Algorithmic Number Theory Course no. 13

Jean-Sébastien Coron

Université du Luxembourg

December 13, 2009

- Polynomial arithmetic
 - Polynomial congruence
 - Euclid's algorithm
 - Chinese remaindering and polynomial interpolation.

• Let R be a ring. A polynomial $a \in R[X]$ is written

$$a(X) = \sum_{i=0}^{k-1} a_i \cdot X^i$$
 where $a_i \in R$

- Addition, substraction of polynomials.
- Multiplication of polynomials.
- Division of polynomials.
 - Let a, b ∈ R[X] such that the leading coefficient of b is invertible in R.
 - Compute q, r ∈ R[X] such that a = b ⋅ q + r where deg r < deg b. We denote r := a mod b.

- Let F be a field. Let $n \in F[X]$.
 - For polynomials a, b ∈ F[X], we say that a is congruent to b modulo n if n|(a − b).
 - Notation: $a \equiv b \pmod{n}$.
- Using division with remainder:
 - For any $a \in F[X]$, there exists a unique $b \in F[X]$ such that $a \equiv b \pmod{n}$ and $\deg(b) < n$.
 - Take *b* := *a* mod *n*.

Greatest Common Divisor

- Let F be a field. Let $a, b \in F[X]$.
 - $d \in F[X]$ is a common divisor of a and b if d|a and d|b.
 - Such a *d* is a *greatest common divisor* of *a* and *b* if *d* is monic (leading coefficient equal to 1) or zero, and all other common divisors of *a* and *b* divide *d*.
 - We denote $d = \gcd(a, b)$.
- Theorem (proof: see Shoup's book).
 - For any a, b ∈ F[X], there exists a unique greatest common divisor d of a and b.
 - Moreover, there exists $u, v \in F[X]$ such that $a \cdot u + b \cdot v = d$.

Euclid's algorithm

- Computes gcd(a, b) for a, b ∈ F[X]. Analogous to the integer case.
 - Input: $a, b \in F[X]$ with deg $a \ge \deg b$ and $a \ne 0$.
 - Output $d = \operatorname{gcd}(a, b) \in F[X]$.
 - $r \leftarrow a, r' \leftarrow b$ while $r' \neq 0$ do $r'' \leftarrow r \mod r'$ $(r, r') \leftarrow (r', r'')$ $d \leftarrow r/lc(r) // lc=leading coefficient$ output d

< 3 > 4 3 >

Euclid's extended algorithm

- Input: $a, b \in F[X]$ with deg $a \ge \deg b$ and $a \ne 0$.
- Output: $d, s, t \in F[X]$ such that $d = \operatorname{gcd}(a, b)$ and as + bt = d. $r \leftarrow a, r' \leftarrow b$ $s \leftarrow 1, s' \leftarrow 0$ $t \leftarrow 0, t' \leftarrow 1$ while $r' \neq 0$ do Compute q, r'' such that r = r'q + r'', with $\deg(r'') < \deg(r')$ $(r, s, t, r', s', t') \leftarrow (r', s', t', r'', s - s'q, t - t'q)$ $c \leftarrow lc(r)$ $d \leftarrow r/c, s \leftarrow s/c, t \leftarrow t/c$ Output d, s, t.

- Modular inverse
 - Let n ∈ F[X], n ≠ 0 and a ∈ F[X]. a' ∈ F[X] is a modular inverse of a modulo n if aa' ≡ 1 (mod n).
- Facts (analogous to the integer case)
 - Let a, n ∈ F[X] with n ≠ 0. Then a has a multiplicative inverse modulo n iff gcd(a, n) = 1 (a and n are relatively prime).
 - If a has a multiplicative inverse, it is unique modulo n.
 - Denote by a⁻¹ the unique mulitplicative inverse of a modulo n with deg(a) < deg(n).

Computing modular inverses

- Let $n \in F[X]$ with $\ell := \deg n > 0$. Let $y \in F[X]$ with $\deg y < \ell$.
 - Using the Extended Euclidean Algorithm, find $d, s, t \in F[X]$ such that

$$s \cdot y + t \cdot n = d$$
 and $d = \gcd(y, n)$

- If gcd(y, n) = 1, then s is a multiplicative inverse of y modulo n. Moreover, deg s < ℓ so s = y⁻¹ mod n.
- Computation time:
 - $\mathcal{O}(\ell^2)$ operations in F.

- If $n \in F[X]$ is irreducible, then F[X]/(n) is a field.
 - Addition, substraction in F[X]/(n) in $O(\ell)$ operations.
 - Multiplication in F[X]/(n) in $\mathcal{O}(\ell^2)$ operations.
 - Inverse in F[X]/(n) in O(l²) operations (using the Extended Euclidean algorithm).

Chinese remaindering

- Theorem (analogous to the integer case)
 - Let n₁,..., n_k ∈ F[X] such that n_i ≠ 0 and gcd(n_i, n_j) = 1 for all i ≠ j. Let a₁,..., a_k ∈ F[X]. There exists a polynomial z ∈ F[X] such that :

$$z \equiv a_i \pmod{n_i}$$
 $(i = 1, \ldots, k)$

Moreover, the polynomial z is unique modulo n := Π^k_{i=1} n_i.
z := Σ^k_{i=1} ω_i · a_i, where ω_i := n'_i · m_i, n'_i := n/n_i and m_i := (n'_i)⁻¹ mod n_i.

Polynomial interpolation

- Problem:
 - Given $(a_1, b_1), \dots (a_k, b_k) \in F$, where the b_i s are distinct, find $z \in F[X]$ such that $z(b_i) = a_i$ for all $i = 1, \dots, k$ and deg z < k.
- Can be viewed as a special case of Chinese remaindering.
 - Take n_i = (X − b_i). The n_i are pairwise relatively prime since the b_i are distinct. z ≡ a_i mod n_i ⇔ z(b_i) = a_i

•
$$n_i' = \prod_{j \neq i} (X - b_j)$$
 and $m_i = 1/\prod_{j \neq i} (b_i - b_j) \in F$.

$$z = \sum_{i=1}^{k} a_i \frac{\prod_{j \neq i} (X - b_j)}{\prod_{j \neq i} (b_i - b_j)}$$