TP 12: arithmetic with polynomials

Jean-Sébastien Coron

Université du Luxembourg

1 Arithmetic with polynomials

Implement the addition, substraction, multiplication and division of polynomials algorithm over the ring \mathbb{Z}_p , for a given integer p > 1.

2 Arithmetic in R[X]/(n)

Using the previous routines, implement the addition, substraction and multiplication of polynomials over R[X]/(n), where $R = \mathbb{Z}_p$ for some given integer p > 1and $n \in R[X]$ is a polynomial of degree $\ell > 0$ with leading coefficient 1_R .

3 Horner's rule

Let $g \in R[X]$ and let $a \in R$. Horner's rule is an efficient algorithm to compute $g(a) \in R$.

Let
$$g = \sum_{i=0}^{k-1} g_i \cdot X^i$$
, where $k \ge 0$ and $g_i \in R$.
 $\beta \leftarrow 0$
for $i \leftarrow k-1$ downto 0 do

 $\beta \leftarrow \beta \cdot \alpha + g_i$ output β .

1) Show that this algorithm correctly computes $g(\alpha)$.

2) Implement this algorithm with $R = \mathbb{Z}_n$ for some integer n > 1.