Algorithmic Number Theory Course 12

Jean-Sébastien Coron

Université du Luxembourg

December 5, 2009

Jean-Sébastien Coron Algorithmic Number Theory

- Algorithmic number theory.
 - Polynomial arithmetic

• Let R be a ring. Let $k \ge 1$.

• We represent a degree k - 1 polynomial

$$a(X) = \sum_{i=0}^{k-1} a_i \cdot X^i \in R[X]$$

as a coefficient vector $(a_0, a_1, \ldots, a_{k-1})$.

- When $a_{k-1} \neq 0$, we let deg a = k 1.
- Example: $R = \mathbb{Z}$ or $R = \mathbb{Z}_n$.
- Addition and substraction of polynomials.
 - Just add or substract coefficient vectors.

Multiplication of polynomials

• Let
$$a = \sum_{i=0}^{k-1} a_i X^i \in R[X]$$
 and $b = \sum_{i=0}^{\ell-1} b_i X^i \in R[X]$ where $k, \ell \ge 1$.

• The product $c := a \cdot b$ is of the form $c = \sum_{i=0}^{\kappa+\ell-2} c_i X^i$

• Can be computed in $\mathcal{O}(k \cdot \ell)$ operations in \overrightarrow{R} :

for
$$i \leftarrow 0$$
 to $k + \ell - 2$ do $c_i \leftarrow 0$
for $i \leftarrow 0$ to $k - 1$ do
for $j \leftarrow 0$ to $\ell - 1$ do
 $c_{i+j} \leftarrow c_{i+j} + a_i \cdot b_j$

- Let *a*, *b* two polynomials in *R*[*X*], such that the leading coefficient of *b* is invertible in *R*.
 - We want to compute $q, r \in R[X]$ such that

$$a = b \cdot q + r$$

where deg $r < \deg b$.

- We denote $r := a \mod b$.
- Let deg a = k 1 and deg $b = \ell 1$.
 - if k < l, then let $q \leftarrow 0$ and $r \leftarrow a$

• Let $b_{\ell-1}$ be the leading term of b and let $b_{\ell-1}^{-1}$ be its inverse

• 1) Let
$$r \leftarrow a$$

• 2) For $i \leftarrow k - \ell$ down to 0 do
• $q_i \leftarrow a_{i+\ell-1} \cdot b_{\ell-1}^{-1}$
• $r \leftarrow r - q_i \cdot b \cdot X^i$
• 3) $q \leftarrow \sum_{i=0}^{k-\ell} q_i X^i$

• Complexity: $\mathcal{O}(\ell(k - \ell + 1))$.

Arithmetic in R[X]/(n)

- As for modular integer arithmetic, we can do arithmetic in R[X]/(n).
 - Where n ∈ R[X] is a polynomial of degree ℓ > 0 whose leading coefficient is in R* (most of the time, 1).
- Let $\alpha \in R[X]/(n)$. There exists $a \in R[X]$ such that

$$\alpha = \{ \mathbf{a}' \in R[X] : \mathbf{a}' = \mathbf{a} + \mathbf{p} \cdot \mathbf{n}, \mathbf{p} \in R[X] \} = [\mathbf{a}]_n$$

- One can take the canonical representative of α by taking the unique polynomial r such that deg r < ℓ and α = [r]_n
- Select any polynomial a' ∈ α, and compute a = q · n + r where deg r < deg n = ℓ

Arithmetic in R[X]/(n)

- Addition, substraction
 - Compute c := a + b or c := a b.
 - Complexity: $\mathcal{O}(\ell)$ operations in R.
- Multiplication
 - Compute $c := a \cdot b$.
 - Compute $c' := c \mod n$.
 - Complexity: $\mathcal{O}(\ell^2)$ operations in R.