
Boneh et al.’s k-Element Aggregate Extraction

Assumption Is Equivalent to The Diffie-Hellman
Assumption

Jean-Sebastien Coron and David Naccache

Gemplus Card International
34, rue Guynemer, Issy-les-Moulineaux, F-92447, France
{jean-sebastien.coron,david.naccache}@gemplus.com

Abstract. In Eurocrypt 2003, Boneh et al. presented a novel crypto-
graphic primitive called aggregate signatures. An aggregate signature
scheme is a digital signature that supports aggregation: i.e. given k sig-
natures on k distinct messages from k different users it is possible to
aggregate all these signatures into a single short signature.

Applying the above concept to verifiably encrypted signatures, Boneh et

al. introduced a new complexity assumption called the k-Element Ag-

gregate Extraction Problem.

In this paper we show that the k-Element Aggregate Extraction Problem
is nothing but a Computational Diffie-Hellman Problem in disguise.

Key-words: aggregate signatures, Diffie-Hellman problem, complex-
ity assumption.

1 Introduction

In Eurocrypt 2003, Boneh, Gentry, Lynn and Shacham [2] introduced
the concept of aggregate signatures. An aggregate signature scheme is
a digital signature that supports aggregation: given k signatures on k
distinct messages from k different users it is possible to aggregate all
these signatures into a single short signature. This useful primitive allows
to drastically reduce the size of public-key certificates, thereby saving
storage and transmission bandwidth.

Applying the previous construction to verifiably encrypted signatures,
Boneh et al. introduced in [2] a new complexity assumption called the
k-Element Aggregate Extraction Problem (hereafter k-EAEP). In this
paper we will prove that k-EAEP is equivalent to the Computational
Diffie Hellman assumption (CDH).

This paper is structured as follows: section 2 recalls Boneh et al.’s
setting, section 3 contains [2, 3]’s definition of the k-EAEP and section



Key generation

Pick random x
R
← ZZp

Compute v ← gx
1

Public : v ∈ G1

Private : x ∈ ZZp

Signature
Hash the message M ∈ {0, 1}∗ into h← h(M) ∈ G2

Compute the signature σ ← hx ∈ G2

Verification of σ (with respect to v and M)
Compute h← h(M)
Check that e(g1, σ) = e(v, h)

Fig. 1. Boneh, Lynn, Shacham Signatures

4 concludes the paper by proving the equivalence between k-EAEP and
CDH.

2 Verifiable Encrypted Signatures via Aggregation

We will adopt [2, 3]’s notations and settings, namely:

– G1 and G2 are two multiplicative cyclic groups of prime order p;
– g1 is a generator of G1 and g2 is a generator of G2;
– ψ is a computable isomorphism from G1 to G2 with ψ(g1) = g2;
– e is a computable bilinear map e : G1 × G2 → GT where GT is

multiplicative and of order p. The map e is:
• Bilinear: for all u ∈ G1, v ∈ G2 and a, b ∈ ZZ, e(ua, vb) = e(u, v)ab

• Non-degenerate: e(g1, g2) 6= 1
– h : {0, 1}∗ → G2 is a hash function.

2.1 Boneh-Lynn-Shacham Signatures

Figure 1 briefly recalls Boneh, Lynn and Shacham’s signature scheme [1],
upon which the aggregate signatures schemes of [2, 3] are based.

2.2 Aggregate Signatures

Consider now a set of k users using Figure 1’s scheme (each user having a
different key pair bearing an index i) and signing different messages Mi.



Aggregation consists in combining the resulting k signatures {σ1, . . . , σk}
into one aggregate signature σ. This is done by simply computing:

σ ←
k

∏

i=1

σi

Aggregate verification is very simple and consists in checking that the
Mi are mutually distinct and ensuring that:

e(g1, σ) =

k
∏

i=1

e(vi, hi) where hi = h(Mi)

This holds because:

e(g1, σ) = e(g1,

k
∏

i=1

hxi

i ) =

k
∏

i=1

e(g1, hi)
xi =

k
∏

i=1

e(gxi

1 , hi) =

k
∏

i=1

e(vi, hi)

2.3 Verifiably Encrypted Signatures via Aggregation

As explained in [2, 3], verifiably encrypted signatures are used in contexts
where Alice wants to show Bob that she has signed a message but does
not want Bob to possess her signature on that message. Alice can achieve
this by encrypting her signature using the public key of a trusted third
party (adjudicator, hereafter Carol), and send the resulting ciphertext to
Bob along with a proof that she has given him a valid encryption of her
signature. Bob can verify that Alice has signed the message but cannot
deduce any information about her signature. Later in the protocol, Bob
can either obtain the signature from Alice or resort to the good offices of
Carol who can reveal Alice’s signature.

To turn the aggregate signature scheme into a verifiably encrypted
signature scheme, [2, 3] proceed as follows:

– Alice wishes to create a verifiably encrypted signature that Bob will
verify, Carol being the adjudicator. Alice and Carol’s keys are gener-
ated as if they were standard signers participating in the aggregate
signature protocol described in the previous subsection.

– Alice creates a signature σ on M under her public key. She then
forges a signature σ′ on some random message M ′ under Carol’s public
key (we refer the reader to [2, 3] for more details on the manner in
which this existential forgery is produced). She then combines σ and



σ′ obtaining the aggregate ω. The verifiably encrypted signature is
{ω,M ′}.

– Bob validates Alice’s verifiably encrypted signature {ω,M ′} on M by
checking that ω is a valid aggregate signature by Alice on M and by
Carol on M ′.

– Carol adjudicates, given a verifiably encrypted signature {ω,M ′} on
M by Alice, by computing the signature σ′ on M ′ and removing σ′

from the aggregate thereby revealing Alice’s signature σ.

3 The k-Element Aggregate Extraction Problem

As is clear, the security of Boneh et al.’s verifiable encrypted signature
scheme depends on the assumption that given an aggregate signature of
k signatures (here k = 2) it is difficult to extract from it the individual
signatures (namely: Alice’s signature on M). This is formally proved in
theorem 3 of [2, 3].

Considering the bilinear aggregate signature scheme on G1 and G2,
Boneh et al. assume that it is difficult to recover the individual signa-
tures σi given the aggregate σ, the public-keys and the message digests.
Actually, [2, 3] assume that it is difficult to recover any aggregate σ′ of
any proper set of the signatures and term this the k-Element Aggregate
Extraction Problem (hereafter k-EAEP).

More formally, this assumption is defined in [2, 3] as follows: Let G1

and G2 be two multiplicative cyclic groups of prime order p, with respec-
tive generators g1 and g2, a computable isomorphism ψ : G1 → G2 such
that g2 = ψ(g1), and a computable bilinear map e : G1 ×G2 → GT .

Consider a k-user aggregate in this setting. Each user has a private
key xi ∈ ZZp and a public key vi = gxi

1 ∈ G1. Each user selects a distinct
message Mi ∈ {0, 1}

∗ whose digest is hi ∈ G2 and creates a signature
σi = hxi

i ∈ G2. Finally, the signatures are aggregated yielding:

σ =

k
∏

i=1

σi ∈ G2

Let I be the set {1, . . . , k}. Each public-key vi can be expressed as
gxi

1 , each digest hi as gyi

2 , each signature σi as gxiyi

2 and the aggregate
signature σ as gz

2 where:

z =
∑

i∈I

xiyi



Definition 1 (k-EAEP). The k-Element Aggregate Extraction Problem

is the following: given the group elements gx1

1 , . . . , gxk

1 , gy1

2 , . . . , g
yk

2 and

g
∑

i∈I
xi·yi

2 , output (σ′, I ′) such that I ′  I and σ′ = g
∑

i∈I′
xi·yi

2 .

The advantage of an algorithm E in solving the k-EAEP is defined as:

Adv k-ExtrE
def
= Pr







(I ′  I) ∧ (σ′ = g
∑

i∈I′
xiyi

2 ) :

x1, . . . , xk, y1, . . . , yk
R
← ZZp, σ ← g

∑

i∈I
xiyi

2 ,

(σ′, I ′)
R
← E(gx1

1 , . . . , gxk

1 , gy1

2 , . . . , g
yk

2 , σ)







wherein the probability is taken over the choices of all xi and yi and the
coin tosses of E .

In the following, we define the hardness of the k-EAEP. For simplicity,
we use the asymptotic setting instead of the concrete setting of [2].

Definition 2. The k-Element Aggregate Extraction Problem is said to be

hard if no probabilistic polynomial-time algorithm can solve it with non-

negligible advantage.

[2, 3] is particularly concerned with the case k = 2 where the aggregate
extraction problem boils down to the following:

Definition 3 (2-EAEP). Given ga
1 , g

b
1, g

u
2 , gv

2 and gau+bv
2 , output gau

2 .

We refer the reader to [3] for more details on the manner in which
this assumption is used in proving the security of the verifiable encrypted
signature scheme.

4 k-EAEP is equivalent to the Computational
co-Diffie-Hellman problem

The Computational co-Diffie-Hellman problem (hereafter co-CDH) is a
natural generalization to two groups G1 and G2 of the standard Compu-
tational Diffie-Hellman problem; it is defined as follows [2]:

Definition 4 (co-CDH). Given g1, g
a
1 ∈ G1 and h ∈ G2, output ha ∈

G2.

The advantage of an algorithm A in solving co-CDH in groups G1 and
G2 is:

Adv co-CDHA
def
= Pr

[

A(g1, g
a
1 , h) = ha : a

R
← ZZp, h

R
← G2

]



The probability is taken over the choice of a, h and A’s coin tosses. Note
that when G1 = G2, this problem reduces to the standard CDH problem.

Definition 5. The Computational co-Diffie-Hellman problem in groups

G1 and G2 is said to be hard if no probabilistic polynomial-time algorithm

can solve it with non-negligible advantage.

The following theorem shows that the k-Element Aggregate Extrac-
tion Problem is equivalent to the Computational co-Diffie-Hellman prob-
lem.

Theorem 1. The k-Element Aggregate Extraction Problem is hard if and

only if the Computational co-Diffie-Hellman problem is hard.

Proof. It is straightforward to show that an algorithm A solving co-CDH
can be used to solve the k-EAEP. Namely, given the instance gx1

1 , . . . , gxk

1 ,

gy1

2 , . . . , g
yk

2 and g
∑

i∈I
xi·yi

2 , using A we obtain σ′ = gx1y1

2 from g1, g
x1

1 , gy1

2 .
This gives ({1}, σ′) as a solution to the k-EAEP.

For the converse, we start with k = 2, i.e. an algorithm solving the
2-EAEP and show how to generalize the method to arbitrary k. Letting
g1, g

a
1 , g

u
2 be a given instance of co-CDH, we must compute ga·u

2 using an

algorithm A solving the 2-EAEP. We generate x
R
← ZZp and y

R
← ZZp; one

can see that:
(ga

1 , g
a+x
1 , g−u

2 , gu+y
2 , ga·y+u·x+x·y

2 )

is a valid random instance of the 2-EAEP. The instance is valid because:

−a · u+ (a+ x) · (u+ y) = a · y + u · x+ x · y

The instance is a random one because ga+x
1 and gu+y

2 are uniformly dis-
tributed in G1 and G2. Moreover, the instance can be computed directly
from gu

2 and ga
2 = ψ(ga

1 ). Therefore, given as input this instance, the
algorithm A outputs g−a·u

2 , from which we compute ga·u
2 and solve the

co-CDH problem.

More generally, for k > 2, we generate x2, . . . , xk, y2, . . . , yk
R
← ZZp;

then we generate the following instance of the k-EAEP:

(ga
1 , g

a+x2

1 , . . . , ga+xk

1 , g
−(k−1)u
2 , gu+y2

2 , . . . , gu+yk

2 , gz
2)

where

z =
k

∑

i=2

a · yi + xi · (u+ yi)



As previously, this is a valid random instance of the k-EAEP, which can
be computed from gu

2 and ga
2 = ψ(ga

1 ). Therefore, given this instance as
input, an algorithm A solving k-EAEP outputs (I ′, σ′). We assume that
1 ∈ I ′, otherwise we can take I ′′ ← I \I ′ and σ′′ ← gz

2/σ
′. Letting σ′ = gz′

2

and k′ = |I ′| < k, we have:

z′ = −(k − 1) · a · u+
∑

i∈I′,i>1

(a+ xi)(u+ yi)

z′ = a · u · (k′ − k) +
∑

i∈I′,i>1

a · yi + xi · (u+ yi)

Therefore we can compute:

ga·u
2 =



σ′ ·
∏

i∈I′,i>1

(ga
2)−yi(gu

2 )−xig−xiyi

2





1

k′−k

which is the solution of the co-CDH instance.

Therefore, given a polynomial time probabilistic algorithm solving
the k-EAEP with non-negligible advantage, we obtain a polynomial time
probabilistic algorithm solving co-CDH with non-negligible advantage,
and conversely, with a tight reduction in both directions. ⊓⊔

5 Conclusion

In this paper we showed that the k-element Aggregate Extraction Prob-
lem introduced by Boneh, Gentry, Lynn and Shacham in [2, 3] is equiva-
lent to the Computational Diffie Hellman Problem.

By shedding light on the connection between Boneh et al.’s verifi-
able encrypted signature scheme and the well-researched Computational
Diffie-Hellman Problem, we show that [2, 3] features, not only attractive
computational requirements and short signature size, but also strong se-
curity assurances.

References

1. D. Boneh, B. Lynn and H. Shacham, Short Signatures From the Weil Pairing,
Proceedings of asiacrypt’ 2001, Lecture Notes in Computer Science vol. 2248,
Springer-Verlag, pp. 514-532, 2001.

2. D. Boneh, C. Gentry, B. Lynn and H. Shacham, Aggregate and Verifiably En-

crypted Signatures from Bilinear Maps, Advances in Cryptology - eurocrypt’

2003 Proceedings, Lecture Notes in Computer Science vol. 2656, E. Biham ed.,
Springer-Verlag, pp. 416-432, 2003.



3. D. Boneh, C. Gentry, B. Lynn and H. Shacham, Aggregate and Verifiably

Encrypted Signatures from Bilinear Maps, Cryptology ePrint Archive, Report
2002/175, 2002, http://eprint.iacr.org/.


