
ON THE SECURITY OF RANDOM SOURCESJean-S�ebastien CoronEcole Normale Sup�erieure Gemplus Card International45 rue d'Ulm 34 rue GuynemerParis, F-75230, France Issy-les-Moulineaux, F-92447, Francecoron@clipper.ens.fr coron@gemplus.comAbstract. Many applications rely on the security of their random num-ber generator. It is therefore essential that such devices be extensivelytested for malfunction. The purpose of a statistical test is to detect spe-ci�c weaknesses in random sources.Maurer's universal test is a very common randomness test, capable ofdetecting a wide range of statistical defects. The test is based on thecomputation of a function which is asymptotically related to the source'sentropy, which measures the e�ective key-size of block ciphers keyed bythe source's output.In this work we develop a variant of Maurer's test where the test functionis in theory exactly equal to the source's entropy, thereby enabling abetter detection of defects in the tested source.1 IntroductionRandom number generators are probably the most basic cryptographic prim-itives. They are widely used for block cipher, public-key (e.g. RSA-moduli),keystream generation and as passwords sources. In some algorithms (e.g. DSA)or protocols (e.g. zero-knowledge), random numbers are intrinsic to the compu-tation. In all these applications, security tightly depends on the randomness ofthe source.A pseudo-random generator is a deterministic polynomial time algorithmthat expands short seeds into longer bit sequences, which distribution is po-lynomially-indistinguishable from the uniform probability distribution. In otherwords, the output bits must appear to be statistically independent and uniformlydistributed. The �rst pseudo-random generator was constructed and proved byBlum and Micali, under the assumption that the discrete logarithm problem isintractable on a non-negligible fraction of instances [2]. In the light of their prac-tical and theoretical value, constructing pseudo-random generators is a majorconcern. Procedures for ensuring the security of random number generators arebecoming of great importance with the increased usage of electronic communi-cation [4].It is nevertheless di�cult to give a general and reliable measure of the cryp-tographic quality of a pseudo-random sequence. In practice, many di�erent tests



are carried on sequences generated by the random source to evaluate its perfor-mance. These practical tests are divided into two groups : complexity tests andstatistical tests. Complexity tests evaluate how much of a generated string is re-quired to reconstruct the whole string [8] while statistical tests evaluate whetherthe generator's behaviour matches a speci�c probabilistic model. We refer thereader to [5] for a general treatment of randomness tests.Maurer's universal test is based on the stationary ergodic source with �-nite memory statistical model [6]. This model allows the computation of thesource's entropy, which, in turn, measures the number of bits of "unpredictabil-ity". Failure to provide such unpredictability can weaken severely the securityof a cryptosystem, as an attacker could use the reduction in entropy to speed-upexhaustive search on an otherwise secure encryption algorithm.However, Maurer's universal test only provides an asymptotic measure ofthe source's entropy. In this paper, we show that with a simple transformation,Maurer's test function can yield the source's entropy. Therefore the new testenables a more accurate detection of defects in the tested source.The paper is organized as follows: we �rst recall the basic de�nitions of thestationary ergodic source model and the asymptotic relation between Maurer'stest function and the source's entropy. Then we propose a simple transformationof Maurer's test so that the test function yields the source's entropy. Then westudy the distribution of the modi�ed test and give a sample program. Finally,we compare the performance of the two tests with respect to di�erent randomsources.2 Statistical model for a random source2.1 De�nitionConsider an information source S emitting a sequence U1; U2; U3; : : : of binaryrandom variables. S is a �nite memory source if there exists a positive integerM such that the conditional probability distribution of Un, given U1; : : : ; Un�1,only depends on the last M bits emitted [6]:PUnjU1:::Un�1(unju1 : : : un�1) = PUnjUn�M :::Un�1(unjun�M : : : un�1)for n > M and for every binary sequence [u1; : : : ; un] 2 f0; 1gn. The smallestM is called the memory of the source. The probability distribution of Un is thusdetermined by the source's state �n = [Un�M ; : : : ; Un�1] at step n.The source is stationary if it satis�es :PUnj�n(uj�) = PU1j�1(uj�)for all n > M , for u 2 f0; 1g and � 2 f0; 1gM .The state-sequence of a stationary source with memory M forms a �niteMarkov chain : the source can be in a �nite number (actually 2M ) of states �i,



0 � i � 2M�1, and there is a set of transition probabilities Pr(�j j�i), expressingthe odds that if the system is in state �i it will next go to state �j . For a generaltreatment of Markov chains, the reader is referred to [1].For a general Markov chain with r states, let P (n)i be the probability of beingin state �i at time t = n and let P (n) be the "state distribution vector" at timen, i.e., P (n) = [P (n)1 ; : : : ; P (n)r ].Let � be the transition matrix of the chain, i.e., �i; j = Pr(�j j�i) where �i; jis the element in row i and column j of � .For state �j at time n the source may originate from any state �i at timen� 1 and thus :P (n)j = Pr(�j j�1)P (n�1)1 + : : :+Pr(�j j�r)P (n�1)rwhich becomes in matrix notations :P (n) = P (n�1)�For the class of ergodic Markov processes the probabilities P (n)j of being instate �j after n emitted bits, approach (as n!1) an equilibrium Pj whichmust satisfy the system of r linear equations :8>>>><>>>>: rPj=1Pj = 1Pj = rPi=1Pi Pr(�j j�i) for 1 � j � r � 1In the case of a source with memory M , each of the 2M states has at mosttwo successor states with non-zero probability, depending on whether a zero ora one is emitted. The transition probabilities are thus determined by the set ofconditional probabilities pi = Pr(1j�i), 0 � i � 2M � 1 of emitting a one fromeach state �i. The transition matrix � is thus de�ned by :�i; j = 8<:pi if j = 2i+ 1 mod 2M1� pi if j = 2i mod 2M0 otherwiseThe entropy of state �i is then Hi = H(pi), where H is the binary entropyfunction : H(x) = �x log2 x� (1� x) log2(1� x)The source's entropy is then the average of the entropies Hi (of states �i)weighted with the state-probabilities Pi :HS =Xi PiHi



Let us now assume that the random source is used to generate the N -bit keyof a block cipher and let n(q) be the number of N -bit keys that must be tested(in decreasing probability order) in order to reach an overall success probabilityof q. Shannon proved (see [7], theorem 4) that for q 6= 0 and q 6= 1 :limN!1 log2 n(q)N = HSThis shows that when an ergodic stationary source is used to key a blockcipher, the entropy HS is closely related to the number of keys an attacker hasto try in order to �nd the right key. In other words, the entropy measures thee�ective key-size of a cryptosystem keyed by the source's output.2.2 Probability of a bit sequenceIn this section we compute the probability of emitting a bit sequence, whichwill be used in section 7.2. Starting from a state distribution vector W =[W1; : : : ;Wr], the probability of emitting a bit b 2 f0; 1g is :Pr[bjW ] =XWi�i; j (1)where the sum is taken over the couples fi; jg for which b is emitted duringthe transition from �i to �j .Let �(b) be the transition matrix corresponding to an emitted bit b :�(b)i; j = ��i; j if bit b is emitted from �i to �j0 otherwiseIt follows that � = �(0) +�(1) and equation (1) becomes :Pr[bjW ] =W�(b)U where U = 24 1...135By iteration, the probability of emitting the sequence b = [b0; : : : ; bn] fromthe state distribution vector W is :Pr[bjW ] =W�(b0)�(b1) : : : �(bn)Uand with �(b) = �(b0)�(b1) : : : �(bn) the probability of appearance of se-quence b is : Pr[b] = P�(b)U



3 Maurer's universal test and the source's entropy3.1 Maurer's testMaurer's universal test [6] takes as input three integers fL;Q;Kg and a (Q+K)�L = N -bit sample sN = [s1; : : : ; sN ] generated by the tested source. The param-eter L is chosen from the interval [6; 16]. The sequence sN is partitioned into non-overlapping L-bit blocks. For 1 � n � Q+K, let bn(sN ) = [sL(n�1)+1; : : : ; sLn]denote the n-th L-bit block of sN .The �rst Q blocks of the sequence are used to initialize the test; Q should bechosen to be at least 10� 2L in order to have a high likelihood that each of the2L blocks of L bits occurs at least once in the �rst Q blocks. The remaining Kblocks are used to compute the test function fTU : BN ! IR :fTU (sN ) = 1K Q+KXn=Q+1 log2An(sN ) (2)where B denotes the set f0; 1g and An(sN ) the minimum distance betweenthe n-th block and any similar preceding block :An(sN ) =8<: n if 8i < n; bn�i(sN ) 6= bn(sN )minfi : i � 1; bn(sN ) = bn�i(sN )g otherwise. (3)3.2 Asymptotic entropy relationAs will be justi�ed later, Maurer's test function is closely related to the source'sentropy. It follows that Maurer's universal test is able to detect any of the sta-tistical defects that can be modeled by an ergodic stationary source with �nitememory.Let KL be the entropy of L-bit blocks, GL the per-bit entropy of blocks ofL bits and FL the entropy of the L-th order approximation of the source (seeShannon [7]) : KL = � Xb2BLPr[b] log2 Pr[b] (4)FL = � Xb2BL�1; j2BPr[b; j] log2 Pr[jjb] (5)GL = KLL = 1L LXi=1 Fi (6)In [3] we proved the following asymptotic relation between the expectation ofMaurer's test function for a stationary ergodic source S outputting a sequenceUNS of random binary variables and the entropy of L-bit blocks of S :



limL!1 hE[fTU (UNS )]�KLi = C 4= Z 10 e�� log2 � d� �= �0:8327462 (7)In the next section we improve the performance of Maurer's test by modifyingthe test function so that its expectation yields the source's entropy, instead ofhaving an asymptotical relation.4 Improving Maurer's universal testMaurer's test function is de�ned as the average of the logarithm to the base twoof the minimum distances between two similar blocks. Here we generalize thede�nition of the test parameter to any function g : IN ! IR of the minimumdistance between two similar blocks :fgTU (sN ) = 1K Q+KXn=Q+1 g(An(sN ))The mean of fgTU (UNS ) for S is given by :E[fgTU (UNS )] =Xi�1 Pr[An(UNS ) = i]g(i)withPr[An(UNS ) = i] = Xb2BL Pr[bn = b; bn�1 6= b; : : : ; bn�i+1 6= b; bn�i = b] (8)If we assume that the L-bit blocks are statistically independent, the aboveprobability factors into :Pr[An(UNS ) = i] = Xb2BL Pr[b]2 � (1� Pr[b])i�1and we get : E[fTU (UNS )] = Xb2BLPr[b]� 
g(Pr[b]) (9)where : 
g(x) = x 1Xi=1(1� x)i�1g(i)Equation (9) shows that the mean value of the generalized test may be inter-preted as the expectation of a random variableW =W (X) which hits the value




g(Pr[b]) with probability Pr[b]. However, the entropy of L-bit blocks KL (equa-tion (4)) can be viewed as the expectation of a random variable W 0 = W 0(X)which takes the value � log2(Pr[b]) with probability Pr[b].In order to determine the expectation of the test with the entropy of L-bitblocks, we have to solve the following equation :
g(x) = � log2(x) (10)Letting t = 1� x, equation (10) yields :(1� t) 1Xi=1 ti�1g(i) = � log2(1� t) = 1log(2) 1Xi=1 tiiand we get : � g(1) = 0g(i+ 1)� g(i) = 1i log(2) for i � 1;Hence we can de�ne a modi�ed version of Maurer's test which test parameterfHTU (sN ) is computed using :fHTU (sN ) = 1K Q+KXn=Q+1 g(An(sN )) (11)g(i) = 1log(2) i�1Xk=1 1k (12)and equation (3) for the de�nition of An(sN ).The mean value of this new test function taking as input a sequence UNSgenerated by an ergodic stationary source S is equal to the entropy of L-bitblocks of S : E[fHTU (UNS )] = KL (13)5 Distribution of the modi�ed test parameterTo tune the test's rejection rate, one must �rst know the distribution of fHTU (RN ),where RN denotes a sequence of N bits emitted by a binary symmetric source(BSS, i.e. a truly random source). A sample sN would then be rejected if thenumber of standard deviations separating its fHTU (sN ) from E[fHTU (RN )] exceedsa reasonable constant.In this section we compute the mean and standard deviation of the modi�edtest parameter for a BSS under the reasonable assumption that Q ! 1 (inpractice, Q should be larger than 10� 2L).From equations (11 and 12) the expected value E[fHTU (RN)] of the test pa-rameter fHTU for a BSS is given by :



E[fHTU (RN )] = 1log(2) 1Xi=2 Pr[An(RN ) = i] i�1Xk=1 1k (14)Using equation (8) we have for a BSS :Pr[An(RN ) = i] = 2�L(1� 2�L)i�1 for i � 1 (15)and with equation (14) :E[fHTU (RN )] = 2�Llog(2) 1Xi=2(1� 2�L)i�1 i�1Xk=1 1k = LThus the mean of the test parameter for a truly random source is simplyequal to L, the length of the blocks in the tested sequence. Note that this resultis straightforward considering equation (13) since the entropyKL of L-bit blocksis equal to L for a truly random source.For statistically independent random variables the variance of a sum is thesum of variances but the An-terms in (11) are heavily inter-dependent; of course,the same holds for Maurer's original test function (2). Consequently, Maurerintroduced in [6] a corrective factor c(L;K) by which the standard deviationof fTU is reduced compared to what it would have been if the An-terms wereindependent : Var[fTU (RN )] = c(L;K)2 � Var[log2An(RN )]KSimilarly, we can de�ne cH(L;K) to be the corrective factor by which thestandard deviation of the modi�ed test parameter fHTU is reduced compared towhat it would have been if the An-terms were independent :Var[fHTU (RN )] = cH(L;K)2 � Var[g(An(RN ))]KThe variance of the An-terms can be easily computed using equation (15) :Var[g(An(RN ))] = E[(g(An(RN ))2]� �E[g(An(RN))]�2= 2�L 1Xi=2(1� 2�L)i�1� i�1Xk=1 1k log(2)�2 � L2In [3] we have computed the exact value of the factor c(L;K), while only aheuristic estimate of c(L;K) was given in [6].The expression of cH(L;K) is very similar to the one of c(L;K) given in[3] as one should simply replace the terms in the formulae containing log2 i by :g(i) = 1log(2) i�1Xk=1 1k :



As in [3], the factor cH(L;K) can be approximated for K � 33� 2L by :cH(L;K)2 = d(L) + e(L)� 2LKand Var[g(An(RN ))], d(L) and e(L) are listed in table 1 for 3 � L � 16 andL!1.This approximation is su�cient because the test must be performed withK � 1000� 2L.To summarize, the distribution of fHTU (RN ) can be approximated by thenormal distribution of mean E[fHTU (RN)] = L and standard deviation :� = c(L;K)qVar[g(An(RN ))]=KL Var[g(An(RN))] d(L) e(L)3 2.5769918 0.3313257 0.43818094 2.9191004 0.3516506 0.40501705 3.1291382 0.3660832 0.38566686 3.2547450 0.3758725 0.37437827 3.3282150 0.3822459 0.36782698 3.3704039 0.3862500 0.36405699 3.3942629 0.3886906 0.361909110 3.4075860 0.3901408 0.360698211 3.4149476 0.3909846 0.360022212 3.4189794 0.3914671 0.359648413 3.4211711 0.3917390 0.359443314 3.4223549 0.3918905 0.359331615 3.4229908 0.3919740 0.359271216 3.4233308 0.3920198 0.35923841 3.4237147 0.3920729 0.3592016Table 1. Var[g(An(RN ))], d(L) and e(L) for 3 � L � 16 and L!1A source is then rejected if and only if either fHTU (sN ) < t1 or fHTU (sN ) > t2where the thresholds t1 and t2 are de�ned by :t1 = L� y� and t2 = L+ y�;where y is the number of standard deviations � from the mean allowed forfHTU (sN ). The parameter y must be chosen such that N (�y) = �=2, where �is the rejection rate expressing the probability that a sequence emitted by atruly random source will be rejected. N (x) is the integral of the normal densityfunction :



N (x) = 1p2� Z x�1 e��2=2d�[6] recommends to choose the parameters L between 6 and 16, Q ' 10� 2Land K ' 1000� 2L, and to take a rejection rate � ' 0:01; : : : ; 0:001, obtainedby setting y = 2:58 or y = 3:30 respectively. We suggest to keep these boundsfor the new test.6 A sample programAs pointed out in [6], the test can be implemented e�ciently by using a tabletab of size V = 2L that stores for each L-bit block the time index of its mostrecent occurrence. At step n the program gets the L-bit block bn(sN ) from therandom source, computes the minimum distance An(sN )  n � tab[bn(sN )],adds g(An(sN )) to an accumulator and updates the most recent occurrencetable with tab[bn(sN )] n.To improve e�ciency, the coe�cients computed by the function g(i) are ap-proximated for large i using (16). For i � 23 the error is smaller than 10�8.nXi=1 1i = logn+ 
 + 12n � 112n2 +O( 1n4 ) (16)where 
 is Euler's constant :
 = � Z 10 e�x logx dx ' 0:577216The sample program calls the function fsource(L) which returns an L-bitinteger produced by the random source.double fcoef(int i)f double l=log(2),s=0,C=-0.8327462;int k,j=i-1,limit=23;if(i<limit) ffor(k=1;k<i;k++) f s=s+1./k; greturn s/l;greturn log(j)/l-C+(1./(2*j)-1./(12.*j*j))/l;gdouble NewUniversalTest(int L,int Q, int K)f int V=(1 << L),i,n,k;int *tab=new int[V];



double sum=0;for(i=0;i<V;i++) ftab[i]=0;gfor(n=1;n<=Q;n++) ftab[fsource(L)]=n;gfor(n=Q+1;n<=(Q+K);n++) fk=fsource(L);sum=sum+fcoef(n-tab[k]);tab[k]=n;gdelete tab;return sum/K;g7 A comparative analysis of the two testsIn section 4 we assumed the block sequences of length L to be statisticallyindependent, i.e. that the probability of appearance of a block does not dependon the preceding ones. But this assumption is valid only if the tested source is abinary memoryless source BMSp (random binary source which emits ones withprobability p and zeroes with probability 1� p). In section 7.1 we compare theperformance of Maurer's test and the modi�ed test for a BMSp.In the general case of a source with �nite (non-zero) memory, the blocks arenot statistically independent and the expectation of the modi�ed test functionis not equal to the source's entropy of L-bit blocks. However, if the statisticsof the tested random source di�er from the statistics of a truly random source,the tested source will be rejected with high probability. Only random sourceswith small statistical bias will pass the test. As shown in section 7.2, this smallbias will still make the di�erence between the expectation of the modi�ed testfunction and the source's entropy negligible.7.1 Comparison with respect to a BMSp.In this section we compute the expectation of Maurer's test function for a BMSpand compare it with the expectation of the modi�ed test function and with theactual source's entropy. The expectation of Maurer's test function for a BMSpwith output sequence UNBMSp is given by :E[fTU (UNBMSp)] = 1Xi=1 Pr[An(UNBMSp) = i] log2(i)while equation (8) and :



Pr[bn(UNBMSp) = b] = pw(b)(1� p)L�w(b)(where w(b) denotes the Hamming weight of b 2 f0; 1gL) yield :E[fTU (UNBMSp)] = LXk=0�Lk�pk(1� p)L�k��pk(1� p)L�k� (17)where �(x) = x 1Xi=1(1� x)i�1 log2 iOne can show that :limx!0[�(x) + log2 x] = � 
log 2 4= C (18)where 
 is Euler's constant.From equations (17 and 18) we recover the result given in [6] :limL!1E[fTU (UNBMSp)� L�H(p)] = CNote that this result is straightforward using equation (7) as KL = L�H(p)for a BMSp.In the case of a BMSp the assumption of statistical independence betweenthe blocks in section 4 is valid and thus equation (13) leads to :E[fHTU (UNBMSp)] = L�H(p) (19)Equation (19) shows that the modi�ed test is more accurate than the orig-inal one, as it measures the entropy of a BMSp whereas the relation is onlyasymptotical in the original one. This is illustrated in table 2, which summarizesthe expectation of Maurer's test function, the expectation of the modi�ed testfunction, and the entropy of a BMSp, for L = 4, L = 8, L = 16 and severalvalues of p.7.2 Comparison in the general case.The mean of the modi�ed test for an ergodic stationary source S is given by :E[fHTU (UNS )] = Xb2BLXi�2 Pr[b(:b)i�1b] i�1Xk=1 1k log(2)where Pr[b(:b)i�1b] denotes Pr[bn = b; bn�1 6= b; : : : ; bn�i+1 6= b; bn�i = b].Using the fact that Pr[b(:b)i] = Pr[b(:b)ib] + Pr[b(:b)i+1], we get :



L p E[fTU (UNBMSp)]� C E[fHTU (UNBMSp)] L�H(p)4 0.5 4.14397 4.00000 4.000004 0.4 4.04187 3.88380 3.883804 0.3 3.73034 3.52516 3.525168 0.5 8.01641 8.00000 8.000008 0.4 7.78833 7.76760 7.767608 0.3 7.08957 7.05033 7.0503316 0.5 16.00012 16.00000 16.0000016 0.4 15.53542 15.53521 15.5352116 0.3 14.10161 14.10065 14.10065Table 2. Comparison between the expectation of Maurer's test E[fTU (UNBMSp)], theexpectation of the modi�ed test E[fHTU (UNBMSp)] and the L-bit block entropy of aBMSp. E[fHTU (UNS )] = Xb2BLXi�1 Pr[b(:b)i] 1i log(2)From section 2.2 we obtain the expectation of the modi�ed function in thegeneral case of an ergodic stationary source S with �nite memory :E[fHTU (UNS )] = Xb2f0;1gLXi�1 P�(b) ��L ��(b)�i U 1i log(2)where � is the transition matrix of S and �(b) the transition matrix asso-ciated to sequence b as de�ned in section 2.2.Table 3 gives E[fHTU (UNS )] for an STPp, a random binary source for which abit is followed by its complement with probability p. An STPp is thus a sourcewith one bit of memory and two equally-probable states. It follows (5 and 6) thatF1 = H(1=2) = 1, HS = H(p), and KL = 1+(L�1)H(p). Table 3 compares themean of Maurer's function, the mean of the modi�ed function and the entropyof L-bit block of an STPp for L = 4 and L = 8 and various values of p. Asexpected, the new test is closer to the source's entropy than the original one.Moreover, the di�erence between the expectation of the modi�ed test functionand the source's entropy becomes negligible when p is close to 0:5. This is due tothe fact that the L-bit blocks become statistically independent as the source'sbias disappears. Extensive experiments performed with random sources withmemory bigger than one all led the same result.8 Conclusion and further researchWe have introduced a modi�cation in Maurer's universal test that improves itsperformance. The modi�cation is very simple to implement (a few lines of code)



L p E[fTU (UNSTPp ]� C E[fHTU (UNSTPp)] (L� 1)H(p) + 14 0.5 4.14397 4.00000 4.000004 0.49 4.14321 3.99914 3.999134 0.45 4.12488 3.97831 3.978324 0.4 4.06677 3.91196 3.912854 0.3 3.82175 3.62743 3.643878 0.5 8.01641 8.00000 8.000008 0.49 8.01443 7.99798 7.997988 0.45 7.96671 7.94942 7.949428 0.4 7.81679 7.79665 7.796658 0.3 7.20403 7.16848 7.16904Table 3. Numerical comparison between the expected value of Maurer's original testE[fTU (UNSTPp ], the expected value of the modi�ed test E[fHTU (UNSTPp ] and the L-bitblock entropy of an STPp.and does not increase the computation time. The new test is more closely relatedto the source's entropy and therefore enables a more accurate detection of thepossible defects in the tested source.We have not found an analytic expression of the modi�ed test's variance,although the expectation for a truly random source is simply equal to the blocklength. In addition, an interesting generalization would consist of extending theexact correspondence between the modi�ed test function and the source's en-tropy to the general class of stationary ergodic random sources with �nite (nonnecessarily zero) memory.References1. R. Ash, Information theory, Dover publications, New-York, 1965.2. M. Blum, S. Micali, How to generate cryptographically strong sequences of pseudo-random bits. SIAM J. Comput., vol. 13, no. 4, pp. 850-864, 19843. J.-S. Coron, D. Naccache, An accurate evalutation of Maurer's universal test. Pro-ceedings of SAC'98, Lecture notes in computer science, springer-verlag, 1998. Toappear. Available at http://www.eleves.ens.fr:8080/home/coron/index.html4. FIPS 140-1, Security requirements for cryptographic modules, Federal InformationProcessing Standards Publication 140-1, U.S. Department of Commerce / N.I.S.T.,National Technical Information Service, Spring�eld, Virginia, 1994.5. D. Knuth, The art of computer programming, Seminumerical algorithms, vol. 2,Addison-Wesley publishing company, Reading, pp. 2{160, 1969.6. U. Maurer, A universal statistical test for random bit generators, Journal of cryp-tology, vol. 5, no. 2, pp. 89{105, 1992.7. C. Shannon, A mathematical theory of communication, The Bell system technicaljournal, vol. 27, pp. 379{423, 623{656, July-October, 1948.
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