
Finding Small Roots of Bivariate Integer

Polynomial Equations: a Direct Approach

Jean-Sébastien Coron

University of Luxembourg

Abstract. Coppersmith described at Eurocrypt 96 an algorithm for
finding small roots of bivariate integer polynomial equations, based on
lattice reduction. A simpler algorithm was later proposed in [9], but it was
asymptotically less efficient than Coppersmith’s algorithm. In this paper,
we describe an analogous simplification but with the same asymptotic
complexity as Coppersmith. We illustrate our new algorithm with the
problem of factoring RSA moduli with high-order bits known; in practical
experiments our method is several orders of magnitude faster than [9].

Key-words: Coppersmith’s theorem, lattice reduction, cryptanalysis.

1 Introduction

At Eurocrypt 96, Coppersmith described how lattice reduction can be
used to find small roots of polynomial equations [5–7]. Coppersmith’s
technique has found numerous applications for breaking variants of RSA;
for example, cryptanalysis of RSA with d < N .29 [3], polynomial-time fac-
torization of N = prq for large r [4], and cryptanalysis of RSA with small
secret CRT-exponents [18, 1]. Coppersmith’s technique was also used to
obtain an improved security proof for OAEP with small public exponent
[23], and to show the deterministic equivalence between recovering the
private exponent d and factoring N [10, 19].

There are two main theorems from Coppersmith. The first one con-
cerns finding small roots of p(x) = 0 mod N when the factorization of N
is unknown. Coppersmith proved that any root x0 with |x0| < N1/δ can
be found in polynomial time, where δ = deg p. The technique consists in
building a lattice that contains the solutions of the modular polynomial
equation; all small solutions are shown to belong to an hyperplane of the
lattice; an equation of this hyperplane is obtained by considering the last
vector of an LLL-reduced basis; this gives a polynomial h(x) such that
h(x0) = 0 over the integers, from which one can recover x0. The method
can be extended to handle multivariate modular polynomial equations,
but the extension is heuristic only.

Coppersmith’s algorithm was further simplified by Howgrave-Graham
in [13]. Howgrave-Graham’s approach is more direct and consists in build-
ing a lattice of polynomials that are multiples of p(x) and N ; then by
lattice reduction one computes a polynomial with small coefficients such
that h(x0) = 0 mod Nk; if the coefficient of h(x) are sufficiently small
then h(x0) = 0 must hold over Z as well, which enables to recover x0.
Howgrave-Graham’s approach seems easier to analyze, in particular for
the heuristic extension to multivariate modular equations, for which there
is much more freedom in selecting the polynomial multiples than for the
univariate case. Howgrave-Graham’s approach was actually used in all
subsequent applications of Coppersmith’s technique [1, 3, 4, 18–20].

Coppersmith’s second theorem concerns finding small roots of bi-
variate integer polynomial equations p(x, y) = 0 over the integers (not
modulo N). Coppersmith proved that if |x0| < X and |y0| < Y with
XY < W 2/(3δ) then such root (x0, y0) can be found in polynomial-time,
where W := maxij |pij|XiY j . As for the univariate case, the algorithm
consists in building a lattice containing the solutions of the polynomial
equation; all small solutions are shown to belong to an hyperplane of the
lattice, that is obtained by considering the last vector of an LLL-reduced
basis. The equation of the hyperplane gives another polynomial h(x, y)
with the same root (x0, y0) as p(x, y), which enables to recover (x0, y0).
There can be improved bounds depending on the shape of the polyno-
mial p(x, y); see [2] for a complete analysis. As for the univariate case, the
method extends heuristically to more variables. However, as mentioned
in [8], the analysis is more difficult to follow than for the univariate case.

For Coppersmith’s second theorem, a simplification was later proposed
at Eurocrypt 2004 [9], analogous to Howgrave-Graham’s simplification
for the univariate case. It consists in generating an arbitrary integer n of
appropriate size and constructing a lattice of polynomials that are multi-
ples of p(x, y) and n; then by lattice reduction one computes a polynomial
with small coefficients such that h(x0, y0) = 0 mod n; if the coefficients
of h(x, y) are sufficiently small, then h(x0, y0) = 0 holds over Z, which
enables to recover (x0, y0) by taking the resultant of h(x, y) and p(x, y).
As for the univariate case, this approach seems easier to implement; it
was later used in [11] for partial key exposure attacks on RSA, and in [16]
to break one variant of RSA.

However, as opposed to the univariate case, this later simplification
is not fully satisfactory because asymptotically its complexity is worse
than for Coppersmith’s second theorem. Namely, the algorithm in [9] is
polynomial time under the stronger condition XY < W 2/(3δ)−ε, for any

constant ε > 0; but for XY < W 2/(3δ) the algorithm has exponential-time
complexity :

exp
(

O(log2/3 W)
)

,

whereas Coppersmith’s algorithm is polynomial time.
Therefore in this paper we describe a new algorithm for the bivariate

integer case, with a simplification analogous to Howgrave-Graham and
[9], but with the same polynomial-time complexity as in Coppersmith’s
algorithm; namely for XY < W 2/(3δ) our algorithm has complexity

O(log15 W)

using LLL [17] and O(log11 W) using the improved L2 algorithm [21].
This is done by taking a well chosen integer n (rather than arbitrary)
when building the lattice of polynomials; this enables to eliminate most
columns of the lattice and then apply LLL on a sub-lattice of smaller
dimension. Our new algorithm is easy to implement and performs well in
practice. In Section 4 we show the results of practical experiments for the
factoring with high-order bits known attack against RSA; we show that
the running time is improved by several orders of magnitude compared
to [9].

2 Preliminaries

Let u1, . . . , uω ∈ Z
n be linearly independent vectors with ω ≤ n. A lattice

L spanned by 〈u1, . . . , uω〉 is the set of all integer linear combinations of
u1, . . . , uω. Such a set of vectors ui’s is called a lattice basis. We say that
the lattice is full rank if ω = n.

Any two bases of the same lattice L are related by some integral
matrix of determinant ±1. Therefore, all the bases have the same Gramian
determinant det1≤i,j≤ω < ui, uj >. One defines the determinant of the
lattice L as the square root of the Gramian determinant. If the lattice
L is full rank, then the determinant of L is equal to the absolute value
of the determinant of the ω × ω matrix whose rows are the basis vectors
u1, . . . , uω.

Theorem 1 (LLL). Let L be a lattice spanned by (u1, . . . , uω) ∈ Z
n,

where the Euclidean norm of each vector is bounded by B. The LLL al-

gorithm, given (u1, . . . , uω), finds in time O(ω5n log3 B) a vector b1 such

that:

‖b1‖ ≤ 2(ω−1)/4 det(L)1/ω .

In order to obtain a better complexity, one can use an improved version
of LLL due to Nguyen and Stehlé, called the L2 algorithm [21]. The
L2 algorithm achieves the same bound on ‖b1‖ but in time O(ω4n(ω +
log B) log B).

In this paper we also consider lattices generated by a set of vectors
that are not necessarily linearly independent. Let u1, . . . , um ∈ Z

n with
m ≥ n; the lattice L generated by 〈u1, . . . , um〉 consists of all integral
linear combinations of u1, . . . , um. A lattice basis for L can be obtained
by triangularization of u1, . . . , um; a polynomial-time triangularization
algorithm is described in [12]; more details will be given in Section 3.1.

We prove a simple lemma that will be useful when analyzing the de-
terminant of such lattices; it shows that the determinant of a full rank
lattice generated by a matrix of row vectors is not modified when per-
forming elementary operations on the columns of the matrix :

Lemma 1. Let M be an integer matrix with m rows and n columns,

with m ≥ n. Let L be the lattice generated by the rows of M . Let M ′ be a

matrix obtained by elementary operations on the columns of M , and let

L′ be the lattice generated by the rows of M ′. Then if L is full rank, L′ is

full rank with det L′ = det L.

Proof. See Appendix.

3 Our new Algorithm

We consider a polynomial p(x, y) with coefficients in Z with maximum
degree δ independently in x, y :

p(x, y) =
∑

0≤i,j≤δ

pi,jx
iyj.

We are looking for an integer pair (x0, y0) such that p(x0, y0) = 0 and
|x0| < X and |y0| < Y . We assume that p(x, y) is irreducible over the
integers.

Let k be an integer > 0. We consider the set of polynomials :

sa,b(x, y) = xa · yb · p(x, y), for 0 ≤ a, b < k (1)

ri,j(x, y) = xi · yj · n, for 0 ≤ i, j < k + δ (2)

where the integer n is generated in the following way.
Let indexes (i0, j0) be such that 0 ≤ i0, j0 ≤ δ; let S be the ma-

trix of row vectors obtained by taking the coefficients of the polynomials

sa,b(x, y) for 0 ≤ a, b < k, but only in the monomials xi0+iyj0+j for
0 ≤ i, j < k. There are k2 such polynomials sa,b(x, y) and k2 such mono-
mials, so the matrix S is a square matrix of dimension k2 (see Figure 1
for an illustration); we take :

n := |det S|.

We will show in Lemma 3 that for a well chosen (i0, j0), the value |det S|
is lower bounded; in particular, this implies that |det S| > 0 and therefore
matrix S is invertible.

S =

x2y2 x2y xy2 xy

s1,1(x, y) a b c d

s1,0(x, y) a c

s0,1(x, y) a b

s0,0(x, y) a

Fig. 1. Matrix S with p(x, y) = axy + bx + cy + d, for k = 2 and (i0, j0) = (1, 1). We
get n = | detS| = a4.

Let h(x, y) be a linear combination of the polynomials sa,b(x, y) and
ri,j(x, y). Since we have that sa,b(x0, y0) = 0 mod n for all a, b and
ri,j(x0, y0) = 0 mod n for all i, j, we obtain :

h(x0, y0) = 0 mod n.

The following lemma, due to Howgrave-Graham [13], shows that if the
coefficients of polynomial h(x, y) are sufficiently small, then h(x0, y0) = 0
holds over the integers. For a polynomial h(x, y) =

∑

i,j hijx
iyj, we define

‖h(x, y)‖2 :=
∑

i,j |hij |2.

Lemma 2 (Howgrave-Graham). Let h(x, y) ∈ Z[x, y] which is a sum

of at most ω monomials. Suppose that h(x0, y0) = 0 mod n where |x0| ≤
X and |y0| ≤ Y and ‖h(xX, yY)‖ < n/

√
ω. Then h(x0, y0) = 0 holds over

the integers.

Proof. We have:

|h(x0, y0)| =
∣

∣

∣

∑

hijx
i
0y

i
0

∣

∣

∣
=

∣

∣

∣

∣

∑

hijX
iY j

(x0

X

)i (y0

Y

)j
∣

∣

∣

∣

≤
∑

∣

∣

∣

∣

hijX
iY j

(x0

X

)i (y0

Y

)j
∣

∣

∣

∣

≤
∑

∣

∣hijX
iY j
∣

∣

≤
√

ω‖h(xX, yY)‖ < n

Since h(x0, y0) = 0 mod n, this gives h(x0, y0) = 0. ut

We consider the lattice L generated by the row vectors formed with
the coefficients of polynomials sa,b(xX, yY) and ri,j(xX, yY). In total,
there are k2 +(k + δ)2 such polynomials; moreover these polynomials are
of maximum degree δ + k − 1 in x, y, so they contain at most (δ + k)2

coefficients. Let M be the corresponding matrix of row vectors; M is
therefore a rectangular matrix with k2+(k+δ)2 rows and (k+δ)2 columns
(see Figure 2 for an illustration). Observe that the rows of M do not form
a basis of L (because there are more rows than columns), but L is a full
rank lattice of dimension (k + δ)2 (because the row vectors corresponding
to polynomials ri,j(xX, yY) form a full rank lattice).

M =

x2y2 x2y xy2 xy x2 y2 x y 1

s1,1(xX, yY) aX2Y 2 bX2Y cXY 2 dXY

s1,0(xX, yY) aX2Y cXY bX2 dX

s0,1(xX, yY) aXY 2 bXY cY 2 dY

s0,0(xX, yY) aXY bX cY d

r2,2(xX, yY) nX2Y 2

r2,1(xX, yY) nX2Y

r1,2(xX, yY) nXY 2

r1,1(xX, yY) nXY

r2,0(xX, yY) nX2

r0,2(xX, yY) nY 2

r1,0(xX, yY) nX

r0,1(xX, yY) nY

r0,0(xX, yY) n

Fig. 2. Lattice of polynomials with p(x, y) = axy+ bx+ cy+d, for k = 2 and (i0, j0) =
(1, 1)

Let L2 be the sublattice of L where the coefficients corresponding to
all monomials of the form xi0+iyj0+j with 0 ≤ i, j < k are set to zero
(those monomials correspond to the matrix left-hand block in Fig. 2).
There are k2 such monomials, so L2 is a full rank lattice of dimension :

ω = (δ + k)2 − k2 = δ2 + 2 · k · δ. (3)

A matrix basis for L2 can be obtained by first triangularizing M using
elementary row operations and then taking the corresponding submatrix
(see Fig. 3). A polynomial-time triangularization algorithm is described
in [12]; more details will be given in Section 3.1.

x2y2 x2y xy2 xy x2 y2 x y 1

s1,1(xX, yY) aX2Y 2 bX2Y cXY 2 dXY

s1,0(xX, yY) aX2Y cXY bX2 dX

s0,1(xX, yY) aXY 2 bXY cY 2 dY

s0,0(xX, yY) aXY bX cY d

q0(xX, yY) ∗ ∗ ∗ ∗ ∗
q1(xX, yY) ∗ ∗ ∗ ∗
q2(xX, yY) ∗ ∗ ∗
q3(xX, yY) ∗ ∗
q4(xX, yY) ∗

Fig. 3. Triangularized lattice of polynomials with p(x, y) = axy + bx + cy + d, for
k = 2 and (i0, j0) = (1, 1). The 5 polynomials qi(xX, yY) generate lattice L2, with
coefficients only in the 5 monomials x2, y2, x, y and 1. Algorithm LLL is applied on
the corresponding 5-dimensional lattice.

We apply the LLL algorithm on lattice L2. From theorem 1, we obtain
a non-zero polynomial h(x, y) that satisfies h(x0, y0) = 0 mod n and :

‖h(xX, yY)‖ ≤ 2(ω−1)/4 · det(L2)
1/ω. (4)

From lemma 2, this implies that if :

2(ω−1)/4 · det(L2)
1/ω ≤ n√

ω
, (5)

then h(x0, y0) = 0 must hold over the integers.
Now we claim that polynomial h(x, y) cannot be a multiple of p(x, y).

Assume the contrary; then the row vector coefficients of h(x, y) is a linear
combination of the row vector coefficients of polynomials sa,b(x, y) only.
Given that matrix S contains the coefficients of sa,b(x, y) for monomials
xi+i0yj+j0 and given that h(x, y) does not contain such monomials (be-
cause h(x, y) lies in L2), this gives a linear combination of the rows of S
equal to zero with non-zero coefficients; a contradiction since matrix S is
invertible.

The polynomial p(x, y) being irreducible, this implies that p(x, y) and
h(x, y) are algebraically independent with a common root (x0, y0); there-
fore, taking :

Q(x) = Resultanty(h(x, y), p(x, y))

gives a non-zero integer polynomial such that Q(x0) = 0. Using any stan-
dard root-finding algorithm, we can recover x0, and finally y0 by solving
p(x0, y) = 0. This terminates the description of our algorithm.

It remains to compute the determinant of lattice L2. First we consider
the same matrices of row vectors as previously, except that we remove the

XiY j powers. Therefore let M ′ be the same matrix as M , except that
we take the coefficients of polynomials sa,b(x, y) and ri,j(x, y), instead
of sa,b(xX, yY) and ri,j(xX, yY); matrix M ′ has k2 + (k + δ)2 rows and
(k + δ)2 columns. We put the coefficients corresponding to monomials
xi+i0yj+j0 for 0 ≤ i, j < k on the left hand block, which has therefore k2

columns; matrix M ′ has then the following form :

M ′ =





S T
nIk2 0

0 nIw





where S is the previously defined square matrix of dimension k2, while
T is a matrix with k2 rows and ω = k2 + 2kδ columns. Let L′ be the
lattice generated by the rows of M ′, and let L′

2 be the sublattice where
all coefficients corresponding to monomials xi+i0yj+j0 for 0 ≤ i, j < k
are set to zero. Note that lattice L′ corresponds to lattice L without the
XiY j powers, whereas lattice L′

2 corresponds to lattice L2.

Since n = |det S|, we can find an integer matrix S ′ satisfying :

S′ · S = nIk2,

namely S′ is (up to sign) the adjoint matrix (or comatrix) of S, verifying
S′ · S = (det S)Ik2 . By elementary operations on the rows of M ′, we can
therefore subtract S ′ · S to the nIk2 block of M ′; this gives the following
matrix :

M ′
2 =





Ik2 0 0
−S′ Ik2 0
0 0 Iω



 · M ′ =





S T
0 T ′

0 nIω



 , (6)

where T ′ = −S′ ·T is a matrix with k2 rows and ω columns. By elementary
operations on the rows of M ′

2, we obtain :

M ′
3 = U · M ′

2 =





S T
0 T ′′

0



 ,

where T ′′ is a square matrix of dimension ω. We obtain that T ′′ is a row
matrix basis of lattice L′

2, which gives :

detL′ = |det

[

S T
0 T ′′

]

| = |det S| · |detT ′′| = |det S| · detL′
2 = n · detL′

2.

(7)

We now proceed to compute detL′. The polynomial p(x, y) being ir-
reducible, the gcd of its coefficients is equal to 1. This implies that by
elementary operation of the columns of M ′, we can obtain a matrix whose
left upper k2 × k2 block is the identity matrix and the right upper block
is zero. From lemma 1, this does not change the determinant of the gen-
erated lattice. Let V be the corresponding unimodular transformation
matrix of dimension (δ + k)2; this gives :

M ′
4 = M ′ · V =

[

Ik2 0
nV

]

.

By elementary row operations on M ′
4 based on V −1 we obtain :

M ′
5 =

[

Ik2 0
0 V −1

]

· M ′
4 =

[

Ik2 0
nI(δ+k)2

]

=





Ik2 0
nIk2 0

0 nIω



 ,

which again by elementary row operations gives :

M ′
6 = U ′ · M ′

5 =





Ik2 0
0 nIω

0 0



 .

Finally this implies :

detL′ = det

[

Ik2 0
0 nIω

]

= nω (8)

Combining equations (7) and (8), we obtain :

detL′
2 = nω−1.

Recall that the columns of L′
2 correspond to monomials xiyj for 0 ≤ i, j <

δ + k, excluding monomials xi0+iyj0+j for 0 ≤ i, j < k. The columns of
lattice L2 are obtained from the columns of L′

2 by multiplication with the
corresponding X iY j powers; this gives :

det L2 = det L′
2 ·

∏

0≤i,j<δ+k

XiY j

∏

0≤i,j<k

Xi0+iY j0+j

= nω−1 · (XY)(δ+k−1)·(δ+k)2/2−(k−1)·k2/2

(Xi0Y j0)k2

From inequality (5) we obtain the following condition for Howgrave-
Graham’s lemma to apply :

2ω·(ω−1)/4 · (XY)(δ+k−1)·(δ+k)2/2−(k−1)·k2/2

(Xi0Y j0)k
2

≤ n

ωω/2
. (9)

It remains to bound n = |detS| as a function of the coefficients of
p(x, y). Let

W = max
i,j

|pij|XiY j

The following lemma shows that for the right choice of (i0, j0), the deter-
minant of S is bounded in absolute value :

Lemma 3. Given (u, v) such that W = |puv|XuY v, let indices (i0, j0)
that maximize the quantity 8(i−u)2+(j−v)2 |pij|XiY j. Then

(

W

Xi0Y j0

)k2

2−6k2δ2−2k2 ≤ |det S| ≤
(

W

Xi0Y j0

)k2

· 2k2

. (10)

Proof. The proof is very similar to the proof of Lemma 3 in [7]; see Ap-
pendix B.

Combining inequalities (9) and (10) with n = |det S| and
√

ω ≤ 2ω/2,
we obtain the sufficient condition :

2ω·(ω−1)/4 · (XY)(δ+k−1)·(δ+k)2/2−(k−1)·k2/2 ≤ W k2 · 2−6k2δ2−2k2 · 2−ω2/2.

This condition is satisfied if :

XY < W α · 2−9δ,

where

α =
2k2

δ · (3k2 + k(3δ − 2) + δ2 − δ)
.

Finally we obtain the sufficient condition :

XY < W 2/(3δ)−1/k · 2−9δ . (11)

The running time is dominated by the time it takes to run LLL on a
lattice of dimension δ2 + 2kδ, with entries bounded by O(W k2

). Namely,
the entries of a matrix basis for L2 can be reduced modulo n · X iY j

on the columns corresponding to monomial xiyj , because of polynomials
rij(xX, yY) = n·X iY jxiyj. This implies that we can obtain a matrix basis

for L2 whose entries are bounded by O(nX δ+kY δ+k). From inequality (10)
we have n = O(W k2

); using (11) this implies that the matrix entries can
be bounded by O(W k2

). From theorem 1 and taking k > δ, the running
time is therefore bounded by :

O
(

δ6k12 log3 W
)

using the LLL algorithm, and O
(

δ5k9 log2 W
)

using the improved L2

algorithm.
Finally, under the weaker condition

XY < W 2/(3δ),

one can set k = blog W c and do exhaustive search on the high order O(δ)
unknown bits of x0. The running time is then polynomial in 2δ and log W .
Moreover, for a fixed δ, the running time is O(log15 W) using the LLL
algorithm, and O(log11 W) using the improved L2 algorithm. Thus we
have shown :

Theorem 2 (Coppersmith). Let p(x, y) be an irreducible polynomial

in two variables over Z, of maximum degree δ in each variable separately.

Let X and Y be upper bounds on the desired integer solution (x0, y0), and

let W = maxi,j |pij|XiY j. If XY < W 2/(3δ), then in time polynomial in

(log W, 2δ), one can find all integer pairs (x0, y0) such that p(x0, y0) = 0,
|x0| ≤ X, and |y0| ≤ Y .

As in [7], there can be improved bounds depending on the shape of the
polynomial p(x, y) :

Theorem 3 (Coppersmith). With the hypothesis of Theorem 2, except

that p(x, y) has total degree δ, the appropriate bound is :

XY < W 1/δ.

Proof. See the full version of this paper.

3.1 Computing a Basis of L2

In the previous section one needs to compute a basis for lattice L2, which
is then given as input to the LLL algorithm. Such lattice basis can be
obtained by triangularization of matrix M ; a matrix A is upper triangular
if Aij = 0 for i > j (as illustrated in Figure 3). A triangularization
algorithm is described in [12]; for an m × n matrix of row vectors, its

running time is O(n3+εm log1+ε B) for any ε > 0, when the matrix entries
are bounded by B in absolute value.

Observe that we don’t need to triangularize the full matrix M . Namely
from our analysis of the previous section, equation (6) can be used to
obtain a set of row vectors that generate L2; a triangularization algorithm
is then applied to derive a lattice basis for L2. For this we need to compute
matrix S′ such that S ′ · S = (detS) · I; we note that this is implemented
in Shoup’s NTL library [22].

Another possibility is to compute the Hermite Normal form (HNF)
of M . An m × n matrix A of rank n is in HNF if it is upper triangular
and aii > 0 for all 1 ≤ i ≤ n and 0 ≤ aij < ajj for all 1 ≤ j ≤ n and
1 ≤ i < j. A classical result says that if an m × n matrix M is of rank
n then there exists a m × m unimodular matrix U such that U · M is
in HNF; moreover the HNF is unique. An algorithm for computing the
HNF is also described in [12], with the same asymptotic complexity as
triangularization. A HNF algorithm is also implemented in Shoup’s NTL
library 1.

3.2 Difference with the Algorithm in [9]

In [9] a similar lattice L is built but with an integer n which is co-prime
with the constant coefficient of p(x, y). This implies that the full lattice L
must be considered, whose dimension dL = (δ + k)2 grows quadratically
with k instead of linearly as in our sub-lattice of dimension ω = δ2 +2kδ.

With the full lattice L the LLL fudge factor is then 2(dL−1)/4 = 2O(k2)

instead of 2(ω−1)/4 = 2O(k). This translates in the bound for XY into the
condition XY < W 2/(3δ)−1/k · 2−O(k2+δ) instead of XY < W 2/(3δ)−1/k ·
2−9δ . This implies that in [9], in order to reach the bound XY < W 2/(3δ),
one must do exhaustive search on the high order O((log W)/k+k2) bits of
X. The optimum is to take k := O(log1/3 W); this gives a sub-exponential
time complexity :

exp
(

O(log2/3 W)
)

,

instead of the polynomial-time complexity as in Coppersmith’s algorithm
and our new algorithm.

1 The LLL algorithms implemented in Shoup’s NTL library can in principle receive
as input a matrix with m ≥ n, but for large dimensions we got better results when
a lattice basis was provided instead.

3.3 Extension to more Variables

Our algorithm can be extended to solve integer polynomial equations
with more than two variables, but as for Coppersmith’s algorithm, the
extension is heuristic only.

Let p(x, y, z) be a polynomial in three variables over the integers,
of degree δ independently in x, y and z. Let (x0, y0, z0) be an integer
root of p(x, y, z), with |x0| ≤ X, |y0| ≤ Y and |z0| ≤ Z. As for the
bivariate case, we can select indices (i0, j0, k0) that maximize the quantity
XiY jZk|pijk| and consider the matrix S formed by the coefficients of
polynomials sabc(x, y, z) = xaybzc · p(x, y, z) for 0 ≤ a, b, c < m for some
parameter m, but only in the monomials xi0+iyj0+jzk0+k for 0 ≤ i, j, k <
m. Then we take n := |det S| and define the additional polynomials
rijk(x, y, z) = xiyjzkn for 0 ≤ i, j, k < δ + m. Then one builds the lattice
L formed by all linear combinations of polynomials sabc(xX, yY, zZ) and
rijk(xX, yY, zZ), and consider the sublattice L2 obtained by setting to 0
the coefficients of monomials corresponding to matrix S. Lattice L2 has
dimension ω = (δ + m)3 − m3 and using the same analysis as in Section
3, one obtains that detL′

2 = nω−1 where L′
2 is the same lattice as L2 but

without the X iY jZk powers.

One then applies LLL to sublattice L2; if the ranges X,Y,Z are small
enough, we are guaranteed to find a polynomial h1(x, y, z) such that
h1(x0, y0, z0) = 0 over Z and h1(x, y, z) is not a multiple of p(x, y, z),
but this is not enough. The second vector produced by LLL gives us
a second polynomial h2(x, y, z) that can satisfy the same property by
bounding its norm as in [3]. One can then take the resultant between the
three polynomials p(x, y, z), h1(x, y, z) and h2(x, y, z) in order to obtain a
polynomial f(x) such that f(x0) = 0. But we have no guarantee that the
polynomials h1(x, y, z) and h2(x, y, z) will be algebraically independent;
this makes the method heuristic only.

4 Practical Experiments

As mentioned previously, a direct application of Coppersmith’s theorem
for the bivariate integer case is to factor N = pq when half of the most
significant bits (or least significant bits) of p are known.

Theorem 4 (Coppersmith [7]). Given N = pq and the high-order

1/4 log2 N bits of p, one can recover the factorization of N in time poly-

nomial in log N .

Namely, given the most significant bits of p, one can write :

N = (P0 + x) · (Q0 + y),

where P0 and Q0 contain the most significant bits of p and q. This gives
a bivariate integer polynomial equation, for which Theorem 2 can be
applied directly. One gets W = P0 · X ' N1/2 · X which gives XY <
W 2/3 ' N1/3 · X2/3. With X = Y this gives |x0| ≤ X = N1/4.

The result of practical experiments are summarized in Table 1, using
Shoup’s NTL library [22]. For comparison we have implemented our al-
gorithm and the algorithm in [9]. Table 1 shows that our new algorithm
is significantly more efficient; for example, for a 1024-bits modulus with
282 = 256 + 26 bits of p given, our algorithm takes 1 second instead of
13 minutes for the algorithm in [9]; this is due to the fact that LLL is
applied on a lattice of smaller dimension.

Parameters New algorithm Algorithm in [9]
N k bits of p given Dimension LLL Dimension LLL

512 bits 4 144 bits 9 <1 s 25 20 s
512 bits 5 141 bits 11 <1 s 36 2 min
1024 bits 5 282 bits 11 1 s 36 13 min
1024 bits 12 266 bits 25 42 s 169 -

Table 1. Running times for factoring N = pq given the high-order bits of p, using our
algorithm and the algorithm in [9], with Shoup’s NTL library on a 1.6 GHz PC under
Linux

The problem of factoring N = pq given the high-order (or low-order)
bits of p can also be solved using a simple variant of the one variable
modular case, as shown by Howgrave-Graham in [13]. Therefore we have
also implemented Howgrave-Graham’s algorithm to provide a compar-
ison; experimental results are given in Table 2. We obtain that for the
particular case of factoring with high-order bits known, our algorithm and
Howgrave-Graham’s algorithm have roughly the same running time, and
work with the same lattice dimension (but the two lattices are different).

5 Conclusion

We have described a new algorithm for finding small roots of bivariate
polynomial equations over the integers, which is simpler than Copper-
smith’s algorithm but with the same asymptotic complexity. Our simpli-
fication is analogous to the simplification brought by Howgrave-Graham

N k bits of p given Dimension LLL

512 bits 4 144 bits 9 <1 s
512 bits 5 141 bits 11 <1 s
1024 bits 5 282 bits 11 1 s
1024 bits 12 266 bits 25 37 s

Table 2. Running times for factoring N = pq given the high-order bits of p, using
Howgrave-Graham’s algorithm with Shoup’s NTL library on a 1.6 GHz PC running
under Linux.

for the univariate modular case; it improves on the algorithm in [9] which
was not polynomial-time for certain parameters. In practical experiments,
our algorithm performs several order of magnitude faster than the algo-
rithm in [9].

References

1. D. Bleichenbacher and A. May, New Attacks on RSA with Small Secret CRT-
Exponents. In Practice and Theory in Public Key Cryptography (PKC 2006), Lecture
Notes in Computer Science, Springer-Verlag, 2006.

2. J. Blomer and Alexander May, A Tool Kit for Finding Small Roots of Bivariate
Polynomials over the Integers, In Advances in Cryptology (Eurocrypt 2005), Lecture
Notes in Computer Science Volume 3494, pages 251-267, Springer-Verlag, 2005.

3. D. Boneh and G. Durfee, Crypanalysis of RSA with private key d less than N 0.292 ,
proceedings of Eurocrypt ’99, vol. 1592, Lecture Notes in Computer Science.

4. D. Boneh, G. Durfee and N.A. Howgrave-Graham, Factoring n = prq for large r,
proceedings of Crypto ’99, vol. 1666, Lecture Notes in Computer Science.

5. D. Coppersmith, Finding a Small Root of a Univariate Modular Equation, proceed-
ings of Eurocrypt ’96, vol. 1070, Lecture Notes in Computer Science.

6. D. Coppersmith, Finding a Small Root of a Bivariate Integer Equation; Factoring
with High Bits Known, proceedings of Eurocrypt’ 96, vol. 1070, Lecture Notes in
Computer Science.

7. D. Coppersmith, Small solutions to polynomial equations, and low exponent vul-
nerabilities. J. of Cryptology, 10(4)233-260, 1997. Revised version of two articles of
Eurocrypt ’96.

8. D. Coppersmith, Finding small solutions to small degree polynomials. In Proc. of
CALC ’01, LNCS, Sptinger-Verlag, 2001.

9. J.S. Coron, Finding Small Roots of Bivariate Polynomial Equations Revisited. Pro-
ceedings of Eurocrypt 2004, LNCS, Springer-Verlag, 2004.

10. J.S. Coron and A. May, Deterministic Polynomial-Time Equivalence of Computing
the RSA Secret Key and Factoring, Journal of Cryptology, Volume 20, Number 1,
January 2007.

11. M. Ernst, E. Jochemsz, A. May and B. de Weger, Partial Key Exposure Attacks
on RSA up to Full Size Exponents. In Advances in Cryptology (Eurocrypt 2005),
Lecture Notes in Computer Science Volume 3494, pages 371-386, Springer-Verlag,
2005.

12. J. Hafner and K. McCurley, Asymptotically fast triangularization of matrices over
rings, SIAM J. Comput. 20 (1991), 1068-1083.

13. N. A. Howgrave-Graham, Finding small roots of univariate modular equations
revisited. In Cryptography and Coding, volume 1355 of LNCS, pp. 131-142. Springer
Verlag, 1997.

14. N. A. Howgrave-Graham, Approximate integer common divisors. In Proc. of CALC
’01, LNCS. Springer-Verlag, 2001.

15. N. A. Howgrave-Graham, Computational Mathematics Inspired by RSA. PhD the-
sis, University of Bath, 1998.

16. E. Jochemz, A. May, A Strategy for Finding Roots of Multivariate Polynomials
with New Applications in Attacking RSA Variants. In Advances in Cryptology (Asi-
acrypt 2006), Lecture Notes in Computer Science, Springer-Verlag, 2006.

17. A.K. Lenstra, H.W. Lenstra, Jr., and L. Lovász, Factoring polynomials with ra-
tional coefficients. Mathematische Ann., 261:513-534, 1982.

18. A. May, Cryptanalysis of Unbalanced RSA with Small CRT-Exponent. In Ad-
vances in Cryptology (Crypto 2002), Lecture Notes in Computer Science Volume
2442, pages 242-256, Springer Verlag, 2002.

19. A. May, Computing the RSA Secret Key is Deterministic Polynomial Time Equiv-
alent to Factoring, In Advances in Cryptology (Crypto 2004), Lecture Notes in Com-
puter Science Volume 3152, pages 213-219, Springer Verlag, 2004.

20. A. May, Secret Exponent Attacks on RSA-type Schemes with Moduli N = prq.
In Practice and Theory in Public Key Cryptography (PKC 2004), Lecture Notes in
Computer Science Volume 2947, pages 218-230, Springer-Verlag, 2004.

21. P.Q. Nguyen and D. Stehlé, Floating-Point LLL Revisited, Proceedings of Euro-
crypt 2005. LNCS vol. 3494, Springer-Verlag, 2005.

22. V. Shoup, Number Theory C++ Library (NTL) version 5.4. Available at
www.shoup.net.

23. V. Shoup, OAEP reconsidered. Proceedings of Crypto ’01, vol. 2139, Lecture Notes
in Computer Science.

A Proof of Lemma 1

Let R be a matrix basis of L and let U be the unimodular matrix such
that :

U · M =

[

R
0

]

(a unimodular matrix U satisfies det U = ±1). Let V be the unimodular
matrix such that M ′ = M · V . Then :

U · M · V = U · M ′ =

[

R′

0

]

,

where R′ = R · V is a matrix basis for L′. Then

detL′ = |det R′| = |det(R · V)| = |det R| · |det V | = |det R| = det L.

B Proof of Lemma 3

The proof is very similar to the proof of Lemma 3 in [7]. It consists in
showing that a matrix related to S is diagonally dominant, which enables
to derive a lower bound for its determinant.

Let W = maxi,j |pij |XiY j and let indices (u, v) such that W =
|puv|XuY v. Let indices (i0, j0) that maximize the quantity

8(i−u)2+(j−v)2 |pij|XiY j.

The matrix S is obtained by taking the coefficients of the polynomials
xaybp(x, y) for 0 ≤ a, b < k, taking only the coefficients of monomials
xi0+iyj0+j for 0 ≤ i, j < k. We must show :

(

W

Xi0Y j0

)k2

2−6k2δ2−2k2 ≤ |det S| ≤
(

W

Xi0Y j0

)k2

2k2

(12)

We let µ(i, j) = ki + j be an index function; the matrix element
Sµ(a,b),µ(i,j) is the coefficient of xi0+iyj0+j in xaybp(x, y), namely :

Sµ(a,b),µ(i,j) = pi0+i−a,j0+j−b

We multiply each µ(i, j) column of S by

82(i0−u)i+2(j0−v)jXi0+iY j0+j

and we multiply each µ(a, b) row by

8−2(i0−u)a−2(j0−v)bX−aY −b

to create a new matrix S ′ whose element is :

S′
µ(a,b),µ(i,j) = pi0+i−a,j0+j−bX

i0+i−aY j0+j−b82(i0−u)(i−a)+2(j0−v)(j−b)

and we have :
det S′ = det S ·

(

Xi0Y j0
)k2

(13)

Now we show that S ′ is a diagonally dominant matrix. Let denote p̃ij =
pijX

iY j; the elements of matrix S ′ are :

S′
µ(a,b),µ(i,j) = p̃i0+i−a,j0+j−b8

2(i0−u)(i−a)+2(j0−v)(j−b)

From maximality of (i0, j0) we have :

|p̃i0+i−a,j0+j−b| · 8(i−a+i0−u)2+(j−b+j0−v)2 ≤ |p̃i0j0 |8(i0−u)2+(j0−v)2

which gives :

|p̃i0+i−a,j0+j−b| · 82(i−a)(i0−u)+2(j−b)(j0−v) ≤ |p̃i0j0 |8−(i−a)2−(j−b)2

and then :
|S′

µ(a,b),µ(i,j)| ≤ |p̃i0,j0 |8−(i−a)2−(j−b)2

Each diagonal element S ′
µ(a,b),µ(a,b) of matrix S ′ is equal to p̃i0,j0 , and

using :

∑

(i,j)6=(a,b)

8−(i−a)2−(j−b)2 ≤
∑

(i,j)6=(0,0)

8−i2−j2 ≤ −1 +
∑

(i,j)

8−i2−j2

≤ −1 +

(

∑

i

8−i2

)2

≤ 3

4

we obtain that the sum of the absolute values of the off-diagonal entries
in each µ(a, b) row is at most 3

4 |p̃i0,j0 |. Therefore matrix S ′ is diagonally
dominant and each eigenvalue λ must verify :

1

4
|p̃i0,j0 | ≤ |λ| ≤ 7

4
|p̃i0,j0 |

which gives :

|p̃i0,j0 |k
2

2−2k2 ≤ |det S′| ≤ |p̃i0,j0|k
2

2k2

(14)

From the optimality of (i0, j0), we have :

8(i0−u)2+(j0−v)2 |p̃i0,j0 | ≥ 80+0|p̃u,v| = W

which gives :
8−2δ2

W ≤ |p̃i0,j0 | ≤ W

Combining with (14) we obtain :

W k2

2−6k2δ2−2k2 ≤ |det S′| ≤ W k2 · 2k2

and using (13) we obtain (12).

