let e, d be such that $e \cdot d=1 \bmod \varphi(N)$. Then if $1<e \cdot d \leq N^{3 / 2}$, there is a deterministic algorithm that given (N, e, d) recovers the factorization of N in time $\mathcal{O}\left(\log ^{2} N\right)$.

Proof. In the following we assume without loss of generality that $p<q$, which implies

$$
p<N^{1 / 2}<q<2 p<2 N^{1 / 2}
$$

This gives the following useful estimates:

$$
\begin{equation*}
p+q<3 N^{1 / 2} \quad \text { and } \quad \varphi(N)=N+1-(p+q)>\frac{1}{2} N \tag{1}
\end{equation*}
$$

We denote by $\lceil k\rceil$ the smallest integer greater than or equal to k. Furthermore, we denote by $\mathbb{Z}_{\varphi(N)}^{*}$ the group of invertible integers modulo $\varphi(N)$.

Since $e d=1 \bmod \varphi(N)$, we know that

$$
e d=1+k \varphi(N) \quad \text { for some } \quad k \in \mathbb{N} .
$$

We show that k can be recovered up to a small constant when $e d \leq N^{3 / 2}$. Namely, we define $\tilde{k}=(e d-1) / N$ as an underestimate of k and we observe that

$$
\begin{aligned}
k-\tilde{k} & =\frac{e d-1}{\varphi(N)}-\frac{e d-1}{N} \\
& =\frac{N(e d-1)-(N-p-q+1)(e d-1)}{\varphi(N) N} \\
& =\frac{(p+q-1)(e d-1)}{\varphi(N) N}
\end{aligned}
$$

Using (1) we conclude that

$$
\begin{equation*}
k-\tilde{k}<6 N^{-3 / 2}(e d-1) \tag{2}
\end{equation*}
$$

Then since $e d \leq N^{3 / 2}$, we obtain that $0<k-\tilde{k}<6$. Thus, one of the six values $\lceil\tilde{k}\rceil+i$, $i=0,1, \ldots, 5$, must be equal to k. We can test these six candidates successively and for the right choice k, we can compute

$$
N+1+\frac{1-e d}{k}=p+q
$$

from which one recovers the factorization of N. Our approach uses only elementary arithmetic on integers of bit-size $\mathcal{O}(\log (N))$. Thus, the running time is $\mathcal{O}\left(\log ^{2} N\right)$, which concludes the proof of the theorem.

4. The Case of $\boldsymbol{e d} \leq \boldsymbol{N}^{2}$

As in the previous section, we assume that N is the product of two primes p and q of same bit-size, but here we only assume that $e d \leq N^{2}$. Under this assumption, we show the deterministic polynomial-time equivalence between recovering d and factoring N. We will generalize to an $N=p q$ with unbalanced prime factors in the next section.

Theorem 3. Let $N=p \cdot q$, where p and q are two prime integers of the same bit-size. Let e, d be such that $e \cdot d=1 \bmod \varphi(N)$. Then if $1<e \cdot d \leq N^{2}$, there is a deterministic algorithm that given (N, e, d) recovers the factorization of N in time $\mathcal{O}\left(\log ^{9} N\right)$.

Proof. Our technique is a direct application of Howgrave-Graham's algorithm for approximate integer common divisors [5]. Given two integers $a<b$ and $M=b^{\alpha}$ for some $\alpha \in[0,1]$, Howgrave-Graham's algorithm outputs all integers $d>M$ dividing both $a+x_{0}$ and b for some $\left|x_{0}\right|<X$, in time polynomial in $\log b$, where $X=b^{\beta}$ and $\beta=\alpha^{2}$.

Letting $U=e \cdot d-1$ and $s=p+q-1$, our goal is to recover s from N and U. Then from s it is straightforward to recover the factorization of N. From $U=0 \bmod \varphi(N)$ and $\varphi(N)=(p-1)(q-1)=N-s$, we observe that $N-s$ divides both U and $N-s$. Therefore, one can apply Howgrave-Graham's algorithm with $a:=N, b:=U$, $x_{0}:=-s$ and $M=N / 2$. We have that $\alpha \simeq \frac{1}{2}$ and $\beta \simeq \frac{1}{4}$, which enables to recover s and eventually the factorization of N.

In the following, for completeness, we provide the full description of an algorithm for factoring N given (e, d), similar to Howgrave-Graham's algorithm. First, we assume that we are given the high-order bits s_{0} of s. More precisely, we let X be some integer, and write $s=s_{0} \cdot X+x_{0}$, where $0 \leq x_{0}<X$. The integer s_{0} will eventually be recovered by exhaustive search. Moreover, we denote $\varphi=\varphi(N)$. From $\varphi=(p-1) \cdot(q-1)=$ $N-s=N-s_{0} \cdot X-x_{0}$ we obtain the following equations:

$$
\begin{align*}
U & =0 \bmod \varphi \tag{3}\\
x_{0}-N+s_{0} \cdot X & =0 \bmod \varphi \tag{4}
\end{align*}
$$

We consider the polynomials

$$
g_{i j}(x)=x^{i} \cdot\left(x-N+s_{0} \cdot X\right)^{j} \cdot U^{m-j}
$$

for $0 \leq j \leq m$ and $i=0$, and for $j=m$ and $1 \leq i \leq k$, where m, k are fixed parameters. From (3) and (4), we have that for all previous (i,j),

$$
g_{i j}\left(x_{0}\right)=0 \quad \bmod \varphi^{m}
$$

For any linear integer combination $h(x)$ of the polynomials $g_{i j}(x)$, we have that $h\left(x_{0}\right)=$ $0 \bmod \varphi^{m}$. Our goal is then to find a non-zero $h(x)$ with small coefficients. Namely, using the following lemma from [4], if the coefficients of $h(x)$ are sufficiently small, we have that $h\left(x_{0}\right)=0$ holds over the integers. The integer x_{0} can then be recovered using any standard root-finding algorithm; eventually from x_{0} one recovers the factorization of N. Given a polynomial $h(x)=\sum h_{i} x^{i}$, we denote by $\|h(x)\|$ the Euclidean norm of the vector of its coefficients h_{i}.

Lemma 4 (Howgrave-Graham). Let $h(x) \in \mathbb{Z}[x]$ be the sum of at most ω monomials. Suppose that $h\left(x_{0}\right)=0 \bmod \varphi^{m}$ where $\left|x_{0}\right| \leq X$ and $\|h(x X)\|<\varphi^{m} / \sqrt{\omega}$. Then $h\left(x_{0}\right)=0$ holds over the integers.

Proof. We have

$$
\begin{aligned}
\left|h\left(x_{0}\right)\right| & =\left|\sum h_{i} x_{0}^{i}\right|=\left|\sum h_{i} X^{i}\left(\frac{x_{0}}{X}\right)^{i}\right| \\
& \leq \sum\left|h_{i} X^{i}\left(\frac{x_{0}}{X}\right)^{i}\right| \leq \sum\left|h_{i} X^{i}\right| \\
& \leq \sqrt{\omega}\|h(x X)\|<\varphi^{m} .
\end{aligned}
$$

Since $h\left(x_{0}\right)=0 \bmod \varphi^{m}$, this gives $h\left(x_{0}\right)=0$.

We consider the lattice L spanned by the coefficient vectors of the polynomials $g_{i j}(x X)$. One can see that these coefficient vectors form a triangular basis of a fullrank lattice of dimension $\omega=m+k+1$ (for an example, see Fig. 1). The determinant of the lattice is then the product of the diagonal entries, which gives

$$
\begin{equation*}
\operatorname{det} L=X^{(m+k)(m+k+1) / 2} U^{m(m+1) / 2} \tag{5}
\end{equation*}
$$

	1	x	x^{2}	x^{3}	x^{4}	x^{5}	x^{6}
$g_{00}(x X)$	U^{3}						
$g_{01}(x X)$	$*$	$U^{2} X$					
$g_{02}(x X)$	$*$	$*$	$U X^{2}$				
$g_{03}(x X)$	$*$	$*$	$*$	X^{3}			
$g_{13}(x X)$		$*$	$*$	$*$	X^{4}		
$g_{23}(x X)$			$*$	$*$	$*$	X^{5}	
$g_{33}(x X)$				$*$	$*$	$*$	X^{6}

Fig. 1. The lattice L of the polynomials $g_{i j}(x X)$ for $k=m=3$. The symbol " $*$ " correspond to non-zero entries whose value is ignored.

Using LLL (Theorem 1), one obtains a non-zero vector b whose norm is guaranteed to satisfy

$$
\|b\| \leq 2^{(\omega-1) / 4} \cdot(\operatorname{det} L)^{1 / \omega}
$$

The vector b is the coefficient vector of some polynomial $h(x X)$ with $\|h(x X)\|=\|b\|$. The polynomial $h(x)$ is then an integer linear combination of the polynomials $g_{i j}(x)$, which implies that $h\left(x_{0}\right)=0 \bmod \varphi^{m}$. In order to apply Lemma 4, it is therefore sufficient to have that

$$
2^{(\omega-1) / 4} \cdot(\operatorname{det} L)^{1 / \omega}<\frac{\varphi^{m}}{\sqrt{\omega}}
$$

Using the inequalities $\sqrt{\omega} \leq 2^{(\omega-1) / 2}, \varphi>N / 2$ and $\omega-1=m+k \geq m$, we obtain the following sufficient condition:

$$
\operatorname{det} L \leq N^{m \cdot \omega} \cdot 2^{-2 \cdot \omega \cdot(\omega-1)}
$$

From (5) and inequality $U<N^{2}$, this gives

$$
X^{(m+k)(m+k+1) / 2} \leq N^{m \cdot k} \cdot 2^{-2 \cdot \omega \cdot(\omega-1)},
$$

which gives the following condition for X :

$$
X \leq \frac{N^{\gamma(m, k)}}{16}, \quad \gamma(m, k)=\frac{2 \cdot m \cdot k}{(m+k) \cdot(m+k+1)}
$$

Our goal is to maximize the bound X on x_{0}, so that fewer bits must be exhaustively searched. For a fixed m, the function $\gamma(m, k)$ is maximal for $k=m$. The corresponding bound for $k=m$ is then

$$
\begin{equation*}
X \leq \frac{1}{16} \cdot N^{1 / 2-1 /(4 m+2)} \tag{6}
\end{equation*}
$$

The LLL algorithm is therefore applied on a lattice of dimension $\omega=m+k+1=$ $2 \cdot m+1$ and with entries bounded by $B=\mathcal{O}\left(N^{2 m}\right)$. Since the running time of LLL is polynomial in the lattice dimension and in the size of the entries, given s_{0} such that $s=s_{0} \cdot X+x_{0}$ with $0 \leq x_{0}<X$, the previous algorithm recovers the factorization of N in time polynomial in $(\log N, m)$.

Finally, taking the greatest integer X satisfying (6), and using $s=p+q-1 \leq 3 N^{1 / 2}$, we obtain

$$
s_{0} \leq \frac{s}{X} \leq 49 \cdot N^{1 /(4 m+2)}
$$

Then, taking $m=\lfloor\log N\rfloor$, we obtain that s_{0} is upper-bounded by a constant. The previous algorithm is then run for each possible value of s_{0}, and the correct s_{0} enables us to recover the factorization of N. The running time is dominated by the time it takes to run LLL on a lattice of dimension $\omega=2 m+1$ with entries bounded by $B=\mathcal{O}\left(N^{2 m}\right)$. Since the running time of LLL is bounded by $\mathcal{O}\left(\omega^{6} \log ^{3} B\right)$, our algorithm recovers the factorization of N in time $\mathcal{O}\left(\log ^{12} N\right)$. If one uses the L^{2} variant instead of LLL, one obtains a running time of $\mathcal{O}\left(\log ^{9} N\right)$.

5. Generalization to Unbalanced Prime Factors

The previous algorithm fails when the prime factors p and q are unbalanced, because in this case we have that $s=p+q-1 \gg \sqrt{N}$, and s is then much greater than the bound on X given by inequality (6).

In this section we provide an algorithm which extends the result of the previous section to unbalanced prime factors. We use a technique introduced by Durfee and Nguyen in [3], which consists in using two separate variables x and y for the primes p and q, and replacing each occurrence of $x \cdot y$ by N. We note that Howgrave-Graham's algorithm for finding approximate integer common divisors does not seem to apply in this case.

The following theorem shows that the factorization of N given (e, d) becomes easier when the prime factors are imbalanced. Namely, the condition on the product $e \cdot d$ becomes weaker. For example, we obtain that for $p<N^{1 / 4}$, the modulus N can be factored in polynomial time given (e, d) if $e \cdot d \leq N^{8 / 3}$ (instead of N^{2} for prime factors of equal size).

Theorem 5. Let β and $0<\delta \leq \frac{1}{2}$ be real values, such that $2 \beta \delta(1-\delta) \leq 1$. Let $N=p \cdot q$, where p and q are two prime integers such that $p<N^{\delta}$ and $q<2 \cdot N^{1-\delta}$. Lete, d be such thate $\cdot d=1 \bmod \varphi(N)$, and $1<e \cdot d \leq N^{\beta}$. Then there is a deterministic algorithm that given (N, e, d) recovers the factorization of N in time $\mathcal{O}\left(\log ^{9} N\right)$.

Proof. Let $U=e d-1$ as previously. Our goal is to recover p, q from N and U. We have the following equations:

$$
\begin{align*}
U & =0 \bmod \varphi \tag{7}\\
p+q-(N+1) & =0 \bmod \varphi \tag{8}
\end{align*}
$$

Let $m \geq 1, a \geq 1$ and $b \geq 0$ be integers. We define the following polynomials $g_{i j k}(x, y)$:

$$
\begin{gathered}
g_{i j k}(x, y)=x^{i} \cdot y^{j} \cdot U^{m-k} \cdot(x+y-(N+1))^{k} \\
\left\{\begin{array}{l}
i \in\{0,1\}, \quad j=0, \quad k=0, \ldots, m, \\
1<i \leq a, \quad j=0, \quad k=m \\
i=0, \quad 1 \leq j \leq b, \quad k=m
\end{array}\right.
\end{gathered}
$$

In the definition of the polynomials $g_{i j k}(x, y)$, we replace each occurrence of $x \cdot y$ by N; therefore, the polynomials $g_{i j k}(x, y)$ contain only monomials that are powers of x or powers of y. From (7) and (8), we obtain that (p, q) is a root of $g_{i j k}(x, y)$ modulo φ^{m}, for all previous (i, j, k) :

$$
g_{i j k}(p, q)=0 \quad \bmod \varphi^{m}
$$

Now, we assume that we are given the high-order bits p_{0} of p and the high-order bits q_{0} of q. More precisely, for some integers X and Y, we write $p=p_{0} \cdot X+x_{0}$ and $q=q_{0} \cdot Y+y_{0}$, with $0 \leq x_{0}<X$ and $0 \leq y_{0}<Y$. The integers p_{0} and q_{0} will eventually be recovered by exhaustive search.

We define the translated polynomials:

$$
t_{i j k}(x, y)=g_{i j k}\left(p_{0} \cdot X+x, q_{0} \cdot Y+y\right)
$$

It is easy to see that for all (i, j, k), we have that $\left(x_{0}, y_{0}\right)$ is a root of $t_{i j k}(x, y)$ modulo φ^{m} :

$$
t_{i j k}\left(x_{0}, y_{0}\right)=0 \quad \bmod \varphi^{m}
$$

As in the previous algorithm, our goal is to find a non-zero integer linear combination $h(x, y)$ of the polynomials $t_{i j k}(x, y)$, with small coefficients. Then $h\left(x_{0}, y_{0}\right)=0$ $\bmod \varphi^{m}$, and, using again Howgrave-Graham's lemma, if the coefficients of $h(x, y)$ are sufficiently small, then $h\left(x_{0}, y_{0}\right)=0$ over the integers. Then one can define the polynomial $h^{\prime}(x)=\left(p_{0} \cdot X+x\right)^{m+b} \cdot h\left(x, N /\left(p_{0} \cdot X+x\right)-q_{0} \cdot Y\right)$. Since $h(x, y)$ is not identically zero and $h(x, y)$ contains only x powers and y powers, the polynomial $h^{\prime}(x)$ cannot be identically zero. Moreover, $h^{\prime}\left(x_{0}\right)=0$, which enables us to recover x_{0} using any standard root-finding algorithm, and eventually the primes p and q. Given a polynomial $h(x, y)=\sum h_{i j} x^{i} y^{j}$, we denote by $\|h(x, y)\|$ the Euclidean norm of the vector of its coefficients $h_{i j}$.

Lemma 6 (Howgrave-Graham). Let $h(x, y) \in \mathbb{Z}[x, y]$ which is the sum of at most ω monomials. Suppose that $h\left(x_{0}, y_{0}\right)=0 \bmod \varphi^{m}$ where $\left|x_{0}\right| \leq X,\left|y_{0}\right| \leq Y$ and $\|h(x X, y Y)\|<\varphi^{m} / \sqrt{\omega}$. Then $h\left(x_{0}, y_{0}\right)=0$ holds over the integers.

Proof. We have

$$
\begin{aligned}
\left|h\left(x_{0}, y_{0}\right)\right| & =\left|\sum h_{i j} x_{0}^{i} y_{0}^{i}\right|=\left|\sum h_{i j} X^{i} Y^{j}\left(\frac{x_{0}}{X}\right)^{i}\left(\frac{y_{0}}{Y}\right)^{j}\right| \\
& \leq \sum\left|h_{i j} X^{i} Y^{j}\left(\frac{x_{0}}{X}\right)^{i}\left(\frac{y_{0}}{Y}\right)^{j}\right| \leq \sum\left|h_{i j} X^{i} Y^{j}\right| \\
& \leq \sqrt{\omega}\|h(x X, y Y)\|<\varphi^{m} .
\end{aligned}
$$

Since $h\left(x_{0}, y_{0}\right)=0 \bmod \varphi^{m}$, this gives $h\left(x_{0}, y_{0}\right)=0$.

We consider the lattice L spanned by the coefficient vectors of the polynomials $t_{i j k}(x X, y Y)$. One can see that these coefficient vectors form a triangular basis of a full-rank lattice of dimension $\omega=2 m+a+b+1$ (for an example, see Fig. 2). The determinant of the lattice is then the product of the diagonal entries, which gives

$$
\begin{equation*}
\operatorname{det} L=X^{(m+a)(m+a+1) / 2} Y^{(m+b)(m+b+1) / 2} U^{m(m+1)} \tag{9}
\end{equation*}
$$

As previously, using lattice reduction, one obtains a non-zero polynomial $h(x, y)$ such that

$$
\|h(x X, y Y)\| \leq 2^{(\omega-1) / 4} \cdot(\operatorname{det} L)^{1 / \omega}
$$

In order to apply Lemma 6, it is therefore sufficient to have that

$$
2^{(\omega-1) / 4} \cdot(\operatorname{det} L)^{1 / \omega}<\varphi^{m} / \sqrt{\omega}
$$

As in the previous section, using $\sqrt{\omega} \leq 2^{(\omega-1) / 2}, \varphi>N / 2$ and $\omega-1 \geq m$, it is sufficient to have

$$
\begin{equation*}
\operatorname{det} L \leq N^{m \cdot \omega} \cdot 2^{-2 \cdot \omega \cdot(\omega-1)} \tag{10}
\end{equation*}
$$

	1	x	y	x^{2}	y^{2}	x^{3}	y^{3}	x^{4}	x^{5}	y^{4}
$t_{000}(x X, y Y)$	U^{3}									
$t_{100}(x X, y Y)$	$*$	$U^{3} X$								
$t_{001}(x X, y Y)$	$*$	$*$	$U^{2} Y$							
$t_{101}(x X, y Y)$	$*$	$*$	$*$	$U^{2} X^{2}$						
$t_{002}(x X, y Y)$	$*$	$*$	$*$	$*$	$U Y^{2}$					
$t_{102}(x X, y Y)$	$*$	$*$	$*$	$*$	$*$	$U X^{3}$				
$t_{003}(x X, y Y)$	$*$	$*$	$*$	$*$	$*$	$*$	Y^{3}			
$t_{103}(x X, y Y)$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	X^{4}		
$t_{203}(x X, y Y)$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	X^{5}	
$t_{013}(x X, y Y)$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$		Y^{4}

Fig. 2. The lattice L of the polynomials $t_{i j k}(x X, y Y)$ for $m=3, a=2$ and $b=1$. The symbol ' $*$ ' correspond to non-zero entries whose value is ignored.

We write $a=\lfloor(u-1) \cdot m-1\rfloor$ and $b=\lfloor(v-1) \cdot m-1\rfloor$ for some reals u, v. We obtain that $(m+a)(m+a+1) \leq m^{2} u^{2}$ and $(m+b)(m+b+1) \leq m^{2} v^{2}$. We write $X=N^{\delta_{x}}$ and $Y=N^{\delta_{y}}$ for some reals δ_{x}, δ_{y}. From (9) and $U \leq N^{\beta}$ we obtain that

$$
\begin{equation*}
\frac{\log (\operatorname{det} L)}{\log N} \leq m^{2} \cdot\left(\delta_{x} \cdot \frac{u^{2}}{2}+\delta_{y} \cdot \frac{v^{2}}{2}+\beta\right)+\beta \cdot m \tag{11}
\end{equation*}
$$

where \log denotes the logarithm in base 2. Moreover, using $m(u+v)-3<\omega \leq m(u+v)$, we have

$$
\begin{equation*}
\log \left(N^{m \cdot \omega} \cdot 2^{-2 \cdot \omega \cdot(\omega-1)}\right) \geq m(m(u+v)-3) \log N-2 m^{2}(u+v)^{2} \tag{12}
\end{equation*}
$$

Therefore, combining inequalities (10), (11) and (12), we obtain the following sufficient condition:

$$
u+v-\delta_{x} \frac{u^{2}}{2}-\delta_{y} \frac{v^{2}}{2}-\beta \geq \frac{\beta+3}{m}+\frac{2}{\log N}(u+v)^{2}
$$

The function $u \rightarrow u-\delta_{x} \cdot u^{2} / 2$ is maximal for $u=1 / \delta_{x}$, with a maximum equal to $1 /\left(2 \delta_{x}\right)$. The same holds for the function $v \rightarrow v-\delta_{y} \cdot v^{2} / 2$. Therefore, taking $u=1 / \delta_{x}$ and $v=1 / \delta_{y}$, we obtain the sufficient condition

$$
\begin{equation*}
\frac{1}{2 \delta_{x}}+\frac{1}{2 \delta_{y}}-\beta \geq \frac{\beta+3}{m}+\frac{2}{\log N}\left(\frac{1}{\delta_{x}}+\frac{1}{\delta_{y}}\right)^{2} \tag{13}
\end{equation*}
$$

For $X=N^{\delta_{x}}$ and $Y=N^{\delta_{y}}$ satisfying the previous condition and given p_{0} and q_{0} such that $p=p_{0} \cdot X+x_{0}$ and $q=q_{0} \cdot Y+y_{0}$, the algorithm recovers x_{0}, y_{0} and then p, q in time polynomial in $(m, \log N)$. In the following we show that p_{0} and q_{0} can actually be recovered by exhaustive search, while remaining polynomial time in $\log N$.

Let ε be such that $0<\varepsilon \leq \delta / 2$. We have the following inequalities:

$$
\frac{1}{\delta-\varepsilon}=\frac{1}{\delta(1-\varepsilon / \delta)} \geq \frac{1}{\delta}\left(1+\frac{\varepsilon}{\delta}\right) \quad \text { and } \quad \frac{1}{1-\delta-\varepsilon} \geq \frac{1}{1-\delta}\left(1+\frac{\varepsilon}{1-\delta}\right)
$$

From $2 \beta \delta(1-\delta) \leq 1$, we obtain

$$
2 \beta \leq \frac{1}{\delta(1-\delta)}=\frac{1}{\delta}+\frac{1}{1-\delta}
$$

Combining the three previous inequalities, we get

$$
\frac{1}{\delta-\varepsilon}+\frac{1}{1-\delta-\varepsilon}-2 \beta \geq \varepsilon\left(\frac{1}{\delta^{2}}+\frac{1}{(1-\delta)^{2}}\right)
$$

Therefore, taking $\delta_{x}=\delta-\varepsilon$ and $\delta_{y}=1-\delta-\varepsilon$, we obtain from (13) the following sufficient condition:

$$
\frac{\delta}{2} \geq \varepsilon \geq 2 \cdot\left(\frac{\beta+3}{m}+\frac{2}{\log N}\left(\frac{1}{\delta-\varepsilon}+\frac{1}{1-\delta-\varepsilon}\right)^{2}\right)\left(\frac{1}{\delta^{2}}+\frac{1}{(1-\delta)^{2}}\right)^{-1}
$$

Moreover, since $0<\varepsilon \leq \delta / 2$ and $\delta<\frac{1}{2}$, we have

$$
\frac{1}{\delta-\varepsilon} \leq \frac{2}{\delta} \quad \text { and } \quad \frac{1}{1-\delta-\varepsilon} \leq 4
$$

Therefore, this gives the following sufficient condition:

$$
\frac{\delta}{2} \geq \varepsilon \geq 2 \cdot\left(\frac{\beta+3}{m}+\frac{2}{\log N}\left(\frac{2}{\delta}+4\right)^{2}\right)\left(\frac{1}{\delta^{2}}+\frac{1}{(1-\delta)^{2}}\right)^{-1}
$$

Taking $m=\lfloor\log N\rfloor$, this condition can always be satisfied for large enough $\log N$. Taking the corresponding lower bound for ε, we obtain $\varepsilon=\mathcal{O}(1 / \log N)$, which gives $N^{\varepsilon} \leq C$ for some constant C. Therefore, we obtain that p_{0} and q_{0} are upper-bounded by the constants C and $2 C$:

$$
\begin{gathered}
p_{0} \leq \frac{p}{X} \leq N^{\delta-\delta_{x}} \leq N^{\varepsilon} \leq C \\
q_{0} \leq \frac{q}{Y} \leq 2 N^{1-\delta-\delta_{y}} \leq 2 N^{\varepsilon} \leq 2 C
\end{gathered}
$$

This shows that p_{0} and q_{0} can be recovered by exhaustive search while remaining polynomial time in $\log N$. The total running time of our algorithm is then dominated by running the lattice reduction algorithm on a lattice basis of dimension $\omega=\mathcal{O}(m)$ and entries bounded by $B=N^{\mathcal{O}(m)}$. Therefore, using LLL, our algorithm recovers the factorization of N in time $\mathcal{O}\left(\log ^{12} N\right)$. If one uses the L^{2} variant instead of LLL, one obtains a running time of $\mathcal{O}\left(\log ^{9} N\right)$.

6. Practical Experiments

We have implemented the two algorithms of Sections 4 and 5, using the LLL implementation of Shoup's NTL library [12]. First, we describe in Table 1 the experiments with prime factors of equal bit-size, with $e \cdot d \simeq N^{2}$. We assume that we are given the ℓ high-order bits of $s=p+q$; the observed running time for a single execution of LLL is denoted by t. The total running time for factoring N is then estimated as $T \simeq 2^{\ell} \cdot t$.

Table 1. Bit-size of N, number of bits to be exhaustively searched, lattice dimension, observed running time for a single LLL-reduction t, and estimated total running time T, when $e \cdot d \simeq N^{2}$. The experiments were performed on a 1.6 GHz PC running under Windows 2000/Cygwin.

N (bits)	Bits given	Dimension	t	T
512 bits	14 bits	21	70 s	13 days
512 bits	10 bits	29	7 min	5 days
512 bits	9 bits	33	16 min	5 days
1024 bits	26 bits	21	7 min	900 years
1024 bits	19 bits	29	40 min	40 years
1024 bits	17 bits	33	90 min	23 years

We obtain that the factorization of N given (e, d) would take a few days for a 512-bit modulus, and a few years for a 1024-bit modulus. This contrasts with Miller's algorithm whose running time is only a fraction of a second for a 1024-bit modulus.

The experiments with prime factors of unbalanced size and with $e \cdot d \simeq N^{2}$ are summarized in Table 2. In this case it was not necessary to know the high-order bits of $s=p+q$, and one recovers the factorization of N after a single application of LLL. The results in Table 2 confirm that the factorization of N is easier when the prime factors are unbalanced.

7. Conclusion

We have shown the first deterministic polynomial-time algorithm that factors an RSA modulus N given the pair of public and secret exponents e and d, provided that $e \cdot d<N^{2}$. The algorithm is a variant of Coppersmith's technique for finding small roots of univariate modular polynomial equations. We have also provided a generalization to the case of unbalanced prime factors. Finally, we note that the problem of the deterministic polynomial-time equivalence between finding d and factoring N is not entirely solved in this paper, because finding an algorithm for $e \cdot d>N^{2}$ remains an open problem.

Table 2. Bit-size of the RSA modulus N such that $p<N^{\delta}$, lattice dimension, observed running time for factoring N, when $e \cdot d \simeq N^{2}$. The experiments were performed on a 1.6 GHz
PC running under Windows 2000/Cygwin.

N (bits)	δ	Dimension	t
512	0.25	16	2 s
512	0.3	29	2 min
1024	0.25	16	15 s
1024	0.3	29	10 min

References

[1] D. Boneh, G. Durfee and N.A. Howgrave-Graham, Factoring $n=p^{r} q$ for large r, Proceedings of Crypto '99, pp. 326-337. LNCS, Vol. 1666. Springer-Verlag, Berlin, 1999.
[2] D. Coppersmith, Small solutions to polynomial equations and low exponent vulnerabilities, Journal of Cryptology, Vol. 10, No. 4, pp. 223-260, 1997.
[3] G. Durfee and P. Nguyen, Cryptanalysis of the RSA schemes with short secret exponent from Asiacrypt '99, Proceedings of Asiacrypt 2000, pp. 14-29. LNCS, Vol. 1976. Springer-Verlag, Berlin, 2000.
[4] N. Howgrave-Graham, Finding small roots of univariate modular equations revisited, Proceedings of Cryptography and Coding, pp. 131-142. LNCS, Vol. 1355. Springer-Verlag, Berlin, 1997.
[5] N. Howgrave-Graham, Approximate integer common divisors, Proceedings of CALC '01, pp. 51-66. LNCS, Vol. 2146. Springer-Verlag, Berlin, 2001.
[6] A. K. Lenstra, H. W. Lenstra and L. Lovász, Factoring polynomials with rational coefficients, Mathematische Annalen, Vol. 261, pp. 513-534, 1982
[7] A. May, Computing the RSA secret key is deterministic polynomial time equivalent to factoring, Proceedings of Crypto 2004, pp. 213-219. LNCS, Vol. 3152. Springer-Verlag, Berlin, 2004.
[8] G. L. Miller, Riemann's hypothesis and tests for primality, Proceedings of the Seventh Annual ACM Symposium on the Theory of Computing, pp. 234-239, 1975.
[9] P. Nguyen and D. Stehlé, Floating-point LLL revisited, Proceedings of Eurocrypt 2005, pp. 215-233. LNCS, Vol. 3494. Springer-Verlag, Berlin, 2005.
[10] P.Q. Nguyen and J. Stern, The two faces of lattices in cryptology, Proceedings of CALC'01, pp. 146-180. LNCS, Vol. 2146. Springer-Verlag, Berlin, 2001.
[11] R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Communications of the ACM, Vol. 21, No. 2, pp. 120-126, 1978
[12] V. Shoup, NTL: A Library for Doing Number Theory, available online at http: / /www. shoup.net/ ntl/index.html

