Théorie algorithmique des nombres Cours no. 10

Jean-Sébastien Coron

Université du Luxembourg

November 22, 2009

- Algorithmic number theory.
 - Probabilistic primality testing
 - Application to prime-number generation.

Goal

- Given an integer n, determine whether n is prime or composite.
- Simplest algorithm: trial division.
 - Test if *n* is divisible by 2, 3, 4, 5,... We can stop at \sqrt{n} .
 - Algorithm determines if *n* is prime or composite, and outputs the factors of *n* if *n* is composite.
- Very inefficient algorithm
 - Requires around \sqrt{n} arithmetic operations.
 - If *n* has 256 bits, then 2¹²⁸ arithmetic operations. If 2³⁰ operations/s, this takes 10²² years !

- Goal: describe an efficient probabilistic primality test.
 - Can test primality for a 512-bit integer *n* in less than a second.
- Probabilistic primality testing.
 - The algorithm does not find the factors of *n*.
 - The algorithm may make a mistake (pretend that an integer *n* is prime whereas it is composite).
 - But the mistake can be made arbitrarily small (*e.g.* < 2⁻¹⁰⁰, so this makes no difference in practice.

- Let $\pi(x)$ be the number of primes in the interval [2, x].
- Theorem (Prime number theorem)
 - We have $\pi(x) \simeq x/\log x$.
- Fact (approximation of the *n*-th prime number)
 - Let p_n denote the *n*-th prime number. Then $p_n \simeq n \cdot \log n$. More explicitely,

 $n \log n < p_n < n(\log n + \log \log n)$ for $n \ge 6$

The Fermat test

- Fermat's little theorem
 - If *n* is prime and *a* is an integer between 1 and n-1, then $a^{n-1} \equiv 1 \mod n$.
 - Therefore, if the primality of n is unknown, finding a ∈ [1, n − 1] such that a^{n−1} ≠ 1 mod n proves that n is composite.
- Fermat primality test with security parameter t.

For i = 1 to t do Choose a random $a \in [2, n - 2]$ Compute $r = a^{n-1} \mod n$ If $r \neq 1$ then return "composite" Return "prime'

Analysis of Fermat's test

- Let $L_n = \{a \in [1, n-1] : a^{n-1} \equiv 1 \mod n\}$
- Theorem:
 - If *n* is prime, then $L_n = \mathbb{Z}_n^*$. If *n* is composite and $L_n \subsetneq \mathbb{Z}_n^*$, then $|L_n| \le (n-1)/2$.
- Proof:
 - If *n* is prime, $L_n = \mathbb{Z}_n^*$ from Fermat.
 - If n is composite, since L_n is a sub-group of Z_n^{*} and the order of a subgroup divides the order of the group, |Z_n^{*}| = m ⋅ |L_n| for some integer m.

$$|L_n| = \frac{1}{m} |\mathbb{Z}_n^*| \le \frac{1}{2} |\mathbb{Z}_n^*| \le \frac{n-1}{2}$$

- If *n* is composite and $L_n \subsetneq \mathbb{Z}_n^*$
 - then $a^{n-1} = 1 \mod n$ with probability at most 1/2 for a random $a \in [2, n-2]$.
 - The algorithm outputs "prime" wih probability at most 2^{-t} .
- Unfortunately, there are odd composite numbers *n* such that $L_n = \mathbb{Z}_n^*$.
 - Such numbers are called Carmichael numbers. The smallest Carmichael number is 561.
 - Carmichael numbers are rare, but there are an infinite number of them, so we cannot ignore them.

The Miller-Rabin test

- The Miller-Rabin test is based on the following fact:
 - Let n be a prime > 2, let n − 1 = 2^s · r where r is odd. Let a be any integer such that gcd(a, n) = 1. Then either a^r ≡ 1 mod n or a^{2^j · r} ≡ −1 mod n for some j, 0 ≤ j ≤ s − 1.

Proof:

- Since *n* is prime, $a^{n-1} \equiv 1 \mod n$.
- Consider the minimum $0 \le j \le s 1$ such that $a^{r \cdot 2^{j+1}} \equiv 1 \mod n$. Let $\beta := a^{r \cdot 2^j} \mod n$
- Then β² ≡ 1 mod n. We must have β = ±1 because a polynomial of degree 2 has at most two roots over Z_n for n prime.

```
Write n-1=2^s \cdot r for odd r.
For i = 1 to t do
  Generate a random a \in [2, n-2]. Let \beta \leftarrow a^r \mod n.
  If \beta \neq 1 and \beta \neq -1 do
     i \leftarrow 1.
     While i < s - 1 and \beta \neq -1 do
        Let \beta \leftarrow \beta^2 \mod n
        If \beta = +1 return "composite"
        i \leftarrow i+1
     If \beta \neq -1 return "composite"
Return "prime"
```

The Miller-Rabin test

- Property
 - If *n* is prime, then the Miller-Rabin test always declares *n* as prime.
 - If n ≥ 3 is composite, then the probability that the Miller-Rabin test outputs "prime" is less than (¹/₄)^t
- Most widely used test in practice.
 - With t = 40, error probability less than 2^{-80} . Much less than the probability of a hardware failure.
 - Can test the primality of a 512-bit integer in less than a second.
 - Complexity: $\mathcal{O}(\log^3 n)$

- $\bullet\,$ To generate a prime integer of size $\ell\,$ bits
 - Generate a random integer n of size ℓ bits
 - Test its primality with Miller-Rabin.
 - If *n* is declared prime, output *n*, otherwise generate another *n* again.