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Overview

What is Fully Homomorphic Encryption (FHE) ?

Basic properties
Cloud computing on encrypted data: the server should process
the data without learning the data.

4 generations of FHE:

1st gen: [Gen09], [DGHV10]: bootstrapping, slow
2nd gen: [BGV11]: more efficient, (R)LWE based, depth-linear
construction (modulus switching).
3rd gen: [GSW13]: no modulus
switching, slow noise growth
4th gen: [CKKS17]: approximate
computation
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Homomorphic Encryption

Homomorphic encryption: perform operations on plaintexts
while manipulating only ciphertexts.

Normally, this is not possible.

AESK (m1) = 0x3c7317c6bc5634a4ad8479c64714f4f8

AESK (m2) = 0x7619884e1961b051be1aa407da6cac2c

AESK (m1 ⊕m2) = ?

For some cryptosystems with algebraic structure, this is
possible. For example RSA:

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)e mod N
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Homomorphic Encryption with RSA

Multiplicative property of RSA.

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c = c1 · c2 = (m1 ·m2)e mod N

Homomorphic encryption: given c1 and c2, we can compute
the ciphertext c for m1 ·m2 mod N

using only the public-key
without knowing the plaintexts m1 and m2.
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Homomorphism of RSA

RSA homomorphism: decryption function δ(x) = xd mod N

δ(c1 × c2) = δ(c1)× δ(c2) (mod N)

Ciphertexts Z/NZ× Z/NZ Z/NZ

Plaintexts Z/NZ× Z/NZ Z/NZ

×

δ,δ δ

×
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Paillier Cryptosystem

Additively homomorphic: Paillier cryptosystem [P99]

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

Ciphertexts Z/N2Z× Z/N2Z Z/N2Z

Plaintexts Z/NZ× Z/NZ Z/NZ

×

δ,δ δ

+
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Application of Paillier Cryptosystem

Additively homomorphic: Paillier cryptosystem

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

Application: e-voting.

Voter i encrypts his vote mi ∈ {0, 1} into:

ci = gmi · zNi mod N2

Votes can be aggregated using only the public-key:

c =
∏
i

ci = g

∑
i

mi

· z mod N2

c is eventually decrypted to recover
m =

∑
i mi
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Fully homomorphic encryption

Multiplicatively homomorphic: RSA.

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)e mod N

Additively homomorphic: Paillier

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

Fully homomorphic: homomorphic for both addition and
multiplication

Open problem until Gentry’s
breakthrough in 2009.
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Fully homomorphic public-key encryption

We restrict ourselves to public-key encryption of a single bit:

0
Epk−→ 203ef6124 . . . 23ab8716, 1

Epk−→ b327653c1 . . . db326516

Encryption must be probabilistic.

Fully homomorphic property

Given Epk(x) and Epk(y), one can compute Epk(x ⊕ y) and
Epk(x · y) without knowing the private-key.
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x y

+

x ⊕ y

x y

×

x · y

Epk(x) Epk(y)

+

Epk(x ⊕ y)

Epk(x) Epk(y)

×

Epk(x · y)

Ciphertext worldPlaintext world
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Evaluation of any function

Universality

We can evaluate homomorphically any boolean computable
function f : {0, 1}n → {0, 1}

x1 x2 x3 x4 x5

+ × ×

× + +

× +

×

f (x1, x2, x3, x4, x5)

Epk(x1) Epk(x2) Epk(x3) Epk(x4) Epk(x5)

+ × ×

× + +

× +

×

Epk(f (x1, x2, x3, x4, x5))

Ciphertext worldPlaintext world
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Outsourcing computation (1)

Alice wants to outsource the computation of f (x)

but she wants to keep x private

She encrypts the bits xi of x into ci = Epk(xi ) for her pk

and she sends the ci ’s to the server
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Outsourcing computation (2)

ci = Epk(xi )

The server homomorphically evaluates f (x)

by writing f (x) = f (x1, . . . , xn) as a boolean circuit.
Given Epk(xi ), the server eventually obtains c = Epk(f (x))

Finally Alice decrypts c into y = f (x)

The server does not learn x .
Only Alice can decrypt to recover f (x).
Alice could also keep f private.
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Outsourcing computation (2)
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Fully Homomorphic Encryption: first generation

1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

2. van Dijk, Gentry, Halevi and Vaikuntanathan’s scheme over
the integers [DGHV10].

Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
Public-key compression [CNT12]
Batch and homomorphic evaluation of AES [CCKLLTY13].
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The DGHV Scheme

Ciphertext for m ∈ {0, 1}:

c = q · p + 2r + m

where p is the secret-key, q and r are randoms.

Decryption:
(c mod p) mod 2 = m

Parameters:

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits
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Homomorphic Properties of DGHV

Addition:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 + c2 = q′ · p + 2r ′ + m1 + m2

c1 + c2 is an encryption of m1 + m2 mod 2 = m1 ⊕m2

Multiplication:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 · c2 = q′′ · p + 2r ′′ + m1 ·m2

with
r ′′ = 2r1r2 + r1m2 + r2m1

c1 · c2 is an encryption of m1 ·m2

Noise becomes twice larger.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption



Homomorphic Properties of DGHV

Addition:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 + c2 = q′ · p + 2r ′ + m1 + m2

c1 + c2 is an encryption of m1 + m2 mod 2 = m1 ⊕m2

Multiplication:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 · c2 = q′′ · p + 2r ′′ + m1 ·m2

with
r ′′ = 2r1r2 + r1m2 + r2m1

c1 · c2 is an encryption of m1 ·m2

Noise becomes twice larger.
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Homomorphism of DGHV

DGHV ciphertext:

c = q · p + 2r + m

Homomorphism: δ(x) = (x mod p) mod 2

only works if noise r is smaller than p

Ciphertexts Z× Z Z

Plaintexts Z2 × Z2 Z2

+,×

δ,δ δ

⊕,×
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Somewhat homomorphic scheme

The number of multiplications is limited.

Noise grows with the number of multiplications.
Noise must remain < p for correct decryption.

p

×

ρ

×

p

2ρ

×

p

4ρ
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Public-key Encryption with DGHV

For now, encryption requires the knowledge of the secret p:

c = q · p + 2r + m

We can actually turn it into a public-key encryption scheme

Using the additively homomorphic property

Public-key: a set of τ encryptions of 0’s.

xi = qi · p + 2ri

Public-key encryption:

c = m + 2r +
τ∑

i=1

εi · xi

for random εi ∈ {0, 1}.
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Bounding ciphertext size

DGHV multiplication over Z

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 · c2 = q′ · p + 2r ′ + m1 ·m2

Problem: ciphertext size has doubled.

Constant ciphertext size

We publish an encryption of 0 without noise x0 = q0 · p
We reduce the product modulo x0

c3 = c1 · c2 mod x0

= q′′ · p + 2r ′ + m1 ·m2

Ciphertext size remains constant
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Public-key size

x1 =

γ ' 2 · 107 bits

x2 =

xi =

xτ =

τ ' 104

Public-key size:

τ · γ = 2 · 1011 bits = 25 GB !
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DGHV Ciphertext Compression

Ciphertext: c = q · p + 2r + m

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits
Compute a pseudo-random χ = f (seed) of γ bits.

χ =

δ = χ− 2r −m mod p

c = χ− δ

Only store seed and the small
correction δ.
Storage: ' 2 700 bits instead of
2 · 107 bits !
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Compressed Public Key

x1 =

γ ' 2 · 107 bits

x2 =

xi =

xτ =

τ ' 104

Old pk : 25 GB

η ' 2 700 bits

δ1 =

δ2 =

δi =

δτ =

New pk : 3.4 MB !
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Semantic security of DGHV

Semantic security [GM82] for m ∈ {0, 1}:
Knowing pk, the distributions Epk(0) and Epk(1) are
computationally hard to distinguish.

The DGHV scheme is semantically secure, under the
approximate-gcd assumption.

Approximate-gcd problem: given a set of xi = qi · p + ri ,
recover p.
This remains the case with the compressed public-key, under
the random oracle model.
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The approximate GCD assumption

Efficient DGHV variant: secure under the Partial Approximate
Common Divisor (PACD) assumption.

Given x0 = p · q0 and polynomially many xi = p · qi + ri , find p.

Brute force attack on the noise

Given x0 = q0 · p and x1 = q1 · p + r1 with |r1| < 2ρ, guess r1
and compute gcd(x0, x1 − r1) to recover p.
Requires 2ρ gcd computation
Countermeasure: take a sufficiently large ρ
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Improved attack against PACD [CN12]

Given x0 = p · q0 and many xi = p · qi + ri , find p.

Improved attack in Õ(2ρ/2) [CN12]

p = gcd

(
x0,

2ρ−1∏
i=0

(x1 − i) mod x0

)

= gcd

(
x0,

m−1∏
a=0

m−1∏
b=0

(x1 − b −m · a) mod x0

)
, where m = 2ρ/2

= gcd

(
x0,

m−1∏
a=0

f (a) mod x0

)

f (y) :=
m−1∏
b=0

(x1 − b −m · y) mod x0

Evaluate the polynomial f (y) at m
points in time Õ(m) = Õ(2ρ/2)
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Approximate GCD attack

Consider t integers: xi = p · qi + ri and x0 = p · q0.

Consider a vector ~u orthogonal to the xi ’s:

t∑
i=1

ui · xi = 0 mod x0

This gives
∑t

i=1 ui · ri = 0 mod p.

If the ui ’s are sufficiently small, since the ri ’s are small this
equality will hold over Z.

Such vector ~u can be found using LLL.

By collecting many orthogonal vectors one can recover ~r and
eventually the secret key p

Countermeasure

The size γ of the xi ’s must be
sufficiently large.
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The DGHV scheme (simplified)

Key generation:
Generate a set of τ public integers:

xi = p · qi + ri , 1 ≤ i ≤ τ

and x0 = p · q0, where p is a secret prime.
Size of p is η. Size of xi is γ. Size of ri is ρ.

Encryption of a message m ∈ {0, 1}:
Generate random εi ← {0, 1} and a random integer r in
(−2ρ

′
, 2ρ

′
), and output the ciphertext:

c = m + 2r + 2
τ∑

i=1

εi · xi mod x0

Decryption:

c ≡ m + 2r + 2
τ∑

i=1

εi · ri (mod p)

Output m← (c mod p) mod 2
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The DGHV scheme (contd.)

Noise in ciphertext:

c = m + 2 · r ′ mod p where r ′ = r +
τ∑

i=1

εi · ri
r ′ is the noise in the ciphertext.
It must remain < p for correct decryption.

Homomorphic addition: c3 ← c1 + c2 mod x0

c1 + c2 = m1 + m2 + 2(r ′1 + r ′2) mod p
Works if noise r ′1 + r ′2 still less than p.

Homomorphic multiplication: c3 ← c1 · c2 mod x0

c1 · c2 = m1 ·m2 + 2(m1 · r ′2 + m2 · r ′1 + 2r ′1 · r ′2) mod p
Works if noise r ′1 · r ′2 remains less than p.

Somewhat homomorphic scheme

Noise grows with every homomorphic
addition or multiplication.
This limits the degree of the polynomial
that can be applied on ciphertexts.
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Gentry’s technique to get fully homomorphic encryption

To build a FHE scheme, start from the somewhat
homomorphic scheme, that is:

Only a polynomial f of small degree can computed
homomorphically, for F = {f (b1, . . . , bt) : deg f ≤ d}
Vpk(f ,Epk(b1), . . . ,Epk(bt))→ Epk(f (b1, . . . , bt))

Ciphertexts Ct C

Plaintexts (Z2)t Z2

Vpk (f ,···)

Dsk (··· ) Dsk (·)

f

f ∈ F
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Ciphertext refresh: bootstrapping

Gentry’s breakthrough idea: refresh the ciphertext using the
decryption circuit homomorphically.

Evaluate the decryption polynomial not on the bits of the
ciphertext c and the secret key sk , but homomorphically on
the encryption of those bits.

Decryption
Circuit

× +

+

Ciphertext bits Secret key bits
0 1 11 0 1 01

1
Plaintext

bit

⇒
Decryption

Circuit

× +

+

Ciphertext bits
Encryption of
secret key bits

0 1 11 ? ? ??

?

Encryption of
plaintext bit:

refreshed
ciphertext
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the same plaintext.

Decryption
Circuit

× +

+

Ciphertext bits Secret key bits
0 1 11 0 1 01

1
Plaintext

bit

⇒
Decryption

Circuit

× +

+

Ciphertext bits
Encryption of
secret key bits

0 1 11 ? ? ??

?

Encryption of
plaintext bit:

refreshed
ciphertext
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Bootstrapping

Evaluating the decryption function homomorphically

with f = Dsk(·)
We obtain a new ciphertext C? with possibly less noise

Ciphertexts Ct C

Plaintexts (Z2)t Z2

Vpk (f ,···)

Dsk (··· ) Dsk (·)

f

f ∈ F
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We obtain a new ciphertext C? with possibly less noise

Ciphertexts Ct C

Plaintexts (Z2)t Z2

Vpk (f ,···)

Dsk (··· ) Dsk (·)

f

f ∈ F

C = (c1, . . . , ct) m

(Epk(c1), . . . ,Epk(ct)) C ?
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Bootstrapping (2)

Evaluating the decryption function homomorphically

Actually we use f = D(·, ·)
Using public (Epk(sk1), . . . ,Epk(skt))
We obtain a new ciphertext C? with possibly less noise

Ciphertexts C2t C

Plaintexts (Z2)2t Z2

Vpk (f ,···)

Dsk (··· ) Dsk (·)

f

f ∈ F
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Evaluating the decryption function homomorphically

Actually we use f = D(·, ·)
Using public (Epk(sk1), . . . ,Epk(skt))
We obtain a new ciphertext C? with possibly less noise

Ciphertexts C2t C

Plaintexts (Z2)2t Z2

Vpk (f ,···)

Dsk (··· ) Dsk (·)

f

f ∈ F

SK = (sk1, . . . , skt) m
C = (c1, . . . , ct)

(Epk(sk1), . . . ,Epk(skt))
(Epk(c1), . . . ,Epk(ct)) C ?
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Squashing the decryption procedure

Evaluating the decryption function homomorphically

We use f = D(·, ·).
We must have f ∈ F : f must be a low-degree polynomial in
the inputs
!!! This is not the case with D(p, c) = (c mod p) mod 2

“Squash” the decryption procedure:

express the decryption function as a low degree polynomial in
the bits of the ciphertext c and the secret key sk (equivalently
a boolean circuit of small depth).

Ciphertexts C2t C

Plaintexts (Z2)2t Z2

Vpk (f ,···)

Dsk (··· ) Dsk (·)

f
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Ciphertext refresh

Refreshed ciphertext:

If the degree of the decryption polynomial D(·, ·) is small
enough, the resulting noise in the new ciphertext can be
smaller than in the original ciphertext.

C

Refresh

C ?
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Fully homomorphic encryption

Fully homomorphic encryption

Using this “ciphertext refresh” procedure, the number of
homomorphic operations becomes unlimited
We get a fully homomorphic encryption scheme.

Refresh Refresh

×
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The squashed scheme from DGHV

The basic decryption m← (c mod p) mod 2 cannot be
directly expressed as a boolean circuit of low depth.

Alternative decryption formula for c = q · p + 2r + m

We have q = bc/pe and c = q + m (mod 2)
Therefore

m← [c]2 ⊕ [bc · (1/p)e]2

Idea (Gentry, DGHV). Secret-share 1/p as a sparse subset
sum:

1/p =
Θ∑
i=1

si · yi + ε
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Squashed decryption

Alternative equation

m← [c]2 ⊕ [bc · (1/p)e]2

Secret-share 1/p as a sparse subset sum:

1/p =
Θ∑
i=1

si · yi + ε

with random public yi with precision 2−κ, and sparse secret
si ∈ {0, 1}.
Decryption becomes:

m← [c]2 ⊕

[⌊
Θ∑
i=1

si · (yi · c)

⌉]
2
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Squashed decryption

Alternative decryption equation:

m← [c]2 ⊕

[⌊
Θ∑
i=1

si · zi

⌉]
2

where zi = yi · c for public yi ’s

Since si is sparse with H(si ) = θ, only n = dlog2(θ + 1)e bits
of precision for zi = yi · c is required

With θ = 15, only n = 4 bits of precision for zi = yi · c
The decryption function can then be expressed as a
polynomial of low degree (30) in the si ’s.
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The decryption circuit

We must compute: m← [c]2 ⊕
[⌊

Θ∑
i=i

si · zi
⌉]

2

Trick from Gentry-Halevi:

Split the Θ secret key bits into θ boxes of size B = Θ/θ each.
Then only one secret key bit inside every box is equal to one

New decryption formula: m← [c]2 ⊕
[⌊

θ∑
k=1

(
B∑
i=1

sk,izk,i

)⌉]
2

The sum qk
def
=
∑B

i=1 sk,izk,i is obtained by adding B numbers,
only one being non-zero.
To compute the j-th bit of qk it
suffices to xor all the j-th bits of the
numbers sk,i · zk,i .
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The decryption circuit

sb0
1 sb1

1

× =

Sb1
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1

0

0
0
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0
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× 1 0 0 1 0
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Grade School addition

The decryption equation is now:

m← [c]2 ⊕

[⌊
θ∑

k=1

qk

⌉]
2

where the qk ’s are rational in [0, 2) with n bits of precision
after the binary point.

11111

11111

11111

248

359

79

15

15 815
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Gentry’s Bootstrapping

The decryption circuit

Can now be expressed as a polynomial of small degree d in the
secret-key bits si , given the zi = c · yi .

m = Czi (s1, . . . , sΘ)

To refresh a ciphertext:

Publish an encryption of the secret-key bits σi = Epk(si )
Homomorphically evaluate m = Czi (s1, . . . , sΘ), using the
encryptions σi = Epk(si )
We get Epk(m), that is a new ciphertext but possibly with less
noise (a “recryption”).
The new noise has size ' d · ρ and is
independent of the initial noise.
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Four generations of FHE

First generation: bootstrapping, slow

Breakthrough scheme of Gentry [G09], based on ideal lattices.
FHE over the integers: [DGHV10]

Second generation: [BV11], [BGV11]

More efficient, (R)LWE based. Relinearization, depth-linear
construction with modulus switching.

Third generation [GSW13]

No modulus switching, slow noise growth
Improved bootstrapping: [BV14], [AP14]

Fourth gen: [CKKS17]

Approximate floating point arithmetic
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Second generation: LWE-based encryption

Homomorphic encryption based on polynomial evaluation

Homomorphism: δ : Zq[~x ]→ Zq[x ] given by evaluation at
secret ~s = (s1, . . . , sn)

Ciphertexts Zq[~x ]× Zq[~x ] Zq[~x ]

Plaintexts Zq × Zq Zq

+,×

δ,δ δ

+,×

One must add some noise, otherwise broken by linear algebra.

f (~s) = 2e + m mod q, for some small noise e ∈ Zq

LWE assumption [R05]

Linear polynomials fi (~x) with
|fi (~s) mod q| � q are comp. indist.
from random fi (~x) modulo q.
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Regev’s scheme based on LWE [R05]

Key generation

Secret-key: ~s ∈ (Zq)n

Public-key: fi (~x) such that fi (~s) = 2ei with ei � q

Encryption of m ∈ {0, 1}

c(~x) = m +
τ∑

i=1

bi · fi (~x) for random bi ← {0, 1}

Decryption

Compute v = c(~s) = m + 2 ·
τ∑

i=1

bi · ei (mod q)

Recover m = v mod 2
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The BV scheme: relinearization [BV11]

Regev’s ciphertext:

c(~x) such that c(~s) = m + 2e mod q, with ~s ∈ (Zq)n.

Multiplication of Regev’s ciphertext

c(~x) = c1(~x) · c2(~x)
c(~s) = (m1 + 2e1) · (m2 + 2e2) = m1m2 + 2e (mod q)

Problem: c(~x) is a quadratic polynomial with (n + 1)2

coefficients !

instead of n + 1 for the original ciphertexts c1(~x) and c2(~x)

Relinearization [BV11]:

Publish polynomials pj,k,t(~x) = 2txjxk + Lj,k,t(~x)
with pj,k,t(~s) = 2ej,k,t mod q
remove the quadratic terms ajkxjxk by
subtraction, using a binary
decomposition of ajk .
Only linear terms remain, so ciphertext
size remains constant
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The BGV scheme: modulus switching [BGV11]

Modulus switching of c(~x) = 〈~c , (1, ~x)〉 mod q to modulo p

Let ~c ′ be the integer vector closest to p/q · ~c such that
~c ′ = ~c mod 2
Then [~c ′, ~s ]p = [~c , ~s ]q mod 2: decryption remains the same

and 〈~c ′, ~s 〉 ' (p/q) · 〈~c , ~s 〉: noise is reduced by a factor q/p.

Application: reducing noise growth. Assume p/q = 2−ρ.

ρ

q

2ρ

q

ρ

p

× p/q

Noise reduction without bootstrapping !
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Leveled fully homomorphic encryption

Previous model: exponential growth of noise

ρ

q

2ρ

q

4ρ

q

8ρ

q

× × ×

Only bootstrapping can give FHE

New model: modulus switching after each multiplication layer

with a ladder of moduli pi such that pi+1/pi = 2−ρ

ρ

p1

2ρ

p1

ρ

p2

2ρ

p2

ρ

p3

2ρ

p3

ρ

p4

2ρ

p4
× S × S × S ×

Leveled FHE

Size of p1 linear in the circuit depth
Parameters depend on the depth
Can accommodate polynomial depth
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RLWE-based schemes

Regev’s scheme based on LWE

Secret-key: ~s ∈ (Zq)n

Public-key: fi (~x) such that fi (~s) = 2ei with ei � q

c(~x) = m +
τ∑

i=1

bi · fi (~x) for random bi ← {0, 1}

m = (c(~s) mod q) mod 2

RLWE-based scheme

We can replace Zq by the polynomial ring
Rq = Zq[x ]/ < xk + 1 >, where k is a power of 2.
Addition and multiplication of polynomials are performed
modulo xk + 1 and prime q.
We can take n = 1.
We can take m ∈ R2 = Z2[x ]/<xk + 1>
instead of {0, 1}: more bandwidth
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Third generation of FHE: ciphertext matrices

Homomorphic encryption with matrices [GSW13]

Ciphertexts are square matrices instead of vectors
Homomorphism: δ(C , ~v) = µ where µ is eigenvalue for secret
eigenvector ~v
Homomorphically add and multiply ciphertext using (roughly)
matrix addition and multiplication

Ciphertexts ZN×N × ZN×N ZN×N

Plaintexts Z× Z Z

+,×

δ,δ δ

+,×

One must add some noise, otherwise
broken by linear algebra

C · ~v = µ · ~v + ~e (mod q)
for message µ ∈ Z, for some small
noise ~e.
Security based on LWE problem.
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Ciphertext matrices: slow noise growth

Noise grow of ciphertext multiplication [GSW13]:

C1 · ~v = µ1 · ~v + ~e1 (mod q), C2 · ~v = µ2 · ~v + ~e2 (mod q)
(C1 · C2) · ~v = C1 · (µ2 · ~v + ~e2) = (µ2 · µ1) · ~v + ~e3

with ~e3 = µ2 · ~e1 + C1 · ~e2

Slow noise growth:

Ensure µi ∈ {0, 1}, using only NAND gates µ3 = 1− µ1 · µ2

Ciphertext flattening: ensure Ci ∈ {0, 1}N×N , using binary
decomposition and ~v = (s1, . . . , 2

`s1, . . . , sn, . . . , 2
`sn).

If ‖~e1‖∞ ≤ B and ‖~e2‖∞ ≤ B, ‖~e3‖∞ ≤ (N + 1) · B
Leveled FHE

At depth L, ‖~e‖∞ ≤ (N + 1)L · B
One can take q > 8 · B · (N + 1)L and
accommodate polynomial depth L.
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Fourth generation: homomorphic encryption for
approximate numbers

Homomorphic encryption for real numbers [CKKS17]

Floating point arithmetic, instead of exact arithmetic.
Starting point: Regev’s scheme.
Homomorphism: δ : Zq[~x ]→ Zq given by evaluation at ~s

Ciphertexts Zq[~x ]× Zq[~x ] Zq[~x ]

Plaintexts Zq × Zq Zq

+,×

δ,δ δ

+,×

One must add some noise, otherwise broken by linear algebra.

f (~s) = m + e mod q, for small e ∈ Zq

Noise only affects the low-order bits of
m: approximate computation, as in
floating point arithmetic.
Application: neural networks.
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[CKKS17]: ciphertext multiplication and rescaling

Ciphertext multiplication c(~x) = c1(~x) · c2(~x)

c(~s) = (m1 + e1) · (m2 + e2) = m1m2 + e? (mod q)
with e? = m1e2 + e1m2 + e1e2.

Rescaling of ciphertext:

c ′(~x) = b~c(x)/pe (mod q/p)
Valid encryption of bm/pe with noise ' e/p
Similar to modulus switching

e1q

m1

e2q

m2

×

e?q

m1m2

e ′q/p

m1m2/p
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Conclusion

Main challenge: make FHE pratical !

New primitives
Libraries (HElib)
Compiler to homomorphic evaluation

Applications

Homomorphic machine learning: evaluate a neural network
without revealing the weights.
Genome-wide association studies: linear regression, logistic
regression.
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