Theoretical Foundations Introduction to Computational Number Theory - Part 5

Jean-Sébastien Coron

Université du Luxembourg

October 25, 2009

- C programming
 - Structures
- Algorithmic number theory.
 - Computing with large integers.

- Structures in C enable to group data of different type.
- Example 1: informations about someone
 - First name, last name, age.
- Example 2: a point in a plane
 - x and y coordinates.
- Exemple 3: a circle
 - Center and radius

- The struct keyword :
 struct point {
 - float x;
 float y;
 };
- This defines a new type: struct point.
- Each variable of this type has two fields :
 - x of type float
 - y of type float

• To define a variable p with this new type :

```
• struct point p;
```

```
• We access the x and y fields with p.x and p.y
```

```
struct point {
   float x;
   float y;
};
struct point p;
p.x=2;
p.y=3;
printf("%f\n",p.x);
```

typedef

• Replacing struct point by something shorter :

- typedef struct point Point2d;
- Point2d p; instead of struct point p;
- Or directly :
 - typedef struct {
 float x;
 float y;
 } Point2d;
 Point2d p;
 p.x=2;

- ∢ ≣ ≯

- The new type can be used as any other type :
 Point2d milieu(Point2d p1,Point2d p2)
 {
 Point2d m;
 m.x=(p1.x+p2.x)/2;
 m.y=(p1.y+p2.y)/2;
 return m;
 }
 - }
- The function takes as input two parameters of type Point2d and returns a Point2d.

- Assignation :
 - One can copy a struct variable into another, as with any other type :
 - Point2d p1,p2; p1.x=3;p1.y=4; p2=p1; // copy p1 into p2.
- Comparison:
 - One can not compare two struct variables with if (p1==p2)
 - One must compare each field separately.

- Function taking as input two points and outputting the distance between them.
 - For two points (x_1, y_1) , (x_2, y_2) , their distance is :

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

• float distance(Point2d p1,Point2d p2)
{
 float dx,dy;

```
dx=p2.x-p1.x;
dy=p2.y-p1.y;
return sqrt(dx*dx+dy*dy);
}
```

• To print a struct variable, one must print each of its field. void affiche(Point p) { printf("Coordonnée x:%f\n",p.x); printf("Coordonnée y:%f\n",p.y); }

- New type with first name, last name and age :
 - typedef struct {
 - char *nom;
 - char *prenom;
 - int age;
 - } Personne;
- The new type Personne contains three fields :
 - Two strings nom and prenom
 - One int named age

```
• Printing a Personne variable :
void affiche(Personne p)
{
    printf("nom: %s, ",p.nom);
    printf("prenom: %s, ",p.prenom);
    printf("age: %d\n",p.age);
}
```

```
int main()
{
    Personne a;
    a.nom=(char *) strdup("Dupond");
    a.prenom=(char *) strdup("Jean");
    a.age=25;
    affiche(a);
}
```

• strdup

• Allocates memory and copy the string given as input.

- Limited precision in C :
 - int: 32 bits. Computing with values $< 2^{32}$.
- Computing with large integers :
 - One represents the big integers in base *B* in an array.
 - One implements addition, multiplication, division on big integers.
 - Existing libraries :
 - GMP: www.swox.com/gmp
 - NTL: www.shoup.net
 - Some parts written in assembly for better efficiency.

- Representing large integers :
 - An integer is represented as an array of digits in base *B*, with a sign bit.

$$a=\pm\sum_{i=0}^{k-1}a_iB^i=\pm(a_{k-1}\ldots a_0)_B$$

with $0 \le a_i < B$. If $a \ne 0$, we must have $a_{k-1} \ne 0$.

• Basis :

- One generally takes $B = 2^{v}$ for some v.
- One can also take B = 10.

▶ ◀ ె ▶ ◀

Addition

• Computing c = a + b with a, b > 0

• Let $a = (a_{k-1} \dots a_0)$ and $b = (b_{\ell-1} \dots b_0)$ with $k \ge \ell \ge 1$. Ket $c = (c_k c_{k-1} \dots c_0)$

$$carry \leftarrow 0$$

for $i = 0$ to $\ell - 1$ do
 $tmp \leftarrow a_i + b_i + carry$
 $carry \leftarrow tmp/B$; $c_i \leftarrow tmp \mod B$
for $i = \ell$ to $k - 1$ do
 $tmp \leftarrow a_i + carry$
 $carry \leftarrow tmp/B$; $c_i \leftarrow tmp \mod B$
 $c_k \leftarrow carry$

• Computing c = a - b with a, b > 0.

• $a_i + b_i$ is replaced by $a_i - b_i$.

Multiplication

• Computing $c = a \cdot b$ with a, b > 0

• Let $a = (a_{k-1} \dots a_0)$ and $b = (b_{\ell-1} \dots b_0)$ avec $k, \ell \ge 1$. Let $c = (c_{k+\ell-1} \dots c_0)$

carry
$$\leftarrow 0$$

for $i = 0$ to $k + \ell - 1$ do
 $c_i \leftarrow 0$
for $i = 0$ to $k - 1$ do
carry $\leftarrow 0$
for $j = 0$ to $\ell - 1$ do
 $tmp \leftarrow a_i \cdot b_j + c_{i+j} + carry$
carry $\leftarrow tmp/B$; $c_{i+j} \leftarrow tmp \mod B$
 $c_{i+\ell} \leftarrow carry$

→ < ∃ → </p>