Introduction to Cryptography

Part 2: public-key cryptography

Jean-Sébastien Coron

January 2007

Public-key cryptography

- Invented by Diffie and Hellman in 1976. Revolutionized the field.
- Each user now has two keys
 - A public key
 - A private key
- Should be hard to compute the private key from the public key.
- Enables:
 - Asymmetric encryption
 - Digital signatures
 - Key exchange
 - Identification,

Public-key encryption

Solves the key distribution issue

RSA

- Invented by Rivest, Shamir and Adleman in 1977.
- Still the most widely used PK algorithm.
- Public key: n=p.q and e

- Primes p and q remain secret.

Private key: d such that
 e.d=1 mod (p-1)(q-1)

RSA

- Encryption using public n,e: c=m^e mod n
- Decryption using private d: $m = c^d \mod n$
- Decryption works because: $m=c^{d}=(m^{e})^{d}=m^{e.d}=m$ because:

e.d=1 mod f

RSA: trapdoor one-way permutation

• Trapdoor unknown:

Trapdoor known:

- Asymmetric encryption:
 - Everybody can encrypt to Alice using 💁 🖬
 - Only Alice can decrypt using O-----

Implementation of RSA

- Required: computing with large integers
 more than 1024 bits.
- In software
 - big integer library: GMP, NTL
- In hardware
 - Cryptoprocessor for smart-card
 - Hardware accelerator for PC.

Speed of RSA

- RSA much slower than AES and other secret key algorithms.
 - to encrypt long messages, encrypt a symmetric key K with RSA, and encrypt the long message with K.

Security of RSA

- Security of RSA is based on the hardness of factorization
 - Given n=p.q, no known efficient algorithm to recover p and q.
 - Factorization record: 663 bits (2005)
- Public modulus n must be large enough
 At least 1024 bits, 2048 bits is better.
 - AT least 1024 DITS. 2048 DITS IS DETTER.
- Factoring is just one line of attack
 - not necessarily the most practical
 - more attacks to take into account...

Attacks against RSA

- Dictionary attack
 - If only two possible messages m_0 and m_1 , then only two ciphertexts $c_0=m_0^e$ [n] and $c_1=m_1^e$ [n].
 - Encryption must be probabilistic (or nonstatic).
- Coppersmith's attack (1996)
 - Applies for RSA with small e, when some part of the message is known

Attacks against RSA

- Chosen-ciphertext attack:
 Given ciphertext c to be decrypted
 - Generate a random r
 - Ask for the decryption of the random looking ciphertext c'=c*(r^e)[n]
 - One gets m'=c'd=cd*(r^e)d=cd*r=m*r [n]
 - This enables to compute m=m'/r [n]

Attacks against RSA

- One cannot use plain RSA encryption
 - one must add some randomness
 - one must apply some preformatting to the message
- Example: PKCS#1 v1.5
 - Encryption: m(m)=0002 | r | 00 | m, then $c=m(m)^d [n]$
 - Decryption: recover m(m), check redundancy.
- Bleichenbacher's attack against PKCS#1 v1.5
 - Appeared in 1998. Could be use against web-servers using SSL protocol.

Security of RSA (and other cryptosystems)

- To be rigorous when speaking about security, one must specify
 - the attacker's goal:
 does he need to recover the key or only
 decrypt a particular ciphertext or less ?
 - the attacker's power: does he get only the user's public-key, or more ?

Attacker's goal

- One may think that the adversary's goal is always to recover the private key.
 - complete break
 - may be too ambitious in practice

Attacker's goal

- More modest goal: being able to decrypt one ciphertext.
 - or recover some information about a plaintext (for example, the first character)

- Specify the power of the attacker
- Public-key only
 - the attacker gets only the public-key
 - Weakest adversary

BOB

ALICE

- Ciphertext-only attack
 - the attacker gets only a set of ciphertexts
 - primitive ciphers (Ceasar's cipher, monoalphabetic substitution cipher) were vulnerable.

- Known-plaintext attack
 - Attack has access to plaintext/ciphertext pairs.
 - In practice, attacker may have some hint on some plaintexts.
 - Used during WW2 to break Enigma cipher. BOB ALICE

- Chosen plaintext attack
 - Attacker can obtain encryption of plaintexts of his choice.
 - For PK encryption, equivalent to PK only attack.

ALICE

Chosen-ciphertext attack

- Most powerful attack
- The attacker can obtain decryption of messages of his choice
- May be realistic in practice
 - attacker gets access to a decryption machine
 - encryption algorithm used in a more complex protocol in which users can obtain decryption of chosen ciphertexts.

Attack scenario

- One must specify
 - the attacker's goal (total break, partial decryption...)
 - The attack model (chosen plaintext, chosen ciphertext...)
- Strongest security model: combines
 - weakest goal: obtaining only one bit of information about a plaintext
 - strongest adversary: chosen ciphertext attack

Strongest security notion

- Indistinguishability under adaptive chosen ciphertext attack (IND-CCA2)
 - Formalized in 1991 by Rackoff et Simon
 - A ciphertext should give no information about the corresponding plaintext, even under an adaptive chosen-ciphertext attack.
 - Has become standard security notion for encryption.

IND-CCA2 schemes

- OAEP
 - Designed by Bellare and Rogaway in 1994.
 - Appears in PKCS#1 v2.1 standard.
- Cramer-Shoup (1998)
 - Based on discrete-log.
 - Proven secure without the random oracle model.

OAEP

Ciphertext is c=(s|t)^e [n]

Digital signature

- A bit string that depends on the message m and the user's public-key
 - Only Alice can sign a message using her private-key

yes/no

🖵 Alice's public-key

- Anybody can verify Alice's signature of m given her public-key

BOB

Digital signature

- A digital signature provides:
 - Authenticity: only Alice can produce a signature of a message valid under her public-key.
 - Integrity: the signed message cannot be modified.
 - Non-repudiation: Alice cannot later claim that she did not sign the message

Signing with RSA

- Public key: n=p.q and e
- Private key: d such that
 e.d=1 mod (p-1)(q-1)
- Signing using private d: s=m^d mod n
- Verifying using public n,e: check that m=s^e mod n
- ISO 9796-2, PKCS#1 v2.1

Attacks against RSA signatures

- Given $s_1 = m_1^d \mod n$ and $s_2 = m_2^d \mod n$
 - one can compute the signature of $m_1^{\ast}m_2^{}$ without knowing d

 $s = s_1^* s_2^* = (m_1^d)^* (m_2^d) \mod n = (m_1^* m_2)^d \mod n$

- One cannot use plain RSA signature
 - One must apply some pre-formatting to the message to cancel the mathematical structure.

RSA signature

- To prevent these attacks, one uses a hash function
 - PKCS#1 v1.5 : m(m)=0001 FF ... FF00 ¦ c ¦ H(m)
 - ISO 9796-2: m(m)=6A | m[1] | H(m) | BC

Attack scenario for signature schemes

- We must specify
 - the adversary's goal
 - the adversary's power
- Adversary's goal
 - Controlled forgery: the adversary produces the signature of a message of his choice
 - Existential forgery: the adversary produces the signature of a (possibly meaningless) message

Adversary's power

- No-message attack
 - The adversary gets only the public-key
- Known message attack
 - The adversary obtains a set of pairs message/signatures
- Chosen message attack
 - The adversary can obtain the signature of any message of his choice, adaptively.

Strongest security notion

- Combines weakest goal with strongest adversary
- Existential unforgeability under an adaptive chosen message attack
 - Defined by Goldwasser, Micali and Rivest in 1988
 - It must be infeasible for an attacker to forge the signature of a message, even if he can obtain signature of messages of his choice.

Example of secure signature schemes

- · PSS
 - Designed by Bellare and Rogaway in 1996
 - IEEE P1363a standard and PKCS#1 v2.1
 - 2 variants: PSS and PSS-R that provides message recovery.

s=(w ¦ s)^d mod n

Conclusion

- What is cryptography ?
 - Cryptography's aim it to construct protocols that achieve some goal despite the presence of an adversary
- Scientific approach:
 - To be rigorous, one must define what it means to be secure
 - Then one tries to construct schemes that satisfies the definition, in a provable way.