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Abstract. In 1997, Coppersmith proved a famous theorem for finding
small roots of bivariate polynomials over Z, with important applications
to cryptography.
While it seems to have been overlooked until now, we found the proof
of the most commonly cited version of this theorem to be incomplete.
Filling in the gap requires technical manipulations which we carry out
in this paper.

1 Introduction

In his seminal 1997 paper [1], D. Coppersmith shows how to find small roots
of polynomials mod N , as well as bivariate polynomials over the integers. In
particular, he proves the following theorem:

Theorem 1 (Coppersmith [1, Th. 2]). Let p(x, y) be an irreducible polyno-
mial in two variables over Z, of maximum degree δ in each variable. Let X,Y be
bounds on the desired solutions x0, y0. Define p̃(x, y) = p(xX, yY ) and let W be
the supremum of the absolute values of the coefficients of p̃. If, for some ε > 0,

XY < W 2/(3δ)−ε2−14δ/3 (1)

then in time polynomial in (logW, 2δ, 1/ε), we can find all integer pairs (x0, y0)
with p(x0, y0) = 0, |x0| < X and |y0| < Y .

From this, he deduces a widely cited corollary:

Corollary 1 ([1, Cor. 2]). With the hypothesis of Theorem 1, except that

XY ≤W 2/(3δ)

then in time polynomial in (logW, 2δ), we can find all integer pairs (x0, y0) with
p(x0, y0) = 0, |x0| ≤ X and |y0| ≤ Y .



For Corollary 1 the following proof is given in [1]: “Set ε = 1/ logW , and do
exhaustive search on the high-order O(δ) unknown bits of x. The running time
is still polynomial, but of higher degree in (logW ).”

However, we claim that this proof is incomplete. Carrying out an exhaustive
search on the ` highest-order bits of x0 essentially amounts to writing:

x0 = 2−`αX + x′0

where X is assumed to be a multiple of 2` and |x′0| < 2−`X, and to doing
exhaustive search on α for |α| ≤ 2`. We are thus looking for a solution (x′0, y0)
of the polynomial equation q(x, y) = 0 given by

q(x, y) := p(2−`αX + x, y), (2)

where x′0 is now bounded in absolute value by X ′ = 2−`X instead of X. Then,
in order to apply Theorem 1 for the polynomial q(x, y), one must consider the
new bound for q:

Wq = max
ij
|qijX ′iY j |,

instead of the original bound W = maxij |pijXiY j |. However it is a priori un-
clear whether condition (1) will be satisfied for X ′, Y , and Wq. Namely, the
coefficients of q(x, y) could become very small because of the change of variable
in (2), and Wq might then be too small for condition (1) to be satisfied. What we
show is that this does not in fact happen: Wq can be bounded appropriately so
that condition (1) holds for q as well (technically, we show this when exhaustive
search is carried out on ` bits of both x and y, hence with a polynomial slightly
different from q; the argument adapts to q as well, however).

Note that this problem does not occur in the univariate case modulo N , since
in that case the condition on X only depends on the modulus N and not on the
coefficients of the polynomial.

The gap is also present in other works building upon [1], such as [2, 3], and
the fix we propose here applies to those other papers as well.

2 A Proof of Corollary 1

In order to prove Corollary 1, we do exhaustive search on ` bits of both x and
y, which is similar to the above but somewhat more symmetric. This amounts
to writing

x0 = 2−`αX + x′0, y0 = 2−`βY + y′0

and applying Theorem 1 to polynomials p′ of the form

p′(x, y) = p(x+ 2−`αX, y + 2−`βY )

with |α|, |β| ≤ 2`, and x′0 and y′0 now bounded in absolute value by X ′ = 2−`X
and Y ′ = 2−`Y , respectively; here we assume wlog that X and Y are multiples
of 2`. In order to check that the hypotheses of the theorem do indeed hold,
we need to estimate the supremum W ′ of absolute value of the coefficients of
p̃′(x, y) = p′(xX ′, yY ′).



Lemma 1. The constant W ′ satisfies

2−2δ(`+2δ+4)−1W ≤W ′ ≤ 16δW.

Proof. We first compute the coefficients of p̃′. For all indices a, b:
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Using crude bounds, it follows that

|p̃′ab| ≤ 1×
δ∑
i=a

δ∑
j=b

2δ · 2δ ·W · 1 · 1 ≤ (δ + 1)2 · 4δ ·W ≤ 16δW,

which is the required upper bound.
Turning to the lower bound, let λ be a real number > 2 which will be chosen

later. We then let (c, d) denote a pair of indices such that λc+d|p̃cd| is maximal.
This maximum will be denoted Wλ. We have

p̃′cd = 2−(c+d)`

[
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Note further that, since λi+j |p̃ij | is maximal for (i, j) = (c, d),

|p̃ij | ≤ λ(c−i)+(d−j)|p̃cd| for all i, j.

We can thus bound the terms in the last sum as follows:∣∣∣∣∣
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)j−d∣∣∣∣∣ ≤ 2i · 2j · λ(c−i)+(d−j)|p̃cd| · 1 · 1

≤ 4δ|p̃cd| · λ(c−i)+(d−j).

This entails that p̃′cd is lower bounded in absolute value as

|p̃′cd| ≥ 2−(c+d)`|p̃cd|

[
1− 4δ
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d≤j≤δ
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.



Now we write∑
c≤i≤δ
d≤j≤δ

(i,j) 6=(c,d)

λ(c−i)+(d−j) ≤
∑
x,y≥0

(x,y) 6=(0,0)

λ−x−y =
1

(1− 1/λ)2
− 1 =

2/λ− 1/λ2

(1− 1/λ)2
≤ 8

λ

since we chose λ ≥ 2. Plugging this into the previous inequality, we obtain

|p̃′cd| ≥ 2−(c+d)`|p̃cd|
(

1− 4δ · 8

λ

)
≥ 2−(c+d)`−1|p̃cd|

if we pick λ = 4δ+2. Then, observing that W ′ ≥ |p̃′cd| by maximality, and |p̃cd| =
λ−c−dWλ ≥ λ−c−dW by definition of c and d, we get

W ′ ≥ 2−(c+d)`−1 · 4−(c+d)(δ+2)W ≥ 2−2δ(`+2δ+4)−1W

as required. ut

Lemma 2. Under the hypothesis of Corollary 1, namely XY ≤ W 2/(3δ), the
following inequality holds for ε = 1/ log2W and some large enough ` = O(δ):

X ′Y ′ ≤ (W ′)2/(3δ)−ε2−14δ/3

Proof. Note first that

X ′Y ′ ≤ 2−2`XY

≤ 2−2`W 2/(3δ)

≤ 2−2`
(
22δ(`+2δ+4)+1W ′

)2/(3δ)
≤ 2−2`/3+8δ/3+16/3+2/(3δ)(W ′)2/(3δ)

≤ 2−2`/3+22δ/3+6(W ′)ε · (W ′)2/(3δ)−ε2−14δ/3.

Hence, it suffices to show that the logarithm of the first factor

L = log2

(
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)
is negative for some suitable ` = O(δ). We have
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since, without loss of generality, ε ≤ 1. Thus, picking any ` > 17δ+ 11 gives the
required inequality. ut



Corollary 1 is easily deduced from Lemma 2. Indeed, exhaustive search re-
quires (2`+1 + 1)2 applications of Theorem 1 (taking into account all positive,
negative and zero values of α and β), each of which runs in time polynomial in
(logW, 2δ). Since ` = O(δ), the whole computation runs in time polynomial in
(logW, 2δ) as well.

Note that the bound on ` is very coarse, as we did not want to make the com-
putation more cumbersome by using tighter inequalities. In practice, however,
one could of course get away with far fewer bits of exhaustive search.
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