Introduction to Fully Homomorphic Encryption

Jean-Sébastien Coron

University of Luxembourg

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

e What is Fully Homomorphic Encryption (FHE) ?

e Basic properties
e Cloud computing on encrypted data: the server should process
the data without learning the data.

¥ ¢

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

e What is Fully Homomorphic Encryption (FHE) ?
e Basic properties
e Cloud computing on encrypted data: the server should process
the data without learning the data.

¥ ¢

@ 4 generations of FHE:

o 1st gen: [Gen09], [DGHV10]: bootstrapping, slow

o 2nd gen: [BGV11]: more efficient, (R)LWE based, depth-linear
construction (modulus switching).

e 3rd gen: [GSW13]: no modulus
switching, slow noise growth

o 4th gen: [CKKS17]: approximate
computation

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

e What is Fully Homomorphic Encryption (FHE) ?
e Basic properties
e Cloud computing on encrypted data: the server should process
the data without learning the data.

¥ ¢

@ 4 generations of FHE:

o 1st gen: [Gen09], [DGHV10]: bootstrapping, slow

o 2nd gen: [BGV11]: more efficient, (R)LWE based, depth-linear
construction (modulus switching).

e 3rd gen: [GSW13]: no modulus
switching, slow noise growth

o 4th gen: [CKKS17]: approximate
computation

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic Encryption

@ Homomorphic encryption: perform operations on plaintexts
while manipulating only ciphertexts.

e Normally, this is not possible.

AESk(my) = 0x3c7317c6bcb634a4ad8479c64714£4£8
AESk(ms) 0x7619884e1961b051belaad07dabecac2c
AESK(m1 D m2) = 7

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic Encryption

@ Homomorphic encryption: perform operations on plaintexts
while manipulating only ciphertexts.

e Normally, this is not possible.

AESk(my) = 0x3c7317c6bcb634a4ad8479c64714£4£8
AESk(ms) 0x7619884e1961b051belaad07dabecac2c
AESK(m1 D m2) = 7

@ For some cryptosystems with algebraic structure, this is
possible. For example RSA:
cg = m® mod N

=c1-c=(my-my)® mod N
— e
¢ = m,* mod N

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic Encryption with RSA

@ Multiplicative property of RSA.

c1 = m;® mod N
=c=c-c=(m-mp)®modN
¢ = my* mod N

@ Homomorphic encryption: given ¢; and ¢, we can compute
the ciphertext ¢ for my - my mod N
e using only the public-key
e without knowing the plaintexts m; and m;.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphism of RSA

@ RSA homomorphism: decryption function §(x) = x4 mod N

d(c1 X @) =d(c1) x () (mod N)

Ciphertexts Z/NZ x Z)NZ ——— 7./NZ
Jé,o‘ l§
Plaintexts Z/NZ x Z./JNZ —=— 7/ NZ

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Paillier Cryptosystem

e Additively homomorphic: Paillier cryptosystem [P99]

c1 = g™ mod N?
= C1-C = gm1+m2 (V] mod N2
o = g™ mod N?

Ciphertexts ZJN?Z x 7.N?Z ——— 7./ N?Z
Plaintexts Z/NZ x ZJNZ — 7./NZ

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Application of Paillier Cryptosystem

o Additively homomorphic: Paillier cryptosystem

c1 = g™ mod N?
=16 = g’"1+m2 M mod N2
c = g™ mod N?

@ Application: e-voting.
o Voter i encrypts his vote m; € {0, 1} into:

c=g™ -z mod N?

e Votes can be aggregated using only the public-key:

c—Hc, i zmodN2

e c is eventually decrypted to recover

m=>3.m;

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully homomorphic encryption

@ Multiplicatively homomorphic: RSA.

1 = m;® mod N
== (my-m)® mod N
¢ = my* mod N

o Additively homomorphic: Paillier

c1 = g™ mod N?
= C1-C = gm1+m2 (V] mod N2
o = g™ mod N?

@ Fully homomorphic: homomorphic for both addition and
multiplication
e Open problem until Gentry's
breakthrough in 2009.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully homomorphic public-key encryption

@ We restrict ourselves to public-key encryption of a single bit:

o 0% 203ef6124 . .. 23ab8746, 1 - b327653cl . .. db32654¢
e Encryption must be probabilistic.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully homomorphic public-key encryption

@ We restrict ourselves to public-key encryption of a single bit:
o 0 ELk> 203ef6124 . ..23ab8746, 1 Ei) b327653cl . ..db326516
e Encryption must be probabilistic.

@ Fully homomorphic property

o Given Epc(x) and Epk(y), one can compute Epc(x @ y) and
Epk(x - y) without knowing the private-key.

X y X y Epk(X) Epk(y) Epk(X) Epk(}’)
\(?/ \(?/ \C?/ \C?/
x®y Xy Ex(x®y) Epi(x - y)
Plaintext world Ciphertext world

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Evaluation of any function

@ Universality

o We can evaluate homomorphically any boolean computable
function f : {0,1}" — {0,1}

X1 X2 X3 Xa X5 Eo(x1) Epk(x2) Epk(x3) Epk(xa) Epk(xs)
N/ \ ./ \ /)
Q& & & /5

oRo e.e S
QP

f(x1, %2, X3, X4, X5) Epi(f(x1, X2, X3, Xa, X5))

Plaintext world Ciphertext world

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Outsourcing computation (1)

S
0

@ Alice wants to outsource the computation of f(x)
@ but she wants to keep x private

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Outsourcing computation (1)

¢ = Cpk (Xi) '

=

@ Alice wants to outsource the computation of f(x)
@ but she wants to keep x private

@ She encrypts the bits x; of x into ¢; = Epk(x;) for her pk
e and she sends the ¢;'s to the server

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Outsourcing computation (2)

l_[_nl] G = Epk(X,') R '

@ The server homomorphically evaluates f(x)
e by writing f(x) = f(x1,...,Xs) as a boolean circuit.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Outsourcing computation (2)

l_[_nl] G = Epk(X,') R '

¢ = Ep(f(x))

@ The server homomorphically evaluates f(x)
e by writing f(x) = f(x1,...,Xs) as a boolean circuit.
o Given Ep(x;), the server eventually obtains ¢ = Epi(f(x))

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Outsourcing computation (2)

m ¢ = Epi(xi) '

¢ = Ep(f(x))

y = Dsk(c) = f(x)

@ The server homomorphically evaluates 7(x)

o by writing f(x) = f(xi,...,x,) as a boolean circuit.

o Given Epc(x;), the server eventually obtains ¢ = Epx(f(x))
e Finally Alice decrypts c into y = f(x)

o The server does not learn x.

o Only Alice can decrypt to recover f(x).
@ Alice could also keep f private.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully Homomorphic Encryption: first generation

e 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

o Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully Homomorphic Encryption: first generation

e 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].
o Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

@ 2. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over
the integers [DGHV10].
o Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.

o Public-key compression [CNT12]
o Batch and homomorphic evaluation of AES [CCKLLTY13].

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV Scheme

e Ciphertext for m € {0,1}:
c=q-p+2r+m

where p is the secret-key, g and r are randoms.
@ Decryption:
(c mod p) mod2=m
@ Parameters:
=~ 2107 bits
p: n =~ 2700 bits

ce=[_J [|

r: p~T71 bits

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic Properties of DGHV

o Addition:

a=q-p+2n+m

=ca+ao=4q- 2 + my + m
=qa-p+2r—+m 1T @=q-prer+m+m

@ ¢1 + ¢ is an encryption of m; + my mod 2 = m; my

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic Properties of DGHV

o Addition:

a=q-p+2n+m

=ca+ao=4q- 2 + my + m
=qa-p+2r—+m 1T @=q-prer+m+m

@ ¢1 + ¢ is an encryption of m; + my mod 2 = m; my
@ Multiplication:

a=q-p+2n+m

o =d - 2 .
Q=q- - p+t2n+m L@ =P mm

with
r" =2rrmn 4+ rnmy+ rnm

@ ¢ - ¢ is an encryption of my - my
o Noise becomes twice larger.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphism of DGHV

@ DGHYV ciphertext:

c=q-p+2r+m

e Homomorphism: §(x) = (x mod p) mod 2
e only works if noise r is smaller than p

=+, X

Ciphertexts 7x7 ——— 7
J&o‘ Jo

. ®, %
Plaintexts Do X Ly ——— 7o

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Somewhat homomorphic scheme

@ The number of multiplications is limited.

o Noise grows with the number of multiplications.
o Noise must remain < p for correct decryption.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Public-key Encryption with DGHV

@ For now, encryption requires the knowledge of the secret p:

c=q-p+2r+m

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Public-key Encryption with DGHV

@ For now, encryption requires the knowledge of the secret p:

c=q-p+2r+m

@ We can actually turn it into a public-key encryption scheme
e Using the additively homomorphic property

@ Public-key: a set of 7 encryptions of 0's.
Xji=qj-p+2r

@ Public-key encryption:

-
c:m—|—2r—|—26;-x,'
i=1

for random ¢; € {0,1}.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Bounding ciphertext size

e DGHYV multiplication over Z

c1=¢q1-p+2n+m

=c -=q - 2 + my-m
= p+2r+ m 1'C=q -p+2r +my-my

e Problem: ciphertext size has doubled.
@ Constant ciphertext size

e We publish an encryption of 0 without noise xg = qo - p
o We reduce the product modulo xg

G3=0C"C mod X0

=q" -p+2r+m-m

o Ciphertext size remains constant

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Public-key size

v ~2-107 bits

x=[_| []
x=[_| []

T~ 10*

@ Public-key size:
o 7.7 =2-10" bits = 25 GB !

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

DGHV Ciphertext Compression

o Ciphertext: c=q-p+2r+m
v =~2-107 bits

p: 1~ 2700 bits
-~

c=[_J 1 |

-
r: p~T71 bits

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

DGHV Ciphertext Compression

o Ciphertext: c=q-p+2r+m
v =~2-107 bits

p: 1~ 2700 bits
-~

c=[_J 1 |

r: p<’_*—7>l bits
e Compute a pseudo-random x = f(seed) of ~ bits.

x=L_J |
0=x—2r—mmod p []

c=x-d_J | [|

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

DGHV Ciphertext Compression

o Ciphertext: c=q-p+2r+m
v =~2-107 bits

p: 1~ 2700 bits
-~

c=[_J 1 |

r: p<’_*—7>l bits
e Compute a pseudo-random x = f(seed) of ~ bits.

x=L_J |
0=x—2r—mmod p []

c=x-d_J | [|

e Only store seed and the small
correction 6.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

DGHV Ciphertext Compression

o Ciphertext: c=q-p+2r+m
v =~2-107 bits

p: 1~ 2700 bits
-~

c=[_J 1 |

r: p<’_*—7>l bits
e Compute a pseudo-random x = f(seed) of ~ bits.

x=L_J |
0=x—2r—mmod p []

c=x-d_J | [|

e Only store seed and the small
correction §.

e Storage: ~ 2700 bits instead of
2107 bits !

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Compressed Public Key

v 22107 bits 1~ 2 700 bits

B ——

xa=[_J [11 =[]
x=[_J I [=__1]

T~ 10*

= ' u P —

x =L I L] =]
Old pk: 25 GB New pk: 3.4 MB !

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Semantic security of DGHV

e Semantic security [GM82] for m € {0,1}:

o Knowing pk, the distributions E,«(0) and E,x(1) are
computationally hard to distinguish.

@ The DGHYV scheme is semantically secure, under the
approximate-gcd assumption.
e Approximate-gcd problem: given a set of x; = q; - p+ 17,
recover p.
e This remains the case with the compressed public-key, under
the random oracle model.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The approximate GCD assumption

o Efficient DGHV variant: secure under the Partial Approximate
Common Divisor (PACD) assumption.

e Given xp = p- go and polynomially many x; = p- q; + r;, find p.
@ Brute force attack on the noise

o Given xo =qo-pand x; = g1 - p+ r with || < 2”, guess ry

and compute gecd(xg, x1 — r1) to recover p.
e Requires 2” gcd computation
o Countermeasure: take a sufficiently large p

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Improved attack against PACD [CN12]

@ Given xg = p-qo and many x; = p - q; + r;, find p.
o Improved attack in O(27/2) [CN12]

20 -1
p = gcd <xo, H (x1 — i) mod x0>

o f(y):= [l (xa—b—m-y)mod xo

o Evaluate the polynomial f(y) at m
points in time O(m) = O(2°/?)

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Approximate GCD attack

o Consider t integers: x; = p-qg;+ r; and xg = p - qo.
o Consider a vector i orthogonal to the x;'s:

t
Zu;~x,-:0 mod Xxp

i=1

o This gives 3.7, u;-r; =0 mod p.
@ If the u;'s are sufficiently small, since the r;'s are small this
equality will hold over Z.
e Such vector & can be found using LLL.

@ By collecting many orthogonal vectors one can recover " and
eventually the secret key p
@ Countermeasure

e The size 7y of the x;'s must be
sufficiently large.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHYV scheme (simplified)

o Key generation:
o Generate a set of 7 public integers:

Xi=p-qit+r, 1<i<T

and xp = p - qo, where p is a secret prime.
o Size of pis 7. Size of x; is . Size of r; is p.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHYV scheme (simplified)

o Key generation:
o Generate a set of 7 public integers:
Xi=p-qit+r, 1<i<T
and xp = p - qo, where p is a secret prime.
o Size of pis 7. Size of x; is . Size of r; is p.

@ Encryption of a message m € {0,1}:
o Generate random ¢; < {0,1} and a random integer r in
(—=2#,27"), and output the ciphertext:

c:m+2r+225;-x,- mod xg
i=1

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHYV scheme (simplified)

o Key generation:
o Generate a set of 7 public integers:

Xi=p-qit+r, 1<i<T

and xp = p - qo, where p is a secret prime.
o Size of pis 7. Size of x; is . Size of r; is p.

@ Encryption of a message m € {0,1}:
o Generate random ¢; < {0,1} and a random integer r in
(—=2#,27"), and output the ciphertext:

c:m+2r+225;-x,- mod xg
i=1

@ Decryption:

.
czm+2r—|—225,--r,- (mod p)
i=1

o Output m < (¢ mod p) mod 2

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (contd.)

@ Noise in ciphertext:

-

ec=m+2-r modpwherer' =r+> ¢ -r
i=1

o r’ is the noise in the ciphertext.

o It must remain < p for correct decryption.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (contd.)

@ Noise in ciphertext:
-
ec=m+2-r modpwherer' =r+> ¢ -r
i=1
o r’ is the noise in the ciphertext.
o It must remain < p for correct decryption.

@ Homomorphic addition: ¢3 < ¢; + & mod xp

ecit+ca=m+m+2(rH+r) modp
o Works if noise r{ + r} still less than p.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (contd.)

@ Noise in ciphertext:

-
ec=m+2-r modpwherer' =r+> ¢ -r
i=1
o r’ is the noise in the ciphertext.
o It must remain < p for correct decryption.
@ Homomorphic addition: ¢3 < ¢; + & mod xp
ecit+ca=m+m+2(rH+r) modp
o Works if noise r{ + r} still less than p.
@ Homomorphic multiplication: ¢3 < ¢; - ¢ mod xp
ec-c=m -mp+2(m-rj+my-rf+2r-r}) modp
o Works if noise r{ - r5 remains less than p.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (contd.)

@ Noise in ciphertext:

-

ec=m+2-r modpwherer' =r+> ¢ -r
i=1

o r’ is the noise in the ciphertext.

o It must remain < p for correct decryption.

@ Homomorphic addition: ¢3 < ¢; + & mod xp
ecit+ca=m+m+2(rH+r) modp
o Works if noise r{ + r} still less than p.
@ Homomorphic multiplication: ¢3 < ¢; - ¢ mod xp
ec-c=m -mp+2(m-rj+my-rf+2r-r}) modp
o Works if noise r{ - r5 remains less than p.
@ Somewhat homomorphic scheme
o Noise grows with every homomorphic
addition or multiplication.

e This limits the degree of the polynomial
that can be applied on ciphertexts.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Gentry's technique to get fully homomorphic encryption

@ To build a FHE scheme, start from the somewhat
homomorphic scheme, that is:

e Only a polynomial f of small degree can computed
homomorphically, for F = {f(b1,...,b:) : degf < d}
° Pk(fa EPk(bl)a ceey EPk(bt)) - EPk(f(blv ey bt))

Vok(f) %

Ciphertexts Ct
Dsk("') Dsk(') f e F

Plaintexts (Zg)t —f) Lo

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Ciphertext refresh: bootstrapping

@ Gentry's breakthrough idea: refresh the ciphertext using the
decryption circuit homomorphically.

e Evaluate the decryption polynomial not on the bits of the
ciphertext ¢ and the secret key sk, but homomorphically on
the encryption of those bits.

X . Encryption of
Ciphertext bits Secret key bits Ciphertext bits secret key bits

OIGa}-- L&} Ity a0

Decryption Decryption
Circuit Circuit

=

Encryption of l
Plai
a L ni:ext refreshed

plaintext bit:
ciphertext

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Ciphertext refresh: bootstrapping

@ Gentry's breakthrough idea: refresh the ciphertext using the
decryption circuit homomorphically.

o Instead of recovering the bit plaintext m, one gets an
encryption of this bit plaintext, i.e. yet another ciphertext for

the same plaintext.
X . Encryption of
Ciphertext bits Secret key bits Ciphertext bits secret key bits

| EL S L&} It] a0t

Decryption Decryption
Circuit Circuit

=

Encryption of l
Plai
a L ni:ext refreshed

plaintext bit:
ciphertext

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Bootstrapping

@ Evaluating the decryption function homomorphically
o with f = Dy ()

Vo (Fooe
Ciphertexts Ct () C
Dsic(-) Ds«(*) feF
Plaintexts (Zg)t —f) L

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Bootstrapping

@ Evaluating the decryption function homomorphically
o with f = Dg(-)
o We obtain a new ciphertext C* with possibly less noise

(Epk(c1), - -, Epk(ct)) cr

Ciphertexts ct) e
Dgy(-++) Dk (-) feF

Plaintexts (Z2)t 7,

C=(c1,...,ct) m

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Bootstrapping (2)

@ Evaluating the decryption function homomorphically

o Actually we use f = D(-,-)
e Using public (EPk(5k1)7 B Epk(Skt))

Ciphertexts c?t C
Dsk("') Dsk(') f e F
Plaintexts (Z2)2t —f) Zp

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Bootstrapping (2)

@ Evaluating the decryption function homomorphically

o Actually we use f = D(-,)
o Using public (Epk(sk1), ..., Epk(skt))
o We obtain a new ciphertext C* with possibly less noise

(Epk(Skl), ey Epk(skt))

(Epk(cl);wprk(Ct)) C*
Vo (F -
Ciphertexts ct pi(F) C
lek('“) Dk () feF
Plaintexts (Z2)2t —f> Lo
SK = (ski, ..., skt) m
C=(c,...,ct)

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Squashing the decryption procedure

@ Evaluating the decryption function homomorphically
o We use f = D(:,").
o We must have f € F: f must be a low-degree polynomial in
the inputs
o !l This is not the case with D(p, c) = (¢ mod p) mod 2

Vo (f oo
Ciphertexts cet pi(F) C
Dic(--) Dsk(+)
Plaintexts (Z2)2t —f> Lo

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Squashing the decryption procedure

@ Evaluating the decryption function homomorphically
o We use f = D(:,").
o We must have f € F: f must be a low-degree polynomial in
the inputs
o !l This is not the case with D(p, c) = (¢ mod p) mod 2

@ “Squash” the decryption procedure:

o express the decryption function as a low degree polynomial in
the bits of the ciphertext ¢ and the secret key sk (equivalently
a boolean circuit of small depth).

Vo (f oo
Ciphertexts cet pr(F) C
Ds(-++) Dsi(+)
Plaintexts (Z2)2t —f> Lo

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Ciphertext refresh

@ Refreshed ciphertext:
o If the degree of the decryption polynomial D(,-) is small
enough, the resulting noise in the new ciphertext can be
smaller than in the original ciphertext.

¢ L [] |

Refresh

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully homomorphic encryption

@ Fully homomorphic encryption

e Using this “ciphertext refresh” procedure, the number of
homomorphic operations becomes unlimited
o We get a fully homomorphic encryption scheme.

L/ [| L/ [|

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The squashed scheme from DGHV

@ The basic decryption m < (¢ mod p) mod 2 cannot be
directly expressed as a boolean circuit of low depth.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The squashed scheme from DGHV

@ The basic decryption m < (¢ mod p) mod 2 cannot be
directly expressed as a boolean circuit of low depth.
@ Alternative decryption formula forc=q-p+2r+ m

o We have ¢ = [¢/p]| and ¢ = g+ m (mod 2)
o Therefore
m <« [ch @ [[c- (1/p)]]2

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The squashed scheme from DGHV

@ The basic decryption m < (¢ mod p) mod 2 cannot be
directly expressed as a boolean circuit of low depth.
@ Alternative decryption formula forc=q-p+2r+ m
o We have g = [¢/p] and ¢ = g+ m (mod 2)

o Therefore
m <« [cl2 @ [[c- (1/p)]]2

o Idea (Gentry, DGHV). Secret-share 1/p as a sparse subset
sum:

©
1/p=> si-yi+e
i=1

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Squashed decryption

@ Alternative equation

m [ch @ [|c- (1/p)]]2

@ Secret-share 1/p as a sparse subset sum:
©

1/p=> si-yi+te
i=1

with random public y; with precision 27", and sparse secret
Si € {O, 1}.
@ Decryption becomes:

ool

m < [C]2@

2

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Squashed decryption

o Alternative decryption equation:

©
i=1 2
where z; = y; - ¢ for public y;'s

@ Since s; is sparse with H(s;) = 6, only n = [log,(6 + 1)] bits
of precision for z; = y; - ¢ is required

m < [C]Q@

e With 6 = 15, only n = 4 bits of precision for z; = y; - ¢

@ The decryption function can then be expressed as a
polynomial of low degree (30) in the s;'s.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The decryption circuit

(€]
e We must compute: m < [c]o ® HZ si - z,--H
i=i 2
@ Trick from Gentry-Halevi:
o Split the © secret key bits into boxes of size B = ©/6 each.
e Then only one secret key bit inside every box is equal to one

e New decryption formula: m < [c]2 ® HZ <Z Sk,iZk ,>H
2

k=1

e The sum g def Zil Sk,iZk,i is obtained by adding B numbers,
only one being non-zero.

e To compute the j-th bit of gy it
suffices to xor all the j-th bits of the
numbers sy ; - z ;.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The decryption circuit

Sby
— 211
ofx 10010 = 00000
sb sb} 212
0ofx 00110 = 00000
i
o 1|x 11010 = 11010
= ®
. q1
: —— 1 o] o]
0ofx 00110 = 00000 ‘
: 1101 0—
: L
S, [1JoTo o]
— £ *
. 0 00111 = 00000 ;
sy L sl B 9+
. 0fx 10010 = 00000 n.n.n
& =
_ 1|x 01010 = 01010
= . ®
25 ®
0fx 10110 = 00000

0101 0——

Grade School addition

@ The decryption equation is now:
0
k=1 2

o where the gi's are rational in [0,2) with n bits of precision
after the binary point.

m <« [c]a @

(=)
OO+
(EENE)
(E]i=f=)N
I |
OoOooo

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Gentry's Bootstrapping

@ The decryption circuit
o Can now be expressed as a polynomial of small degree d in the
secret-key bits s;, given the z; = ¢ - y;.

m= CZi(Slv ceey 5@)
@ To refresh a ciphertext:
o Publish an encryption of the secret-key bits o; = Epk(s;)
e Homomorphically evaluate m = C,,(s1, ..., Se), using the
encryptions o; = Epi(s;)

o We get E,x(m), that is a new ciphertext but possibly with less
noise (a “recryption”).

e The new noise has size ~ d - p and is
independent of the initial noise.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Four generations of FHE

First generation: bootstrapping, slow

o Breakthrough scheme of Gentry [G09], based on ideal lattices.
o FHE over the integers: [DGHV10]

Second generation: [BV11], [BGV1]]

o More efficient, (R)LWE based. Relinearization, depth-linear
construction with modulus switching.

@ Third generation [GSW13]

e No modulus switching, slow noise growth
o Improved bootstrapping: [BV14], [AP14]

Fourth gen: [CKKS17]

e Approximate floating point arithmetic

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Second generation: LWE-based encryption

@ Homomorphic encryption based on polynomial evaluation
e Homomorphism: ¢ : Z4[X] — Z4[x] given by evaluation at

secret 5= (s1,...,5,)
Ciphertexts ZqlX] X Zg[X] ——— Zg[X]
P,a J(s
Plaintexts ZgxZg —5 7,

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Second generation: LWE-based encryption

@ Homomorphic encryption based on polynomial evaluation
e Homomorphism: ¢ : Z4[X] — Z4[x] given by evaluation at

secret 5= (s1,...,5,)
Ciphertexts ZqlX] X Zg[X] ——— Zg[X]
P,a J(s
Plaintexts ZgxZg —5 7,

@ One must add some noise, otherwise broken by linear algebra.
o f(5) =2e+ mmod g, for some small noise e € Z,

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Second generation: LWE-based encryption

@ Homomorphic encryption based on polynomial evaluation
e Homomorphism: ¢ : Z4[X] — Z4[x] given by evaluation at

secret 5= (s1,...,5,)
Ciphertexts ZqlX] X Zg[X] ——— Zg[X]
P,a J(s
Plaintexts ZgxZg —5 7,

@ One must add some noise, otherwise broken by linear algebra.
o f(5) =2e+ mmod g, for some small noise e € Z,
e LWE assumption [R05]
o Linear polynomials f;(X) with
|fi(§) mod g| < g are comp. indist.
from random f;(X) modulo g.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Regev's scheme based on LWE [R05]

@ Key generation

o Secret-key: §€ (Zg)"

o Public-key: f;(X) such that fi(5) = 2e; with ef < g
@ Encryption of m € {0,1}

o c(X)=m+ > b;- f;(X) for random b; + {0, 1}

i=1

@ Decryption

o Compute v=c(5)=m+2-> bi-e (mod q)

i=1

o Recover m = v mod 2

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The BV scheme: relinearization [BV11]

@ Regev's ciphertext:
o ¢(X) such that ¢(5) = m+ 2e mod g, with §'€ (Z,)".
o Multiplication of Regev's ciphertext
o ¢(X) =c(X): a(xX)
o c(5) = (m +2e1) (m2+2e) = mmy +2e (mod q)
@ Problem: ¢(X) is a quadratic polynomial with (n + 1)?
coefficients !
e instead of n+ 1 for the original ciphertexts ¢;(X) and ¢ (X)

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The BV scheme: relinearization [BV11]

@ Regev's ciphertext:
o ¢(X) such that ¢(5) = m+ 2e mod g, with §'€ (Z,)".
o Multiplication of Regev's ciphertext
o ¢(X) =c(X): a(xX)
o c(5) = (my +2e1) - (my+2e) = mmy + 2e (mod q)
@ Problem: ¢(X) is a quadratic polynomial with (n + 1)?
coefficients !
e instead of n+ 1 for the original ciphertexts ¢;(X) and ¢ (X)
@ Relinearization [BV11]:
o Publish polynomials pj « ¢(X) = 2'xjxkc + Lj x,¢(X)
o with p;j +(5) = 26j x.+ mod g
e remove the quadratic terms ajx;x; by
subtraction, using a binary
decomposition of aj.
e Only linear terms remain, so ciphertext
size remains constant

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The BGV scheme: modulus switching [BGV11]

@ Modulus switching of ¢(x) = (c, (1, x)) mod g to modulo p
o Let ¢ be the integer vector closest to p/q - € such that
¢ = &mod 2
e Then [c 5], = [€,§]q mod 2: decryption remains the same
e and (c’,5) ~ (p/q) - (C,5): noise is reduced by a factor q/p.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The BGV scheme: modulus switching [BGV11]

—

@ Modulus switching of ¢(x) = (c, (1, x)) mod g to modulo p

o Let ¢ be the integer vector closest to p/q - € such that

¢ =¢&mod 2
o Then [c, 5], = [€,§]q mod 2: decryption remains the same
e and (c',5) ~ (p/q) - (,§): noise is reduced by a factor q/p.

@ Application: reducing noise growth. Assume p/q = 277.

q q p
E X Q p/q B
P 2p p

e Noise reduction without bootstrapping !

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Leveled fully homomorphic encryption

@ Previous model: exponential growth of noise

q q q q
D X H X H X D
p 2p 4p 8p

e Only bootstrapping can give FHE

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Leveled fully homomorphic encryption

@ Previous model: exponential growth of noise

q q q q
D X H X H X D
p 2p 4p 8p

e Only bootstrapping can give FHE

@ New model: modulus switching after each multiplication layer
o with a ladder of moduli p; such that p;1/p; =277

P1 p1
P2 P2
« S Ps i P4 P4
SHoU U0
—_—
P 2p P 2p P 2p P 2p

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Leveled fully homomorphic encryption

@ Previous model: exponential growth of noise

q q q q
D X H X H X D
p 2p 4p 8p

e Only bootstrapping can give FHE

@ New model: modulus switching after each multiplication layer
o with a ladder of moduli p; such that p;1/p; =277

P1 P1
P2 P2
« S Ps i P4 P4
B e e N e I
—_—
p 2p p 2p P 2p p 2p

o Leveled FHE

e Size of p; linear in the circuit depth
o Parameters depend on the depth
e Can accommodate polynomial depth

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

RLWE-based schemes

@ Regev's scheme based on LWE
o Secret-key: §€ (Zg)"
o Public-key: f;(X) such that f;(5) = 2¢; with ¢ < ¢

o c(X)=m+ > b;- f;(X) for random b; + {0, 1}
i=1
o m = (c(5) mod g) mod 2

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

RLWE-based schemes

@ Regev's scheme based on LWE
o Secret-key: §€ (Zg)"
o Public-key: f;(X) such that f;(5) = 2¢; with ¢ < ¢

o c(X)=m+ > b;- f;(X) for random b; + {0, 1}

i=1
o m = (c(5) mod g) mod 2
@ RLWE-based scheme

o We can replace Zg by the polynomial ring
Ry = Zq[x]/ < x*+ 1 >, where k is a power of 2.

e Addition and multiplication of polynomials are performed
modulo x¥ 4- 1 and prime g.

o We can take n = 1.

o We can take m € Ry = Zp[x]/<xk + 1>
instead of {0,1}: more bandwidth

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Third generation of FHE: ciphertext matrices

@ Homomorphic encryption with matrices [GSW13]

o Ciphertexts are square matrices instead of vectors

e Homomorphism: §(C, V) = p where p is eigenvalue for secret
eigenvector vV

e Homomorphically add and multiply ciphertext using (roughly)
matrix addition and multiplication

Ciphertexts ZNXN o gNxXN % 7NxN
Jo‘,a‘ J(s
Plaintexts 7 X 7 % Z

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Third generation of FHE: ciphertext matrices

@ Homomorphic encryption with matrices [GSW13]

o Ciphertexts are square matrices instead of vectors

e Homomorphism: §(C, V) = p where p is eigenvalue for secret
eigenvector vV

e Homomorphically add and multiply ciphertext using (roughly)
matrix addition and multiplication

Ciphertexts ZNXN o gNxXN % 7NxN
Jo‘,a‘ J(s
Plaintexts 7 X 7 % Z

@ One must add some noise, otherwise
broken by linear algebra
o C-V=yp-V+ €& (mod q)
o for message p € Z, for some small
noise €.
e Security based on LWE problem.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Ciphertext matrices: slow noise growth

o Noise grow of ciphertext multiplication [GSW13]:
o G- V=ypy-V+6& (modgq), Go-V=pp-vV+& (mod q)
o (G- G) v=C (- v+ &)= () V+&
o with & = -8+ G - &

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Ciphertext matrices: slow noise growth

o Noise grow of ciphertext multiplication [GSW13]:
o G- V=ypy-V+6& (modgq), Go-V=pp-vV+& (mod q)
o (G- G) v=C (- v+ &)= () V+&
ewith&s = -&+G- &

@ Slow noise growth:
o Ensure u; € {0,1}, using only NAND gates puz =1 — pu1 - o
o Ciphertext flattening: ensure C; € {0, 1}V*N using binary

decomposition and vV = (sq,...,2%;i,...,5,,...,2%,).

o If [&]lc < Band & < B, [|&]loc < (N+1)-B

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Ciphertext matrices: slow noise growth

o Noise grow of ciphertext multiplication [GSW13]:
o G- V=ypy-V+6& (modgq), Go-V=pp-vV+& (mod q)
o (G- G) v=C (- v+ &)= () V+&
ewith&s = -&+G- &

@ Slow noise growth:
o Ensure u; € {0,1}, using only NAND gates puz =1 — pu1 - o
o Ciphertext flattening: ensure C; € {0, 1}V*N using binary

decomposition and vV = (sq,...,2%;i,...,5,,...,2%,).

o If [&]lc < Band & < B, [|&]loc < (N+1)-B

o Leveled FHE
o At depth L, [|€]lcc < (N+1)--B
o One can take ¢ > 8- B - (N + 1)l and
accommodate polynomial depth L.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fourth generation: homomorphic encryption for

approximate numbers

e Homomorphic encryption for real numbers [CKKS17]
e Floating point arithmetic, instead of exact arithmetic.
e Starting point: Regev’s scheme.
e Homomorphism: § : Zg[x] — Z4 given by evaluation at §

Ciphertexts Lg[X) X Zq[X] — Zg[X]
Plaintexts ZgxTg — 4 7,

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fourth generation: homomorphic encryption for

approximate numbers

e Homomorphic encryption for real numbers [CKKS17]
e Floating point arithmetic, instead of exact arithmetic.

e Starting point: Regev’s scheme.
e Homomorphism: § : Zg[x] — Z4 given by evaluation at §

Ciphertexts Lg[X) X Zq[X] — Zg[X]
Plaintexts ZgxTg — 4 7,

@ One must add some noise, otherwise broken by linear algebra.
o f(5)=m+ emod q, for small e € Zg
o Noise only affects the low-order bits of
m: approximate computation, as in
floating point arithmetic.
e Application: neural networks.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

[CKKS17]: ciphertext multiplication and rescaling

e Ciphertext multiplication ¢(x) = c1(X) - c2(X)
o c(S=(m+e) (Mm+e)=mm+ e (mod q)
o with e* = miey + egmy + e 6.
@ Rescaling of ciphertext:
o c'(X) = [c(x)/p] (mod q/p)
o Valid encryption of |m/p] with noise ~ e/p
e Similar to modulus switching

mp my
—— ——

q | [&1] d | [«

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Conclusion

@ Main challenge: make FHE pratical !
o New primitives
o Libraries (HElib)
o Compiler to homomorphic evaluation
@ Applications
e Homomorphic machine learning: evaluate a neural network
without revealing the weights.
o Genome-wide association studies: linear regression, logistic
regression.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

References

AP14 Jacob Alperin-Sheriff, Chris Peikert. Faster Bootstrapping
with Polynomial Error. IACR Cryptol. ePrint Arch. 2014: 94
(2014)

BGV11 Zvika Brakerski, Craig Gentry, Vinod Vaikuntanathan. Fully
Homomorphic Encryption without Bootstrapping. Electron.
Colloquium Comput. Complex. 18: 111 (2011)

BV14 Zvika Brakerski, Vinod Vaikuntanathan. Lattice-based FHE as
secure as PKE. ITCS 2014: 1-12

CCK+13 Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon
Sung Lee, Tancréde Lepoint, Mehdi Tibouchi, Aaram Yun:
Batch Fully Homomorphic Encryption over the Integers.
EUROCRYPT 2013: 315-335

CKKS17 Jung Hee Cheon, Andrey Kim, Miran Kim, Yong Soo Song.
Homomorphic Encryption for Arithmetic of Approximate
Numbers. ASIACRYPT (1) 2017: 409-437

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

References

CN12 Yuanmi Chen, Phong Q. Nguyen. Faster Algorithms for
Approximate Common Divisors: Breaking

Fully-Homomorphic-Encryption Challenges over the Integers.
EUROCRYPT 2012: 502-519

CMNTI11 Jean-Sébastien Coron, Avradip Mandal, David Naccache,
Mehdi Tibouchi: Fully Homomorphic Encryption over the
Integers with Shorter Public Keys. CRYPTO 2011: 487-504

CNT12 Jean-Sébastien Coron, David Naccache, Mehdi Tibouchi.

Public Key Compression and Modulus Switching for Fully
Homomorphic Encryption over the Integers. EUROCRYPT
2012: 446-464

DGHV10 Marten van Dijk, Craig Gentry, Shai Halevi, Vinod
Vaikuntanathan. Fully Homomorphic Encryption over the
Integers. EUROCRYPT 2010: 24-43

Gen09 Craig Gentry. Fully homomorphic encryption using ideal
lattices. STOC 2009: 169-178

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

References

GH11

GSW13

P99

R05

SV10

Craig Gentry, Shai Halevi. Implementing Gentry's
Fully-Homomorphic Encryption Scheme. EUROCRYPT 2011:
129-148

Craig Gentry, Amit Sahai, Brent Waters. Homomorphic
Encryption from Learning with Errors: Conceptually-Simpler,
Asymptotically-Faster, Attribute-Based. CRYPTO (1) 2013:
75-92

Pascal Paillier. Public-Key Cryptosystems Based on

Composite Degree Residuosity Classes. EUROCRYPT 1999:
223-238

Oded Regev. On lattices, learning with errors, random linear
codes, and cryptography. STOC 2005: 84-93

Nigel P. Smart, Frederik Vercauteren. Fully Homomorphic
Encryption with Relatively Small Key and Ciphertext Sizes.
Public Key Cryptography 2010: 420-443

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

