Algorithmic Number Theory Course 11

Jean-Sébastien Coron

Université du Luxembourg

December 5, 2009

Jean-Sébastien Coron Algorithmic Number Theory

- Algorithmic number theory.
 - Generators of \mathbb{Z}_p
 - Discrete logarithm and applications.

Definitions

- A group *G* is *finite* if |*G*| is finite. The number of elements in a finite group is called its *order*.
- A group G is cyclic if there is an element g ∈ G such that for each h ∈ G there is an integer i such that h = gⁱ. Such an element g is called a generator of G.
- Let G be a finite group and a ∈ G. The order of a is definded to be the least positive integer t such that a^t = 1.

- Facts
 - Let *G* be finite group and *a* ∈ *G*. The order of *a* divides the order of *G*.
 - Let G be a cyclic group of order n and d|n, then G has exactly $\phi(d)$ elements of order d. In particular, G has $\phi(n)$ generators.

Properties of \mathbb{Z}_n^*

- Definition of \mathbb{Z}_n^*
 - The set \mathbb{Z}_n^* is the set of integers modulo *n* which are invertible modulo *n*.
 - The set Z^{*}_n is a group of order φ(n) for the operation of multiplication modulo n.
- Properties
 - \mathbb{Z}_p^* for prime p is a cyclic group of order p-1.
 - There exists a generator g ∈ Z^{*}_p such that for all α ∈ Z^{*}_p, α can be written uniquely as α = g^x mod p for 0 ≤ x
 - The integer x is called the *discrete logarithm* of α to the base g, and denoted log_g α.

- Finding a generator of \mathbb{Z}_p^* for prime p.
 - The factorization of p-1 is needed. Otherwise, no efficient algorithm is known.
 - Factoring is hard, but it is possible to generate p such that the factorization of p-1 is known.
- Generator of \mathbb{Z}_p^*
 - $g \in \mathbb{Z}_p^*$ is a generator of \mathbb{Z}_p^* if and only if $g^{(p-1)/q} \neq 1 \mod p$ for each prime factor q of p-1.
 - There are $\phi(p-1)$ generators of \mathbb{Z}_p^*

Finding a generator

• Let $q_1, \ldots q_r$ be the prime factors of p-1

- 1) Generate a random $g\in\mathbb{Z}_p^*$
- 2) For i = 1 to r do
 - Compute $\alpha_i = g^{(p-1)/q_i} \mod p$
 - If $\alpha_i = 1 \mod p$, go back to step 1.
- 3) Output g as a generator of Z^{*}_p
 Complexity:
 - There are $\phi(p-1)$ generators of \mathbb{Z}_p^* .
 - A random $g \in \mathbb{Z}_p^*$ is a generator with probability $\phi(p-1)/(p-1)$.
 - If $p-1 = 2 \cdot q$ for prime q, then $\phi(p-1) = q-1$ and this probability is $\simeq 1/2$.

A B > A B >

- Goal: generate p such that $p 1 = 2 \cdot q$ for prime q.
 - Generate a random prime *p*.
 - Test if q = (p 1)/2 is prime. Otherwise, generate another p.

- Let g be a generator of \mathbb{Z}_p^*
 - For all $a \in \mathbb{Z}_p^*$, a can be written uniquely as $a = g^x \mod p$ for $0 \le x .$
 - The integer x is called the *discrete logarithm* of a to the base g, and denoted log_g a.
- Computing discrete logarithms in \mathbb{Z}_p^*
 - Hard problem: no efficient algorithm is known for large *p*.
 - Brute force: enumerate all possible x. Complexity $\mathcal{O}(p)$.
 - Baby step/giant step method: complexity $\mathcal{O}(\sqrt{p})$.

- Enables Alice and Bob to establish a shared secret key that nobody else can compute, without having talked to each other before.
- Key generation
 - Let p a prime integer, and let g be a generator of Z^{*}_p. p and g are public.
 - Alice generates a random x and publishes X = g^x mod p.
 She keeps x secret.
 - Bob generates a random y and publishes Y = g^y mod p. He keeps y secret.

Diffie-Hellman protocol

- Key establishment
 - Alice sends X to Bob. Bob sends Y to Alice.
 - Alice computes $K_a = Y^x \mod p$
 - Bob computes $K_b = X^y \mod p$

$$K_a = Y^x = (g^y)^x = g^{xy} = (g^x)^y = X^y = K_b$$

• Alice and Bob now share the same key $K = K_a = K_b$

- Without knowing x or y, the adversary is unable to compute K.
- Computing g^{xy} from g^x and g^y is called the *Diffie-Hellman* problem, for which no efficient algorithm is known.