
Resistance against Di�erential Power Analysisfor Elliptic Curve CryptosystemsJean-S�ebastien CoronEcole Normale Sup�erieure Gemplus Card International45 rue d'Ulm 34 rue GuynemerParis, F-75230, France Issy-les-Moulineaux, F-92447, Francecoron@clipper.ens.fr coron@gemplus.comAbstract. Di�erential Power Analysis, �rst introduced by Kocher etal. in [14], is a powerful technique allowing to recover secret smart cardinformation by monitoring power signals. In [14] a speci�c DPA attackagainst smart-cards running the DES algorithm was described. As few as1000 encryptions were su�cient to recover the secret key. In this paperwe generalize DPA attack to elliptic curve (EC) cryptosystems and de-scribe a DPA on EC Di�e-Hellman key exchange and EC El-Gamal typeencryption. Those attacks enable to recover the private key stored insidethe smart-card. Moreover, we suggest countermeasures that thwart ourattack.Keywords. Elliptic curve, power consumption, Di�erential Power Analysis.1 IntroductionThe use of elliptic curve in cryptography was �rst proposed by Miller [17] andKoblitz [12] in 1985. Since that time, a lot of attention has been paid to ellipticcurves for cryptographic applications and it has become increasingly common toimplement public-key protocols on elliptic curves over large �nite �eld. Ellipticcurves (EC) provide a group structure, which can be used to translate existingdiscrete-logarithm cryptosystems into the context of EC. The discrete logarithmproblem in a cyclic group G of order n with generator g refers to the problem of�nding x given some element y = gx of G. The discrete logarithm problem overan EC seems to be much harder than in other groups such as the multiplicativegroup of a �nite �eld. No subexponential-time algorithm is known for the discretelogarithm problem in the class of non-supersingular EC. Consequently, keys canbe much smaller in the EC context, typically about 160 bits.In this paper we consider attacks based on the monitoring of power con-sumption of smart-card EC implementation. Di�erential Power Analysis, �rstdescribed by Kocher et al. in [14], is a powerful technique that exploit the leak-age of information related to power consumption. The attack was successfullyapplied to a DES implementation; as few as 1000 encryptions were su�cient to



recover the secret key [14]. More recently, the resistance of smart-card imple-mentations of the AES candidates against monitoring power consumption wasconsidered in [1, 3, 5]. The conclusion was that straightforward implementationsof AES candidates were highly vulnerable to power analysis. In this paper weshow that naive implementations of ECC are also highly vulnerable to poweranalysis.The paper is organized as follows. After recalling the principle of EC op-erations in section 2, we describe in section 3 the principle of our power con-sumption attack. In section 4, we apply the attack to some common discrete-logarithm based cryptosystems such as Di�e-Hellman key exchange [7] and El-Gamal public-key encryption [8]. Finally we suggest three countermeasures thatprevent our attack.2 Elliptic curve group operation2.1 De�nition of an elliptic curveAn elliptic curve is the set of points (x; y) which are solutions of a bivariate cubicequation over a �eld K (see [16]). An equation of the form :y2 + a1xy + a3y = x3 + a2x2 + a4x+ a6 (1)where ai 2 K, de�nes an elliptic curve over K.If char K 6= 2 and char K 6= 3, equation (1) can be transformed to :y2 = x3 + ax+ bwith a; b 2 K.In the �eld GF(2n) of characteristic 2, equation (1) can be reduced to theform : y2 + xy = x3 + ax2 + bwith a; b 2 K.The set of points on an elliptic curve, together with a special point O calledthe point at in�nity can be equipped with an Abelian group structure by thefollowing addition operation :Addition formula [16] for char K 6= 2; 3 :Let P = (x1; y1) 6= O be a point, the inverse of P is �P = (x1;�y1). LetQ = (x2; y2) 6= O be a second point with Q 6= �P , the sum P + Q = (x3; y3)can be calculated as : x3 = �2 � x1 � x2y3 = �(x1 � x3)� y1with



� =8>><>>: y2 � y1x2 � x1 ; if P 6= Q,3x21 + a2y1 ; if P = Q.To subtract the point P = (x; y), one adds the point �P .Addition formula for char K = 2 :Let P = (x1; y1) 6= O be a point, the inverse of P is �P = (x1; x1 + y1). LetQ = (x2; y2) 6= O be a second point with Q 6= �P , the sum P + Q = (x3; y3)can be calculated as : x3 = �2 + �+ x1 + x2 + ay3 = �(x1 + x3) + x3 + y1� = y1 + y2x1 + x2if P 6= Q and : x3 = �2 + �+ ay3 = x21 + (�+ 1)x3� = x1 + y1x1if P = Q.2.2 Computing a multiple of a pointThe operation of adding a point P to itself d times is called scalar multiplica-tion by d and denoted dP . Scalar multiplication is the basic operation for ECprotocols. Scalar multiplication in the group of points of an elliptic curve is theanalogous of exponentiation in the multiplicative group of integers modulo a�xed integer m.Computing dP can be done with the straightforward double-and-add ap-proach based on the binary expansion of d = (d`�1; : : : ; d0) where d`�1 is themost signi�cant bit of d (the method is the analogous of the square-and-multiplyalgorithm for exponentiation) :Algorithm 1 (Double-and-add)input PQ Pfor i from `� 2 to 0 doQ 2Qif di = 1 then Q Q+ Poutput Q



Various techniques exist to speed-up scalar multiplication by reducing thenumber of elementary point operations : see [9] for a good survey. If the point Pis known in advance, it may be advantageous to precompute a table of multiplesof P [2]. Because elliptic curve subtraction has the same cost as addition, the pre-vious double-and-add algorithm can be improved with the addition-subtractionalgorithm which uses a signed binary expansion of d :d = `�1Xi=0 ci2iwith ci 2 f�1; 0; 1g.The non-adjacent form (NAF) of d is a signed binary expansion of d withcici+1 = 0 for all i � 0. Each positive integer has a unique NAF. Moreover, theNAF of d has the fewest nonzero coe�cients of any signed binary expansion of d[9]. [18] describes an algorithm that generates the NAF of any positive integer.Algorithm 2 (Addition-subtraction method)input PQ Pfor i from `� 2 to 0 doQ 2Qif ci = 1 then Q Q+ Pif ci = �1 then Q Q� Poutput QThe double-and-add method and addition-subtraction method can be gener-alized to the m-ary method, the window method and the signed binary windowmethod [9, 15].The problem of �nding a method to compute dP with the fewest number ofelliptic curve group operations for a given d is equivalent to �nding the shortestaddition-subtraction chain for d [9]. An addition chain [11] for d is a sequence ofpositive integers : a0 = 1! a1 ! a2 ! : : :! ar = dsuch that ai = aj + ak, for some k � j < i, for all i = 1; 2; : : : ; r.An addition chain can be extended to an addition-subtraction chain [11] withai = �aj � ak in place of ai = aj + ak. The shortest addition-subtraction chainfor d gives the fewest number of elliptic group operations for computing dP bycomputing a1P; a2P; : : : arP = dP .3 Recovering d in Q = dP from the power consumptionIn 1998, Kocher described in a technical draft [14] Simple Power Attacks (SPA)and Di�erential Power Analysis (DPA) on DES. A SPA consists in observingthe power consumption of one single execution of a cryptographic algorithm. A



DPA is more sophisticated and powerful. It consists in performing a statisticalanalysis of many executions of the same algorithm with di�erent inputs.Here we show that monitoring power consumption during the computationof Q = dP knowing P may enable to recover d. First we show that a naiveimplementation of scalar multiplication may be vulnerable to SPA. However,it is not di�cult to make the implementation resistant against SPA. We thendescribe a DPA attack of an implementation of scalar multiplication.3.1 Resistance against SPAPower consumption attacks are based on the observation that the power con-sumed at a given time during cryptographic process is related to the instructionbeing executed and the data being manipulated. Power consumption enablesto visually identify large features, for example the main loop in algorithm 1.Power consumption analysis may also enable to distinguish between instructionbeing executed. For example, it might be possible to distinguish between pointdoubling and point addition in algorithm 1, thereby revealing the bits of theexponent d.In order to be resistant against SPA, the instructions performed during acryptographic algorithm should not depend on the data being processed, e.g.there should not be any branch instructions conditioned by the data. It is easyto modify algorithm 1 to achieve this goal :Algorithm 1' (Double-and-add resistant against SPA)input PQ[0] Pfor i from `� 2 to 0 doQ[0] 2Q[0]Q[1] Q[0] + PQ[0] Q[di]output Q[0]3.2 DPA against double-and-add algorithmIn this section we describe a DPA against an implementation of algorithm 1'.We assume that the algorithm is performed in constant time. Otherwise theimplementation may be subject to timing attack [13] and Simple Power Attacks[14].DPA on DES [6] algorithm as described in [14] uses correlation between powerconsumption and speci�c key-dependent bits which appear at known steps of theencryption computation. For example, a selected bit b at the output of one SBOXof the �rst round will depend on the known input message and 6 unknown bits ofthe key. In [14], the correlation between power consumption and b is computedfor the 64 possible values of the 6 unknown bits of the key. The correlation islikely to be maximal for the correct guess of the 6 bits of the key. The attack



can be repeated for the remaining SBOXes, thus revealing 48 bits of the key.The remaining 8 bits of the key can be recovered by exhaustive search.A Di�erential Power Analysis on algorithm 1' in section 3.1 can be performedby noticing that at step j the processed point Q depends only on the �rst bits(d`�1; : : : ; dj) of d. Now assume that we know how points are represented inmemory during computation and select a particular bit (the same for all points)of this representation. When point Q is processed, power consumption will becorrelated to this speci�c bit of Q. No correlation will be observed with a pointnot computed inside the card. Thus it is possible to successively recover the bitsof the exponent by guessing which points are computed by the card.The second most signi�cant bit d`�2 of d can be recovered by computingthe correlation between power consumption and any speci�c bit of the binaryrepresentation of 4P . If d`�2 = 0, 4P is computed during algorithm 1', andpower consumption is thus correlated with any speci�c bit of 4P . Otherwise ifd`�2 = 1, 4P is never computed, and no correlation will be observed with 4P .This gives d`�2. The following bits of d can be recursively recovered in the sameway.Assume that algorithm 1' is performed k times with distinct P1; P2; : : : ; Pkto compute Q1 = dP1; Q2 = dP2; : : : ; Qk = dPk. Let Ci(t) be the power con-sumption associated with the i-th execution of the algorithm for 1 � i � k. Letsi be any speci�c bit of the binary representation of 4Pi for 1 � i � k. Thecorrelation function g(t) between si and Ci(t) can be computed as follows :g(t) =< Ci(t) >i=1;2:::;kjsi=1 � < Ci(t) >i=1;2;:::;kjsi=0 (2)Assume that the points 4Pi are processed at time t = t1, power consumptionCi(t1) will then be correlated with the speci�c bit si of the binary representationof 4Pi. The average of power consumption for those points 4Pi for which si = 1will be di�erent from the power consumption for the points 4Pi for which si = 0,and function g(t) will present a "peak" at time t = t1. If the points 4Pi are nevercomputed, no "peak" will be observed in function g(t). This is illustrated in �gure1 and 2.13.3 Extending the attack to any scalar multiplication algorithmIn this section we show how to extend the previous attack to any scalar multipli-cation algorithm executed in constant time with a constant addition-subtractionchain, i.e. for any point P the algorithm computes the sequence of point :a0P = P ! a1P ! a2P ! : : :! arP = dPsuch that ai = �aj � ak, for some k � j < i, for all i = 1; 2; : : : ; r.The attack consists in successively guessing the ai starting from a0 = 1 toar = d. At step i � 1, one constructs the set Ai of all possible a0i = �aj � ak1 Real power consumption curves were voluntarily excluded from this paper to avoidstraightforward product identi�cation.
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Fig. 1. Simulated correlation function g(t) between the points 4Pi and power consump-tion Ci(t) when d`�2 = 0. A peak is observed corresponding to the computation of 4Piinside the card.
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Fig. 2. Simulated correlation function g(t) between the points 4Pi and power consump-tion Ci(t) when d`�2 = 1. No peak is observed since the points 4Pi are never computedby the card.for all 0 � k � j < i, and for each a0i 2 Ai computes the correlation functiong(t) between the point a0iP and power consumption. If a peak can be observedin g(t), this will indicate that the point a0iP has been computed by the deviceand thus ai = a0i. This enables to recover d = ar in O(r2) time.4 Attacks on elliptic curve public key protocolsIn this section we apply the attack to elliptic curve public key protocols such asEl-Gamal encryption and Di�e-Helman key exchange. The attack can not apply



to the ECDSA signatures, since in this case scalar multiplication is performedwith a random exponent instead of a �xed exponent.4.1 Elliptic Curve Encryption SchemeThis scheme is analogous to El-Gamal encryption [8].System parameters :An elliptic curve E over GF (p) or GF (2n).The order of E denoted #E must be divisible by a large prime q.G 2 E of order q.Key generation :Secret key : d 2R [1; q � 1].Public key : Q = dP .Encryption of a message m :Pick k 2R [1; q � 1].Compute the points kP = (x1; y1) and kQ = (x2; y2), and c = x2 +m.The ciphertext is (x1; y1; c).Decryption :Compute (x02; y02) = d(x1; y1) and m = c� x02.The attack described before enables to recover d when the device decryptsthe ciphertext (x1; y1; c) for various points (x1; y1).4.2 Elliptic Curve Di�e-Hellman key exchangeThe EC Di�e-Hellman protocol derives a common secret value z from oneparty's private key and another party's public key. The protocol is referenced asECSVDP-DH (Elliptic Curve Secret Value Derivation Primitive, Di�e-Hellmanversion) in [10]. If the two parties correctly execute this primitive, they willproduce the same output.System parameter :An elliptic curve E over GF (p) or GF (2n).The order of E denoted #E must be divisible by a large prime q.Alice's own private key s.Bob's public key W .Derivation of the shared secret value z :Compute the point P = sW .If P = O output "error" and stop.The shared secret value is z = xp, the x-coordinate of P .The attack described in the previous section recovers Alice's secret key whenshe computes the point P = sW for Bob's public key W .



5 Countermeasures against DPAIn this section we describe three countermeasures that prevent from the attackdescribed in section 3. Recall that the attack enables to recover d when Qi = dPiare computed inside the card for various Pi for 1 � i � k. These three counter-measures are based on introducing random numbers during the computation ofQ = dP . We underline that other attacks might of course not be thwarted byour countermeasures.5.1 First countermeasure : randomization of the private exponentLet #E be the number of points of the curve. The computation of Q = dP isdone by the following algorithm :1. Select a random number k of size n bits. In practice, one can take n = 20 bits.2. Compute d0 = d+ k:#E .3. Compute the point Q = d0P . We have Q = dP since #EP = O.This countermeasure makes the previous attack infeasible since the exponentd0 in Q = d0P changes at each new execution of the algorithm.5.2 Second countermeasure : blinding the point PThe method is analogous to Chaum's blind signature scheme for RSA [4]. Thepoint P to be multiplied is "blinded" by adding a secret random point R forwhich we know S = dR. Scalar multiplication is done by computing the pointd(R + P ) and subtracting S = dR to get Q = dP . The points R and S = dRcan be initially stored inside the card and refreshed at each new execution bycomputing R (�1)b2R and S  (�1)b2S, where b is a random bit generatedat each new execution. This makes the previous attack infeasible since the pointP 0 = P +R to be multiplied by d is not known to the attacker.5.3 Third countermeasure : randomized projective coordinatesProjective coordinates [16] can be used to avoid the costly �eld inversion forpoint addition and doubling. The projective coordinates (X;Y; Z) of a pointP = (x; y) are given by : x = XZ y = YZAnother system of projective coordinates may be found in [10]. The projectivecoordinates of a point are not unique because :(X;Y; Z) = (�X; �Y; �Z) (3)for every � 6= 0 in the �nite �eld.
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