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Abstract. Many applications rely on the security of their random num-
ber generator. It is therefore essential that such devices be extensively
tested for malfunction. The purpose of a statistical test is to detect spe-
cific weaknesses in random sources.

Maurer’s universal test is a very common randomness test, capable of
detecting a wide range of statistical defects. The test is based on the
computation of a function which is asymptotically related to the source’s
entropy, which measures the effective key-size of block ciphers keyed by
the source’s output.

In this work we develop a variant of Maurer’s test where the test function
is in theory exactly equal to the source’s entropy, thereby enabling a
better detection of defects in the tested source.

1 Introduction

Random number generators are probably the most basic cryptographic prim-
itives. They are widely used for block cipher, public-key (e.g. RSA-moduli),
keystream generation and as passwords sources. In some algorithms (e.g. DSA)
or protocols (e.g. zero-knowledge), random numbers are intrinsic to the compu-
tation. In all these applications, security tightly depends on the randomness of
the source.

A pseudo-random generator is a deterministic polynomial time algorithm
that expands short seeds into longer bit sequences, which distribution is po-
lynomially-indistinguishable from the uniform probability distribution. In other
words, the output bits must appear to be statistically independent and uniformly
distributed. The first pseudo-random generator was constructed and proved by
Blum and Micali, under the assumption that the discrete logarithm problem is
intractable on a non-negligible fraction of instances [2]. In the light of their prac-
tical and theoretical value, constructing pseudo-random generators is a major
concern. Procedures for ensuring the security of random number generators are
becoming of great importance with the increased usage of electronic communi-
cation [4].

It is nevertheless difficult to give a general and reliable measure of the cryp-
tographic quality of a pseudo-random sequence. In practice, many different tests



are carried on sequences generated by the random source to evaluate its perfor-
mance. These practical tests are divided into two groups : complexity tests and
statistical tests. Complexity tests evaluate how much of a generated string is re-
quired to reconstruct the whole string [8] while statistical tests evaluate whether
the generator’s behaviour matches a specific probabilistic model. We refer the
reader to [5] for a general treatment of randomness tests.

Maurer’s universal test is based on the stationary ergodic source with fi-
nite memory statistical model [6]. This model allows the computation of the
source’s entropy, which, in turn, measures the number of bits of ”unpredictabil-
ity”. Failure to provide such unpredictability can weaken severely the security
of a cryptosystem, as an attacker could use the reduction in entropy to speed-up
exhaustive search on an otherwise secure encryption algorithm.

However, Maurer’s universal test only provides an asymptotic measure of
the source’s entropy. In this paper, we show that with a simple transformation,
Maurer’s test function can yield the source’s entropy. Therefore the new test
enables a more accurate detection of defects in the tested source.

The paper is organized as follows: we first recall the basic definitions of the
stationary ergodic source model and the asymptotic relation between Maurer’s
test function and the source’s entropy. Then we propose a simple transformation
of Maurer’s test so that the test function yields the source’s entropy. Then we
study the distribution of the modified test and give a sample program. Finally,
we compare the performance of the two tests with respect to different random
sources.

2 Statistical model for a random source

2.1 Definition

Consider an information source S emitting a sequence Uy, Us, Us, ... of binary
random variables. S is a finite memory source if there exists a positive integer
M such that the conditional probability distribution of U, given Uy, ..., U, _1,
only depends on the last M bits emitted [6]:

Py, (Wnlur -t 1) = Py, sy Unoy (Un | Un—ar U 1)

for n > M and for every binary sequence [u1, ..., u,] € {0,1}". The smallest
M is called the memory of the source. The probability distribution of U,, is thus
determined by the source’s state X,, = [Un—m, - ..,Un—1] at step n.

The source is stationary if it satisfies :

Py, x, (ulo) = Py, |5, (u|o)
for all n > M, for u € {0,1} and o € {0, 1}.

The state-sequence of a stationary source with memory M forms a finite
Markov chain : the source can be in a finite number (actually 2M) of states o;,



0 <4 <2M —1, and there is a set of transition probabilities Pr(o;|0;), expressing
the odds that if the system is in state o; it will next go to state o;. For a general
treatment of Markov chains, the reader is referred to [1].

For a general Markov chain with r states, let Pz-(n) be the probability of being
in state o; at time ¢ = n and let P(™ be the ”state distribution vector” at time
n,ie, P =[P™ . p™).

Let II be the transition matrix of the chain, i.e., IT; ; = Pr(oj|o;) where II; ;
is the element in row i and column j of II.

For state o; at time n the source may originate from any state o; at time
n — 1 and thus :

P\" = Pr(o;]o1)P" " + ...+ Pr(olo,) PV

which becomes in matrix notations :

pn) — pla=1)p7

For the class of ergodic Markov processes the probabilities Pj(") of being in
state o; after n emitted bits, approach (as n — oo) an equilibrium P; which

must satisfy the system of r linear equations :

S P=1

J=1

P; =% P; Pr(ojlo;) for1<j<r-—1
i=1

In the case of a source with memory M, each of the 2™ states has at most
two successor states with non-zero probability, depending on whether a zero or
a one is emitted. The transition probabilities are thus determined by the set of
conditional probabilities p; = Pr(1]o;), 0 < i < 2M — 1 of emitting a one from
each state ;. The transition matrix I7 is thus defined by :

D if j = 2i + 1 mod 2™
I j =¢ 1—p; if j=2i mod 2M
0 otherwise

The entropy of state o; is then H; = H(p;), where H is the binary entropy
function :

H(z) = —zlogyz — (1 — z)logy(1 — z)

The source’s entropy is then the average of the entropies H; (of states o;)
weighted with the state-probabilities F; :

Hs =) PH;



Let us now assume that the random source is used to generate the N-bit key
of a block cipher and let n(q) be the number of N-bit keys that must be tested
(in decreasing probability order) in order to reach an overall success probability
of ¢. Shannon proved (see [7], theorem 4) that for ¢ 20 and ¢ # 1 :

]
lim 1082 n(q)

N—oo

= Hg

This shows that when an ergodic stationary source is used to key a block
cipher, the entropy Hg is closely related to the number of keys an attacker has
to try in order to find the right key. In other words, the entropy measures the
effective key-size of a cryptosystem keyed by the source’s output.

2.2 Probability of a bit sequence
In this section we compute the probability of emitting a bit sequence, which

will be used in section 7.2. Starting from a state distribution vector W =
[Wh,...,W,], the probability of emitting a bit b € {0,1} is :

Pr[p|W] = ZWiHi,j (1)

where the sum is taken over the couples {i,j} for which b is emitted during
the transition from o; to o;.
Let I1(b) be the transition matrix corresponding to an emitted bit b :

() ; = IT; ; if bit b is emitted from o; to o}
"1 710 otherwise

It follows that IT = I1(0) + II1(1) and equation (1) becomes :

]
Pr[p|W] = WI(b)U where U = | :
1]

By iteration, the probability of emitting the sequence b = [by,...,b,] from
the state distribution vector W is :

Pr[b|W] = WIT (bo)IT(by) ... T (b,)U

and with IT(b) = II(bo)II(b1)...II(b,) the probability of appearance of se-
quence b is :

Pr[b] = PII(b)U



3 Maurer’s universal test and the source’s entropy

3.1 Maurer’s test

Maurer’s universal test [6] takes as input three integers {L, @, K} and a (Q+K) x
L = N-bit sample sV = [s1, ..., sn] generated by the tested source. The param-
eter L is chosen from the interval [6, 16]. The sequence s” is partitioned into non-

denote the n-th L-bit block of s™.

The first () blocks of the sequence are used to initialize the test; () should be
chosen to be at least 10 x 2 in order to have a high likelihood that each of the
2% blocks of L bits occurs at least once in the first QQ blocks. The remaining K
blocks are used to compute the test function fr,, : BN - R :

1 Q+K
fTU (QN) = ? Z lOgQ An(gN) (2)
n=Q+1
where B denotes the set {0,1} and A,,(s") the minimum distance between
the n-th block and any similar preceding block :

n if Vi <n, by i(s)# bn(sY)
An(sN) =
min{i:i > 1,b,(sV) = b, ;(sV)} otherwise.

(3)

3.2 Asymptotic entropy relation

As will be justified later, Maurer’s test function is closely related to the source’s
entropy. It follows that Maurer’s universal test is able to detect any of the sta-
tistical defects that can be modeled by an ergodic stationary source with finite
memory.

Let K, be the entropy of L-bit blocks, Gy, the per-bit entropy of blocks of
L bits and Fy, the entropy of the L-th order approximation of the source (see
Shannon [7]) :

K =~ ) Prlb]log, Pr[p] @
bEBL
Fo=— 3 Pilb.jllog, Pl ©)
beBL-1, jEB
L
Gr=" =72h o

In [3] we proved the following asymptotic relation between the expectation of
Maurer’s test function for a stationary ergodic source S outputting a sequence
UL of random binary variables and the entropy of L-bit blocks of S :



oo
lim |E[fr, (U] - KL] —ct / e Slog, € dé = —0.8327462 (7)
L—oo 0

In the next section we improve the performance of Maurer’s test by modifying
the test function so that its expectation yields the source’s entropy, instead of
having an asymptotical relation.

4 TImproving Maurer’s universal test

Maurer’s test function is defined as the average of the logarithm to the base two
of the minimum distances between two similar blocks. Here we generalize the
definition of the test parameter to any function g : IN — IR of the minimum
distance between two similar blocks :

1 Q+K
M, =2 3 9(An(s™)
n=Q+1

The mean of ff (U§) for S is given by :

E[ff, (US)] = Pr[A, = i]g(i)
i>1
with
Pr[A, (UL) = > Prlby=bby1 #b... by ip1 #bbai=0b (8)
beBL

If we assume that the L-bit blocks are statistically independent, the above
probability factors into :

Pr[An( = ) Prp)* x (1 - Prfp])"~
beBL
and we get :
Elfr,(U§)] = Y Pr[b] x 7,(Pr[b]) (9)
be BT
where :
Yolw) =2 (1—x) g(i)
i=1

Equation (9) shows that the mean value of the generalized test may be inter-
preted as the expectation of a random variable W = W (X)) which hits the value



4 (Pr[b]) with probability Pr[b]. However, the entropy of L-bit blocks Ky, (equa-
tion (4)) can be viewed as the expectation of a random variable W' = W'(X)
which takes the value —log, (Pr[b]) with probability Pr[b].

In order to determine the expectation of the test with the entropy of L-bit
blocks, we have to solve the following equation :

Yg(7) = —logy(x) (10)
Letting t = 1 — z, equation (10) yields :
N
(1—t)zt g(i) = —log,(1 — 1) = log 7

and we get :

{9(1)—0

9(i+1) = g(i) = sppry  fori>1,

Hence we can define a modified version of Maurer’s test which test parameter
fﬁj(sN) is computed using :

H (N 1 pasy N
LN =2 2 aAas™) ()

— 1
log 2:: k (12)

and equation (3) for the definition of 4,,(s").
The mean value of this new test function taking as input a sequence Uév

generated by an ergodic stationary source S is equal to the entropy of L-bit
blocks of S :

Elfg, (US)) = K&, (13)

5 Distribution of the modified test parameter

To tune the test’s rejection rate, one must first know the distribution of fjfff (RN),
where R denotes a sequence of N bits emitted by a binary symmetric source
(BSS, i.e. a truly random source). A sample sV would then be rejected if the
number of standard deviations separating its ff! (s) from E[ffl (RN)] exceeds
a reasonable constant.

In this section we compute the mean and standard deviation of the modified
test parameter for a BSS under the reasonable assumption that @ — oo (in
practice, Q should be larger than 10 x 2F).

From equations (11 and 12) the expected value E[ff] (R")] of the test pa-
rameter fjfff for a BSS is given by :



1 1
E[ff (RN = —— Y Pr[A4,(RV) =i - 14
[fr, (B™)] og(2) ; r[An (R7) =i 25 (14)
Using equation (8) we have for a BSS :
Pr[A,(RN) =i =2""1-2"")"" fori>1 (15)

and with equation (14) :

H (pN 27 & Lyi—1 « !
B (BY) = o -2 Y=L
=2 k=1
Thus the mean of the test parameter for a truly random source is simply
equal to L, the length of the blocks in the tested sequence. Note that this result
is straightforward considering equation (13) since the entropy K, of L-bit blocks
is equal to L for a truly random source.

For statistically independent random variables the variance of a sum is the
sum of variances but the A, -terms in (11) are heavily inter-dependent; of course,
the same holds for Maurer’s original test function (2). Consequently, Maurer
introduced in [6] a corrective factor ¢(L, K) by which the standard deviation
of fr, is reduced compared to what it would have been if the A, -terms were
independent :

Var[log, A, (RN)]
K
Similarly, we can define ¢” (L, K) to be the corrective factor by which the
standard deviation of the modified test parameter fﬁj is reduced compared to
what it would have been if the A,-terms were independent :

Var[fTU (RN)] = C(LaK)Q X

Var[g(An (RY))]
K
The variance of the A,-terms can be easily computed using equation (15) :

Var[f7 (RV)] = (L, K)? x

Varlg(4, (RV)] = El(a(An (BV)?] — (Ela(Aa(BV))])

B [e's) i i—1 1 9 )
=2 Liz:;(liQ by (kz:lklog@)) —L

In [3] we have computed the exact value of the factor ¢(L, K), while only a
heuristic estimate of ¢(L, K) was given in [6].

The expression of ¢ (L, K) is very similar to the one of ¢(L, K) given in
[3] as one should simply replace the terms in the formulae containing log, i by :

1 i—1

" log(2)

ESIIES

g(i)

=~
Il

1



As in [3], the factor ¢ (I, K) can be approximated for K > 33 x 2% by :

e(L) x 2

K

and Var[g(4, (RN))], d(L) and e(L) are listed in table 1 for 3 < L < 16 and
L — oo.

This approximation is sufficient because the test must be performed with
K > 1000 x 2",

To summarize, the distribution of f;,f{](RN) can be approximated by the
normal distribution of mean E[fff (RN)] = L and standard deviation :

(L, K)? =d(L) +

0 = (L, K)y/Varlg(4,(RM))]/ K

Varlg(A (B )] d(D) o)
2.5769918 0.3313257 | 0.4381809
2.9191004 0.3516506 | 0.4050170
3.1291382 0.3660832 | 0.3856668
3.2547450 0.3758725 | 0.3743782
3.3282150 0.3822459 | 0.3678269
3.3704039 0.3862500 | 0.3640569
3.3942629 0.3886906 | 0.3619091
3.4075860 0.3901408 | 0.3606982

11 3.4149476 0.3909846 | 0.3600222

12 3.4189794 0.3914671 | 0.35964384

13 3.4211711 0.3917390 | 0.3594433

14 3.4223549 0.3918905 | 0.3593316

15 3.4229908 0.3919740 | 0.3592712

16 3.4233308 0.3920198 | 0.3592384

00 3.4237147 0.3920729 | 0.3592016

pry
OwWwo N O A Wl

Table 1. Var[g(A,(R"))], d(L) and e(L) for 3 < L < 16 and L — oo

A source is then rejected if and only if either f (sV) <ty or ff (sV) > t,
where the thresholds ¢; and ¢, are defined by :

ty =L —yo and ty =L+ yo,

where y is the number of standard deviations o from the mean allowed for
f%}(sN). The parameter y must be chosen such that N'(—y) = p/2, where p
is the rejection rate expressing the probability that a sequence emitted by a
truly random source will be rejected. N'(z) is the integral of the normal density
function :



N(z) = \/%_W/T e € 2q¢

[6] recommends to choose the parameters L between 6 and 16, Q ~ 10 x 2%
and K ~ 1000 x 2", and to take a rejection rate p ~ 0.01,...,0.001, obtained
by setting y = 2.58 or y = 3.30 respectively. We suggest to keep these bounds
for the new test.

6 A sample program

As pointed out in [6], the test can be implemented efficiently by using a table
tab of size V = 2 that stores for each L-bit block the time index of its most
recent occurrence. At step n the program gets the L-bit block b, (s") from the
random source, computes the minimum distance A,(s") < n — tab[b,(s"V)],
adds g(A,(s")) to an accumulator and updates the most recent occurrence
table with tab[b,(sV)] + n.

To improve efficiency, the coefficients computed by the function g(i) are ap-
proximated for large i using (16). For i > 23 the error is smaller than 10~5.

n

1 1
Z;,:logn—l—v%——

1
, o  12n2 TV
i=1

(=) (16)

where v is Euler’s constant :

v = —/ e "logx dx ~ 0.577216
0

The sample program calls the function fsource(L) which returns an L-bit
integer produced by the random source.

double fcoef(int i)
{
double 1=log(2),s=0,C=-0.8327462;
int k,j=i-1,1imit=23;
if (i<limit) {
for(k=1;k<i;k++) { s=s+1./k; }
return s/1;
}

return log(j)/1-C+(1./(2%j)-1./(12.%j*j))/1;

}

double NewUniversalTest(int L,int Q, int K)

{
int V=(1 << L),i,n,k;
int *tab=new int[V];



double sum=0;

for (i=0;i<V;i++) {
tab[i]=0;
}

for(n=1;n<=Q;n++) {
tab[fsource(L)]=n;
}

for (n=Q+1;n<=(Q+K) ;n++) {
k=fsource(L);
sum=sum+fcoef (n-tab[k]) ;
tab[k]=n;

}

delete tab;

return sum/K;

7 A comparative analysis of the two tests

In section 4 we assumed the block sequences of length L to be statistically
independent, i.e. that the probability of appearance of a block does not depend
on the preceding ones. But this assumption is valid only if the tested source is a
binary memoryless source BMS,, (random binary source which emits ones with
probability p and zeroes with probability 1 — p). In section 7.1 we compare the
performance of Maurer’s test and the modified test for a BMS,.

In the general case of a source with finite (non-zero) memory, the blocks are
not statistically independent and the expectation of the modified test function
is not equal to the source’s entropy of L-bit blocks. However, if the statistics
of the tested random source differ from the statistics of a truly random source,
the tested source will be rejected with high probability. Only random sources
with small statistical bias will pass the test. As shown in section 7.2, this small
bias will still make the difference between the expectation of the modified test
function and the source’s entropy negligible.

7.1 Comparison with respect to a BMS,,.

In this section we compute the expectation of Maurer’s test function for a BMS,
and compare it with the expectation of the modified test function and with the
actual source’s entropy. The expectation of Maurer’s test function for a BMS,
with output sequence UgMSp is given by :

E[fr,( UBMS ZPT UBMS ) = i]logy (i)

while equation (8) and :



Pr(b, (URyig, ) = b] = p* (1 = p)"
where w(b) denotes the Hamming weight of b € {0, 1}F) yield :
( g g y

L

Bl Us )1 = X (3 )0 P falka =) an)

k=0

where

alz) == Z(l —x)"logyi
i=1
One can show that :

gl
log 2

>

lim o (z) + log, ] = - c (18)

where « is Euler’s constant.
From equations (17 and 18) we recover the result given in [6] :

,}meE[fTU(UgMSP) —LxH(@p)]=C

Note that this result is straightforward using equation (7) as K, = L x H(p)
for a BMS,,.

In the case of a BMS, the assumption of statistical independence between
the blocks in section 4 is valid and thus equation (13) leads to :

E[f7i, (Ugs,)) = L x H(p) (19)

Equation (19) shows that the modified test is more accurate than the orig-
inal one, as it measures the entropy of a BMS, whereas the relation is only
asymptotical in the original one. This is illustrated in table 2, which summarizes
the expectation of Maurer’s test function, the expectation of the modified test
function, and the entropy of a BMS,, for L = 4, L = 8, L = 16 and several
values of p.

7.2 Comparison in the general case.
The mean of the modified test for an ergodic stationary source S is given by :

Elf7, U = Y Zpr[b(ﬁb)iqb]i klolg(Q)

beBL i>2 k=1

where Pr[b(—b)i~'b] denotes Pr[b, = b,by, 1 #b, ..., by_it1 # b, by = b].
Using the fact that Pr[b(=b){] = Pr[b(=b)ib] + Pr[b(=b)"+!], we get :



I » [ Blfr Ogys 1~ C | BUE, Ogms ) | £ * H®)
41 0.5 4.14397 4.00000 4.00000
4] 0.4 4.04187 3.88380 3.88380
4] 0.3 3.73034 3.52516 3.52516
8| 0.5 8.01641 8.00000 8.00000
8| 0.4 7.78833 7.76760 7.76760
8| 0.3 7.08957 7.05033 7.05033
16| 0.5 16.00012 16.00000 16.00000
16| 0.4 15.53542 15.53521 15.53521
16| 0.3 14.10161 14.10065 14.10065

Table 2. Comparison between the expectation of Maurer’s test E[fTU(UgMS )], the
P

expectation of the modified test E[f%f(UgMS )] and the L-bit block entropy of a
P
BMS,..

1
ilog(2)

E[f, U] = > Y Prib(-b)’]
beBL i>1
From section 2.2 we obtain the expectation of the modified function in the
general case of an ergodic stationary source S with finite memory :

1

E[f%;(UéV)] = Z ZPU([)) (HL — H(b))iU.l 5
be{0,1}L i>1 1 10g

where IT is the transition matrix of S and I1(b) the transition matrix asso-
ciated to sequence b as defined in section 2.2.

Table 3 gives E[ff (U)] for an STP,, a random binary source for which a
bit is followed by its complement with probability p. An STP,, is thus a source
with one bit of memory and two equally-probable states. It follows (5 and 6) that
Fy=H(1/2)=1,Hs = H(p), and K = 14+ (L —1)H(p). Table 3 compares the
mean of Maurer’s function, the mean of the modified function and the entropy
of L-bit block of an STP, for L. = 4 and L = 8 and various values of p. As
expected, the new test is closer to the source’s entropy than the original one.

Moreover, the difference between the expectation of the modified test function
and the source’s entropy becomes negligible when p is close to 0.5. This is due to
the fact that the L-bit blocks become statistically independent as the source’s
bias disappears. Extensive experiments performed with random sources with
memory bigger than one all led the same result.

8 Conclusion and further research

We have introduced a modification in Maurer’s universal test that improves its
performance. The modification is very simple to implement (a few lines of code)



Ll p E[fTu(UéVTpp] —-C| Elfz, (UéVTpp)] (L-—1)H(p)+1
4/ 0.5 4.14397 4.00000 4.00000
4| 0.49 4.14321 3.99914 3.99913
4| 0.45 4.12488 3.97831 3.97832
4] 0.4 4.06677 3.91196 3.91285
41 0.3 3.82175 3.62743 3.64387
8| 0.5 8.01641 8.00000 8.00000
8| 0.49 8.01443 7.99798 7.99798
8| 0.45 7.96671 7.94942 7.94942
8 0.4 7.81679 7.79665 7.79665
8l 0.3 7.20403 7.16848 7.16904

Table 3. Numerical comparison between the expected value of Maurer’s original test
E|fr, (UéVTP ], the expected value of the modified test E[f7:, (UéVTP ] and the L-bit
P P

block entropy of an STP,,.

and does not increase the computation time. The new test is more closely related
to the source’s entropy and therefore enables a more accurate detection of the
possible defects in the tested source.

We have not found an analytic expression of the modified test’s variance,
although the expectation for a truly random source is simply equal to the block
length. In addition, an interesting generalization would consist of extending the
exact correspondence between the modified test function and the source’s en-
tropy to the general class of stationary ergodic random sources with finite (non
necessarily zero) memory.
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