
DOI: 10.1007/s00145-006-0433-6

J. Cryptology (2007) 20: 39–50

© 2006 International Association for
Cryptologic Research

Deterministic Polynomial-Time Equivalence of
Computing the RSA Secret Key and Factoring

Jean-Sébastien Coron
University of Luxembourg,

162a avenue de la Faiencerie, L-1511 Luxembourg
coron@clipper.ens.fr

Alexander May
Department of Computer Science, TU Darmstadt,

64289 Darmstadt, Germany
may@informatik.tu-darmstadt.de

Communicated by Dan Boneh

Received 30 August 2004 and revised 3 January 2006
Online publication 6 October 2006

Abstract. We address one of the most fundamental problems concerning the RSA
cryptosystem: does the knowledge of the RSA public and secret key pair (e, d) yield
the factorization of N = pq in polynomial time? It is well known that there is a
probabilistic polynomial-time algorithm that on input (N , e, d) outputs the factors p
and q. We present the first deterministic polynomial-time algorithm that factors N given
(e, d) provided that e, d < ϕ(N). Our approach is an application of Coppersmith’s
technique for finding small roots of univariate modular polynomials.

Key words. RSA, Coppersmith’s theorem.

1. Introduction

The most basic security requirement for a public key cryptosystem is that it should be
hard to recover the secret key from the public key. To establish this property, one usually
identifies a well-known hard problem P and shows that recovering the secret key from
the public key is polynomial-time equivalent to solving P .

In this paper we consider the RSA cryptosystem [11]. We denote by N = pq the
modulus, product of two primes p and q of the same bit-size. Furthermore, we denote
by e, d the public and private exponents, such that e · d = 1 mod ϕ(N), where ϕ(N) =
(p− 1) · (q − 1) is Euler’s totient function. The public key is then (N , e) and the secret
key is (N , d).

It is well known that there exists a probabilistic polynomial-time equivalence between
computing d and factoring N . The proof is given in the original RSA paper by Rivest,
Shamir and Adleman [11] and is based on a work by Miller [8].

39

40 J.-S. Coron and A. May

In this paper we show that the equivalence can actually be made deterministic, namely
we present the first deterministic polynomial-time algorithm that on input (N , e, d)
outputs the factors p and q, provided that e · d ≤ N 2. Since, for standard RSA, the
exponents e and d are defined modulo ϕ(N), we have that ed < ϕ(N)2 < N 2 as
required. Our result is mainly of theoretical interest, since our deterministic algorithm
is much less efficient than the probabilistic one. However, we also present an algorithm
that recovers the factors p and q deterministically in timeO(log2 N)when e ·d ≤ N 3/2;
this happens when e is small and d < ϕ(N), which is common in practice.

Our technique is a variant of Coppersmith’s theorem for finding small roots of uni-
variate polynomial equations [2]. Coppersmith’s theorem is based on the LLL lattice
reduction algorithm [6], and has found numerous applications in cryptanalysis (see [10]
for a survey). We use a variant in which one considers polynomials modulo an unknown
integer (instead of the known modulus). This variant was introduced by Boneh et al. in
[1] for factoring moduli of the form pr q in polynomial time for large r . This approach
was also used by Howgrave-Graham in [5] to compute approximate integer common di-
visors. Our technique is actually a direct application of Howgrave-Graham’s algorithm,
but for completeness we also provide a full description of our algorithm.

This article is an extended version of a paper published by May [7] at Crypto 2004.
The difference with [7] is that our analysis is based on univariate modular polynomials
instead of bivariate integer polynomials, which leads to a simpler algorithm. Moreover,
we generalize our analysis to the case of unbalanced prime factors p and q. Quite
expectedly, we obtain that the upper bound on ed gets larger when the prime factors are
more imbalanced. For example, if p < N 1/4, then the modulus N can be factored in
polynomial time given (e, d) for e · d ≤ N 8/3 (instead of N 2 for prime factors of equal
size).

2. Background on Lattices

Let u1, . . . , uω ∈ Zn be linearly independent vectors with ω ≤ n. The lattice L spanned
by 〈u1, . . . , uω〉 consists of all integral linear combinations of u1, . . . , uω, that is,

L =
{

ω∑
i=1

ni · ui | ni ∈ Z
}
.

Such a set {u1, . . . , uω} of vectors is called a lattice basis. All the bases have the same
number of elements, called the dimension or rank of the lattice. We say that the lattice is
full rank if ω = n. Any two bases of the same lattice can be transformed into each other
by a multiplication with some integral matrix of determinant±1. Therefore, all the bases
have the same Gramian determinant det1≤i, j≤d〈ui , uj 〉. One defines the determinant of
the lattice as the square root of the Gramian determinant. If the lattice is full rank, then
the determinant of L is equal to the absolute value of the determinant of theω×ωmatrix
whose rows are the basis vectors u1, . . . , uω.

The LLL algorithm [6] computes a short vector in a lattice:

Theorem 1 (LLL). Let L be a lattice spanned by (u1, . . . , uω) ∈ Zn , where the Eu-
clidean norm of each of the vectors u1, . . . , uω is bounded by B. Given (u1, . . . , uω),

RSA Secret Key and Factoring 41

the L L L algorithm finds a vector b1 such that

‖b1‖ ≤ 2(ω−1)/4 det(L)1/ω

in time O(ω5n log3 B)

In order to improve the complexity of our algorithm, we use an improved version
of LLL, called the L2 algorithm and due to Nguyen and Stehlé [9]. The L2 algorithm
achieves the same bound on ‖b1‖ but in time O(ω4n(ω + log B) log B).

3. An Algorithm for ed ≤ N3/2

In this section we consider the standard RSA setting, i.e. we assume that N is the product
of two different prime factors p, q of the same bit-size. We also assume that ed ≤ N 3/2.
This is a practical case since for RSA one generally uses a small public exponent e (for
example, e = 3 or e = 216 + 1). The following theorem shows that the factorization of
N can then be recovered in deterministic time O(log2 N):

Theorem 2. Let N = p · q , where p and q are two prime integers of the same bit-size.
Let e, d be such that e·d = 1 mod ϕ(N). Then if 1 < e·d ≤ N 3/2, there is a deterministic
algorithm that given (N , e, d) recovers the factorization of N in time O(log2 N).

Proof. In the following we assume without loss of generality that p < q, which implies

p < N 1/2 < q < 2p < 2N 1/2.

This gives the following useful estimates:

p + q < 3N 1/2 and ϕ(N) = N + 1− (p + q) > 1
2 N . (1)

We denote by �k� the smallest integer greater than or equal to k. Furthermore, we denote
by Z∗ϕ(N) the group of invertible integers modulo ϕ(N).

Since ed = 1 mod ϕ(N), we know that

ed = 1+ kϕ(N) for some k ∈ N.

We show that k can be recovered up to a small constant when ed ≤ N 3/2. Namely, we
define k̃ = (ed − 1)/N as an underestimate of k and we observe that

k − k̃ = ed − 1

ϕ(N)
− ed − 1

N

= N (ed − 1)− (N − p − q + 1)(ed − 1)

ϕ(N)N

= (p + q − 1)(ed − 1)

ϕ(N)N
.

42 J.-S. Coron and A. May

Using (1) we conclude that

k − k̃ < 6N−3/2(ed − 1). (2)

Then since ed ≤ N 3/2, we obtain that 0 < k− k̃ < 6. Thus, one of the six values �k̃�+ i ,
i = 0, 1, . . . , 5, must be equal to k. We can test these six candidates successively and
for the right choice k, we can compute

N + 1+ 1− ed

k
= p + q,

from which one recovers the factorization of N . Our approach uses only elementary
arithmetic on integers of bit-sizeO(log(N)). Thus, the running time isO(log2 N), which
concludes the proof of the theorem.

4. The Case of ed ≤ N2

As in the previous section, we assume that N is the product of two primes p and q of
same bit-size, but here we only assume that ed ≤ N 2. Under this assumption, we show
the deterministic polynomial-time equivalence between recovering d and factoring N .
We will generalize to an N = pq with unbalanced prime factors in the next section.

Theorem 3. Let N = p · q, where p and q are two prime integers of the same bit-size.
Let e, d be such that e ·d = 1 mod ϕ(N). Then if 1 < e ·d ≤ N 2, there is a deterministic
algorithm that given (N , e, d) recovers the factorization of N in time O(log9 N).

Proof. Our technique is a direct application of Howgrave-Graham’s algorithm for
approximate integer common divisors [5]. Given two integers a < b and M = bα for
some α ∈ [0, 1], Howgrave-Graham’s algorithm outputs all integers d > M dividing
both a + x0 and b for some |x0| < X , in time polynomial in log b, where X = bβ and
β = α2.

Letting U = e ·d−1 and s = p+q−1, our goal is to recover s from N and U . Then
from s it is straightforward to recover the factorization of N . From U = 0 mod ϕ(N)
and ϕ(N) = (p − 1)(q − 1) = N − s, we observe that N − s divides both U and
N − s. Therefore, one can apply Howgrave-Graham’s algorithm with a := N , b := U ,
x0 := −s and M = N/2. We have that α � 1

2 and β � 1
4 , which enables to recover s

and eventually the factorization of N .
In the following, for completeness, we provide the full description of an algorithm

for factoring N given (e, d), similar to Howgrave-Graham’s algorithm. First, we assume
that we are given the high-order bits s0 of s. More precisely, we let X be some integer,
and write s = s0 · X+ x0, where 0 ≤ x0 < X . The integer s0 will eventually be recovered
by exhaustive search. Moreover, we denote ϕ = ϕ(N). From ϕ = (p − 1) · (q − 1) =
N − s = N − s0 · X − x0 we obtain the following equations:

U = 0 mod ϕ, (3)

x0 − N + s0 · X = 0 mod ϕ. (4)

RSA Secret Key and Factoring 43

We consider the polynomials

gi j (x) = xi · (x − N + s0 · X) j ·U m− j

for 0 ≤ j ≤ m and i = 0, and for j = m and 1 ≤ i ≤ k, where m, k are fixed parameters.
From (3) and (4), we have that for all previous (i, j),

gi j (x0) = 0 mod ϕm .

For any linear integer combination h(x) of the polynomials gi j (x), we have that h(x0) =
0modϕm . Our goal is then to find a non-zero h(x)with small coefficients. Namely, using
the following lemma from [4], if the coefficients of h(x) are sufficiently small, we have
that h(x0) = 0 holds over the integers. The integer x0 can then be recovered using any
standard root-finding algorithm; eventually from x0 one recovers the factorization of N .
Given a polynomial h(x) = ∑

hi xi , we denote by ‖h(x)‖ the Euclidean norm of the
vector of its coefficients hi .

Lemma 4 (Howgrave-Graham). Let h(x) ∈ Z[x] be the sum of at most ω monomials.
Suppose that h(x0) = 0 mod ϕm where |x0| ≤ X and ‖h(x X)‖ < ϕm/

√
ω. Then

h(x0) = 0 holds over the integers.

Proof. We have

|h(x0)| =
∣∣∣∑ hi x

i
0

∣∣∣ = ∣∣∣∣∑ hi Xi
(x0

X

)i
∣∣∣∣

≤
∑∣∣∣∣hi Xi

(x0

X

)i
∣∣∣∣ ≤∑∣∣hi Xi

∣∣
≤ √ω‖h(x X)‖ < ϕm .

Since h(x0) = 0 mod ϕm , this gives h(x0) = 0.

We consider the lattice L spanned by the coefficient vectors of the polynomials
gi j (x X). One can see that these coefficient vectors form a triangular basis of a full-
rank lattice of dimension ω = m + k + 1 (for an example, see Fig. 1). The determinant
of the lattice is then the product of the diagonal entries, which gives

det L = X (m+k)(m+k+1)/2U m(m+1)/2. (5)

1 x x2 x3 x4 x5 x6

g00(x X) U 3

g01(x X) ∗ U 2 X
g02(x X) ∗ ∗ U X2

g03(x X) ∗ ∗ ∗ X3

g13(x X) ∗ ∗ ∗ X4

g23(x X) ∗ ∗ ∗ X5

g33(x X) ∗ ∗ ∗ X6

Fig. 1. The lattice L of the polynomials gi j (x X) for k = m = 3. The symbol “∗” correspond to non-zero
entries whose value is ignored.

44 J.-S. Coron and A. May

Using LLL (Theorem 1), one obtains a non-zero vector b whose norm is guaranteed
to satisfy

‖b‖ ≤ 2(ω−1)/4 · (det L)1/ω.

The vector b is the coefficient vector of some polynomial h(x X) with ‖h(x X)‖ = ‖b‖.
The polynomial h(x) is then an integer linear combination of the polynomials gi j (x),
which implies that h(x0) = 0 mod ϕm . In order to apply Lemma 4, it is therefore sufficient
to have that

2(ω−1)/4 · (det L)1/ω <
ϕm

√
ω
.

Using the inequalities
√
ω ≤ 2(ω−1)/2, ϕ > N/2 and ω − 1 = m + k ≥ m, we obtain

the following sufficient condition:

det L ≤ N m·ω · 2−2·ω·(ω−1).

From (5) and inequality U < N 2, this gives

X (m+k)(m+k+1)/2 ≤ N m·k · 2−2·ω·(ω−1),

which gives the following condition for X :

X ≤ N γ (m,k)

16
, γ (m, k) = 2 · m · k

(m + k) · (m + k + 1)
.

Our goal is to maximize the bound X on x0, so that fewer bits must be exhaustively
searched. For a fixed m, the function γ (m, k) is maximal for k = m. The corresponding
bound for k = m is then

X ≤ 1
16 · N 1/2−1/(4m+2). (6)

The LLL algorithm is therefore applied on a lattice of dimension ω = m + k + 1 =
2 · m + 1 and with entries bounded by B = O(N 2m). Since the running time of LLL
is polynomial in the lattice dimension and in the size of the entries, given s0 such that
s = s0 · X + x0 with 0 ≤ x0 < X , the previous algorithm recovers the factorization of
N in time polynomial in (log N ,m).

Finally, taking the greatest integer X satisfying (6), and using s = p+q−1 ≤ 3N 1/2,
we obtain

s0 ≤ s

X
≤ 49 · N 1/(4m+2).

Then, taking m = �log N�, we obtain that s0 is upper-bounded by a constant. The
previous algorithm is then run for each possible value of s0, and the correct s0 enables us
to recover the factorization of N . The running time is dominated by the time it takes to
run LLL on a lattice of dimension ω = 2m + 1 with entries bounded by B = O(N 2m).
Since the running time of LLL is bounded by O(ω6 log3 B), our algorithm recovers the
factorization of N in time O(log12 N). If one uses the L2 variant instead of LLL, one
obtains a running time of O(log9 N).

RSA Secret Key and Factoring 45

5. Generalization to Unbalanced Prime Factors

The previous algorithm fails when the prime factors p and q are unbalanced, because in
this case we have that s = p+ q − 1� √N , and s is then much greater than the bound
on X given by inequality (6).

In this section we provide an algorithm which extends the result of the previous section
to unbalanced prime factors. We use a technique introduced by Durfee and Nguyen in
[3], which consists in using two separate variables x and y for the primes p and q, and
replacing each occurrence of x · y by N . We note that Howgrave-Graham’s algorithm
for finding approximate integer common divisors does not seem to apply in this case.

The following theorem shows that the factorization of N given (e, d) becomes easier
when the prime factors are imbalanced. Namely, the condition on the product e · d
becomes weaker. For example, we obtain that for p < N 1/4, the modulus N can be
factored in polynomial time given (e, d) if e · d ≤ N 8/3 (instead of N 2 for prime factors
of equal size).

Theorem 5. Let β and 0 < δ ≤ 1
2 be real values, such that 2βδ(1 − δ) ≤ 1. Let

N = p · q , where p and q are two prime integers such that p < N δ and q < 2 · N 1−δ .
Let e, d be such that e·d = 1 mod ϕ(N), and 1 < e·d ≤ Nβ . Then there is a deterministic
algorithm that given (N , e, d) recovers the factorization of N in time O(log9 N).

Proof. Let U = ed − 1 as previously. Our goal is to recover p, q from N and U . We
have the following equations:

U = 0 mod ϕ, (7)

p + q − (N + 1) = 0 mod ϕ. (8)

Let m ≥ 1, a ≥ 1 and b ≥ 0 be integers. We define the following polynomials gi jk(x, y):

gi jk(x, y) = xi · y j ·U m−k · (x + y − (N + 1))k

i ∈ {0, 1}, j = 0, k = 0, . . . ,m,
1 < i ≤ a, j = 0, k = m,
i = 0, 1 ≤ j ≤ b, k = m.

In the definition of the polynomials gi jk(x, y), we replace each occurrence of x · y by
N ; therefore, the polynomials gi jk(x, y) contain only monomials that are powers of x or
powers of y. From (7) and (8), we obtain that (p, q) is a root of gi jk(x, y) modulo ϕm ,
for all previous (i, j, k):

gi jk(p, q) = 0 mod ϕm .

Now, we assume that we are given the high-order bits p0 of p and the high-order bits
q0 of q . More precisely, for some integers X and Y , we write p = p0 · X + x0 and
q = q0 · Y + y0, with 0 ≤ x0 < X and 0 ≤ y0 < Y . The integers p0 and q0 will
eventually be recovered by exhaustive search.

We define the translated polynomials:

ti jk(x, y) = gi jk(p0 · X + x, q0 · Y + y).

46 J.-S. Coron and A. May

It is easy to see that for all (i, j, k), we have that (x0, y0) is a root of ti jk(x, y) modulo
ϕm :

ti jk(x0, y0) = 0 mod ϕm .

As in the previous algorithm, our goal is to find a non-zero integer linear combina-
tion h(x, y) of the polynomials ti jk(x, y), with small coefficients. Then h(x0, y0) = 0
mod ϕm , and, using again Howgrave-Graham’s lemma, if the coefficients of h(x, y)
are sufficiently small, then h(x0, y0) = 0 over the integers. Then one can define the
polynomial h′(x) = (p0 · X + x)m+b · h(x, N/(p0 · X + x)− q0 · Y). Since h(x, y) is
not identically zero and h(x, y) contains only x powers and y powers, the polynomial
h′(x) cannot be identically zero. Moreover, h′(x0) = 0, which enables us to recover x0

using any standard root-finding algorithm, and eventually the primes p and q. Given a
polynomial h(x, y) = ∑

hi j x i y j , we denote by ‖h(x, y)‖ the Euclidean norm of the
vector of its coefficients hi j .

Lemma 6 (Howgrave–Graham). Let h(x, y) ∈ Z[x, y] which is the sum of at most
ω monomials. Suppose that h(x0, y0) = 0 mod ϕm where |x0| ≤ X , |y0| ≤ Y and
‖h(x X, yY)‖ < ϕm/

√
ω. Then h(x0, y0) = 0 holds over the integers.

Proof. We have

|h(x0, y0)| =
∣∣∣∑ hi j x

i
0 yi

0

∣∣∣ = ∣∣∣∣∑ hi j X i Y j
(x0

X

)i (y0

Y

) j
∣∣∣∣

≤
∑∣∣∣∣hi j X i Y j

(x0

X

)i (y0

Y

) j
∣∣∣∣ ≤∑∣∣hi j X i Y j

∣∣
≤ √ω‖h(x X, yY)‖ < ϕm .

Since h(x0, y0) = 0 mod ϕm , this gives h(x0, y0) = 0.

We consider the lattice L spanned by the coefficient vectors of the polynomials
ti jk(x X, yY). One can see that these coefficient vectors form a triangular basis of a
full-rank lattice of dimension ω = 2m + a + b + 1 (for an example, see Fig. 2). The
determinant of the lattice is then the product of the diagonal entries, which gives

det L = X (m+a)(m+a+1)/2Y (m+b)(m+b+1)/2U m(m+1). (9)

As previously, using lattice reduction, one obtains a non-zero polynomial h(x, y) such
that

‖h(x X, yY)‖ ≤ 2(ω−1)/4 · (det L)1/ω.

In order to apply Lemma 6, it is therefore sufficient to have that

2(ω−1)/4 · (det L)1/ω < ϕm/
√
ω.

As in the previous section, using
√
ω ≤ 2(ω−1)/2, ϕ > N/2 andω−1 ≥ m, it is sufficient

to have

det L ≤ N m·ω · 2−2·ω·(ω−1). (10)

RSA Secret Key and Factoring 47

1 x y x2 y2 x3 y3 x4 x5 y4

t000(x X, yY) U 3

t100(x X, yY) ∗ U 3 X
t001(x X, yY) ∗ ∗ U 2Y
t101(x X, yY) ∗ ∗ ∗ U 2 X2

t002(x X, yY) ∗ ∗ ∗ ∗ UY 2

t102(x X, yY) ∗ ∗ ∗ ∗ ∗ U X3

t003(x X, yY) ∗ ∗ ∗ ∗ ∗ ∗ Y 3

t103(x X, yY) ∗ ∗ ∗ ∗ ∗ ∗ ∗ X4

t203(x X, yY) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ X5

t013(x X, yY) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Y 4

Fig. 2. The lattice L of the polynomials ti jk(x X, yY) for m = 3, a = 2 and b = 1. The symbol ’∗’ correspond
to non-zero entries whose value is ignored.

We write a = �(u−1) ·m−1� and b = �(v−1) ·m−1� for some reals u, v. We obtain
that (m + a)(m + a + 1) ≤ m2u2 and (m + b)(m + b+ 1) ≤ m2v2. We write X = N δx

and Y = N δy for some reals δx , δy . From (9) and U ≤ Nβ we obtain that

log(det L)

log N
≤ m2 ·

(
δx · u2

2
+ δy · v

2

2
+ β

)
+ β · m, (11)

where log denotes the logarithm in base 2. Moreover, using m(u+v)−3 < ω ≤ m(u+v),
we have

log(N m·ω · 2−2·ω·(ω−1)) ≥ m (m(u + v)− 3) log N − 2m2(u + v)2. (12)

Therefore, combining inequalities (10), (11) and (12), we obtain the following sufficient
condition:

u + v − δx
u2

2
− δy

v2

2
− β ≥ β + 3

m
+ 2

log N
(u + v)2.

The function u → u − δx · u2/2 is maximal for u = 1/δx , with a maximum equal to
1/(2δx). The same holds for the function v→ v− δy · v2/2. Therefore, taking u = 1/δx

and v = 1/δy , we obtain the sufficient condition

1

2δx
+ 1

2δy
− β ≥ β + 3

m
+ 2

log N

(
1

δx
+ 1

δy

)2

. (13)

For X = N δx and Y = N δy satisfying the previous condition and given p0 and q0 such
that p = p0 · X + x0 and q = q0 · Y + y0, the algorithm recovers x0, y0 and then p, q
in time polynomial in (m, log N). In the following we show that p0 and q0 can actually
be recovered by exhaustive search, while remaining polynomial time in log N .

Let ε be such that 0 < ε ≤ δ/2. We have the following inequalities:

1

δ − ε =
1

δ(1− ε/δ) ≥
1

δ

(
1+ ε

δ

)
and

1

1− δ − ε ≥
1

1− δ
(

1+ ε

1− δ
)
.

From 2βδ(1− δ) ≤ 1, we obtain

2β ≤ 1

δ(1− δ) =
1

δ
+ 1

1− δ .

48 J.-S. Coron and A. May

Combining the three previous inequalities, we get

1

δ − ε +
1

1− δ − ε − 2β ≥ ε
(

1

δ2
+ 1

(1− δ)2
)
.

Therefore, taking δx = δ − ε and δy = 1 − δ − ε, we obtain from (13) the following
sufficient condition:

δ

2
≥ ε ≥ 2 ·

(
β + 3

m
+ 2

log N

(
1

δ − ε +
1

1− δ − ε
)2
)(

1

δ2
+ 1

(1− δ)2
)−1

.

Moreover, since 0 < ε ≤ δ/2 and δ < 1
2 , we have

1

δ − ε ≤
2

δ
and

1

1− δ − ε ≤ 4.

Therefore, this gives the following sufficient condition:

δ

2
≥ ε ≥ 2 ·

(
β + 3

m
+ 2

log N

(
2

δ
+ 4

)2
)(

1

δ2
+ 1

(1− δ)2
)−1

.

Taking m = �log N�, this condition can always be satisfied for large enough log N .
Taking the corresponding lower bound for ε, we obtain ε = O(1/log N), which gives
N ε ≤ C for some constant C . Therefore, we obtain that p0 and q0 are upper-bounded
by the constants C and 2C :

p0 ≤ p

X
≤ N δ−δx ≤ N ε ≤ C,

q0 ≤ q

Y
≤ 2N 1−δ−δy ≤ 2N ε ≤ 2C.

This shows that p0 and q0 can be recovered by exhaustive search while remaining
polynomial time in log N . The total running time of our algorithm is then dominated
by running the lattice reduction algorithm on a lattice basis of dimension ω = O(m)
and entries bounded by B = NO(m). Therefore, using LLL, our algorithm recovers the
factorization of N in time O(log12 N). If one uses the L2 variant instead of LLL, one
obtains a running time of O(log9 N).

6. Practical Experiments

We have implemented the two algorithms of Sections 4 and 5, using the LLL imple-
mentation of Shoup’s NTL library [12]. First, we describe in Table 1 the experiments
with prime factors of equal bit-size, with e · d � N 2. We assume that we are given the �
high-order bits of s = p + q; the observed running time for a single execution of LLL
is denoted by t . The total running time for factoring N is then estimated as T � 2� · t .

RSA Secret Key and Factoring 49

Table 1. Bit-size of N , number of bits to be exhaustively searched,
lattice dimension, observed running time for a single LLL-reduction
t , and estimated total running time T , when e · d � N 2. The ex-
periments were performed on a 1.6 GHz PC running under Windows

2000/Cygwin.

N (bits) Bits given Dimension t T
512 bits 14 bits 21 70 s 13 days
512 bits 10 bits 29 7 min 5 days
512 bits 9 bits 33 16 min 5 days

1024 bits 26 bits 21 7 min 900 years
1024 bits 19 bits 29 40 min 40 years
1024 bits 17 bits 33 90 min 23 years

We obtain that the factorization of N given (e, d) would take a few days for a 512-bit
modulus, and a few years for a 1024-bit modulus. This contrasts with Miller’s algorithm
whose running time is only a fraction of a second for a 1024-bit modulus.

The experiments with prime factors of unbalanced size and with e · d � N 2 are
summarized in Table 2. In this case it was not necessary to know the high-order bits of
s = p + q , and one recovers the factorization of N after a single application of LLL.
The results in Table 2 confirm that the factorization of N is easier when the prime factors
are unbalanced.

7. Conclusion

We have shown the first deterministic polynomial-time algorithm that factors an RSA
modulus N given the pair of public and secret exponents e and d, provided that e·d < N 2.
The algorithm is a variant of Coppersmith’s technique for finding small roots of uni-
variate modular polynomial equations. We have also provided a generalization to the
case of unbalanced prime factors. Finally, we note that the problem of the determin-
istic polynomial-time equivalence between finding d and factoring N is not entirely
solved in this paper, because finding an algorithm for e · d > N 2 remains an open
problem.

Table 2. Bit-size of the RSA modulus N such
that p < N δ , lattice dimension, observed run-
ning time for factoring N , when e · d � N 2.
The experiments were performed on a 1.6 GHz

PC running under Windows 2000/Cygwin.

N (bits) δ Dimension t
512 0.25 16 2 s
512 0.3 29 2 min

1024 0.25 16 15 s
1024 0.3 29 10 min

50 J.-S. Coron and A. May

References

[1] D. Boneh, G. Durfee and N.A. Howgrave-Graham, Factoring n = pr q for large r , Proceedings of Crypto
’99, pp. 326–337. LNCS, Vol. 1666. Springer-Verlag, Berlin, 1999.

[2] D. Coppersmith, Small solutions to polynomial equations and low exponent vulnerabilities, Journal of
Cryptology, Vol. 10, No. 4, pp. 223–260, 1997.

[3] G. Durfee and P. Nguyen, Cryptanalysis of the RSA schemes with short secret exponent from Asiacrypt
’99, Proceedings of Asiacrypt 2000, pp. 14–29. LNCS, Vol. 1976. Springer-Verlag, Berlin, 2000.

[4] N. Howgrave-Graham, Finding small roots of univariate modular equations revisited, Proceedings of
Cryptography and Coding, pp. 131–142. LNCS, Vol. 1355. Springer-Verlag, Berlin, 1997.

[5] N. Howgrave-Graham, Approximate integer common divisors, Proceedings of CALC ’01, pp. 51–66.
LNCS, Vol. 2146. Springer-Verlag, Berlin, 2001.

[6] A. K. Lenstra, H. W. Lenstra and L. Lovász, Factoring polynomials with rational coefficients, Mathema-
tische Annalen, Vol. 261, pp. 513–534, 1982

[7] A. May, Computing the RSA secret key is deterministic polynomial time equivalent to factoring, Pro-
ceedings of Crypto 2004, pp. 213–219. LNCS, Vol. 3152. Springer-Verlag, Berlin, 2004.

[8] G. L. Miller, Riemann’s hypothesis and tests for primality, Proceedings of the Seventh Annual ACM
Symposium on the Theory of Computing, pp. 234–239, 1975.

[9] P. Nguyen and D. Stehlé, Floating-point LLL revisited, Proceedings of Eurocrypt 2005, pp. 215–233.
LNCS, Vol. 3494. Springer-Verlag, Berlin, 2005.

[10] P.Q. Nguyen and J. Stern, The two faces of lattices in cryptology, Proceedings of CALC ’01, pp. 146–180.
LNCS, Vol. 2146. Springer-Verlag, Berlin, 2001.

[11] R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key cryp-
tosystems, Communications of the ACM, Vol. 21, No. 2, pp. 120–126, 1978

[12] V. Shoup, NTL: A Library for Doing Number Theory, available online at http://www.shoup.net/
ntl/index.html

