Introduction to Cryptography

Jean-Sébastien Coron

November 2016

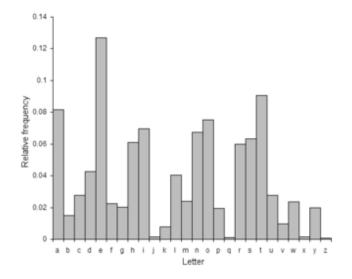
Outline

- History
- Public-key cryptography
 RSA encryption, signatures, DH key exch.
- Security models and constructions

 Public-key encryption and signatures
- Public-key infrastructures
 Certificates, PGP, SSL

Mono-alphabetic Cipher

 Each letter is replaced with another letter, according to a fixed substitution


Plaintext: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Ciphertext: C G H U Z J T E L Y X I F O P K J W V A B D M S N Q

Then HELLO WORLD enciphers to EZIIP MPWIU

Number of possible keys is large: 26! =2^88.4 or 88 bits, but...

Frequency analysis

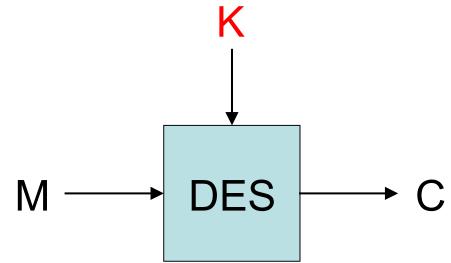
• Frequency of letters in English:

- Cryptanalysis of mono-alphabetic cipher:
 - The most frequent letter in the ciphertext is likely E,T or A.
 - Substitute and continue with less frequent letters.
 - WEAK

One-time pad (1917)

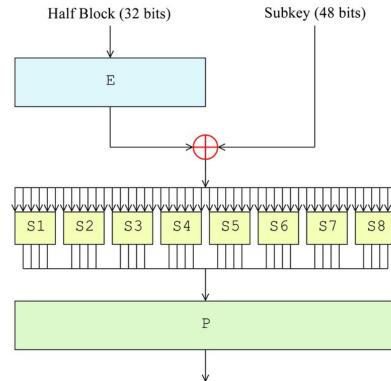
- Plaintext is xored with the key to produce the ciphertext
 - 011001011001
 - 111010010010

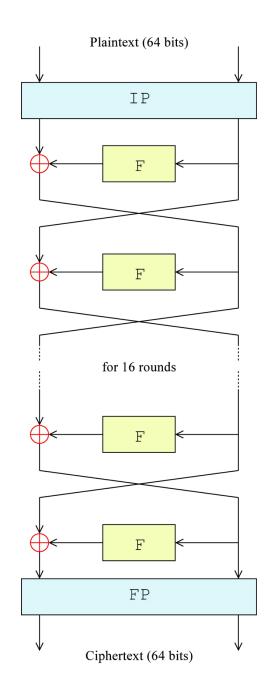
100011001011


- Proved unbreakable by Shannon (1949) if key is random and as long as the plaintext.
- Issue: key as long as the plaintext.
- Used for the hotline between Washington and Moscow during the cold war.

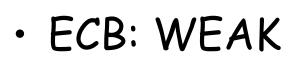
DES (1976)

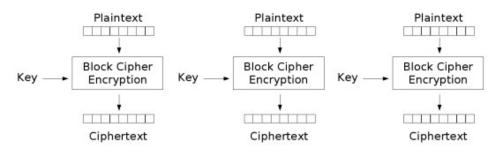
- Data Encryption Standard (DES), published as FIPS PUB 46.
- Developed by NBS (National Bureau of Standards), now NIST (National Institute of Standards and Technology), following an algorithm from IBM.
- De facto world-wide standard since 1976.
- Superseded by the AES, but remains in widespread use.

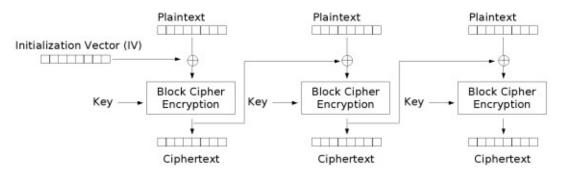

DES block-cipher


- Input length: 64 bits.
- Output length: 64 bits.
- Key length: 56 bits.

DES

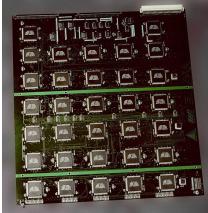

- Feistel Cipher
- F function:




DES modes of operation

- Encrypting longer messages (>64 bits)
- FIPS-81: DES modes of operation

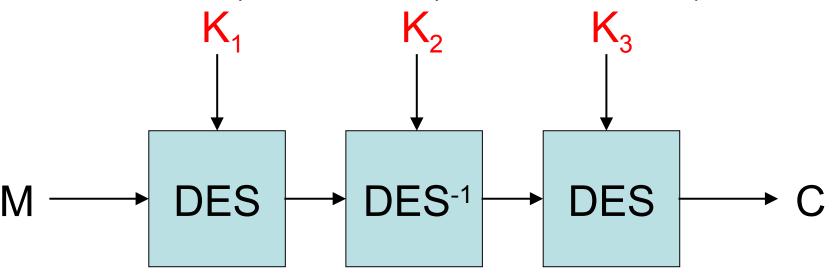
Electronic Codebook (ECB) mode encryption



Cipher Block Chaining (CBC) mode encryption

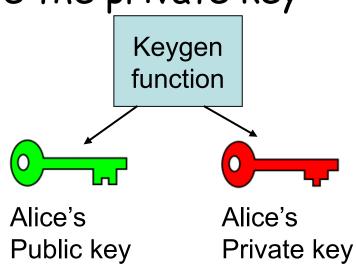
· CBC: OK

Security of DES


- Problem: key is too short (56 bits).
 Exhaustive search has become feasible
 - DES cracker from Electronic
 Frontier Foundation (EFF).
 Breaks DES in 2 days (1998).
- Other attacks

- Differential cryptanalysis (Biham and Shamir). 2⁴⁷ chosen plaintexts
- Linear cryptanalysis (Matsui, 1993). 2⁴³
 known plaintexts.

TRIPLE DES


- Block cipher
 - 64-bit input and output, 168-bit key

 Slowly disappearing, replaced by AES (6 times faster in software).

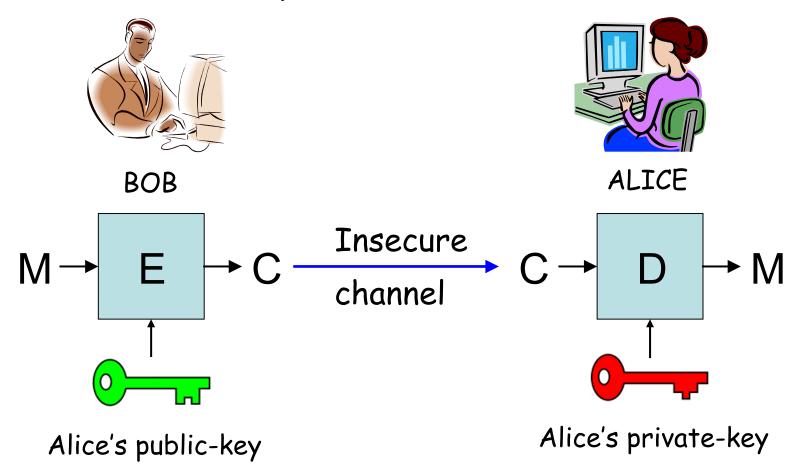
Public-key cryptography

- Invented by Diffie and Hellman in 1976. Revolutionized the field.
- Each user now has two keys
 - A public key
 - A private key
- Should be hard to compute the private key from the public key.
- Enables:
 - Asymmetric encryption
 - Digital signatures
 - Key exchange
 - Identification, and many other protocols.



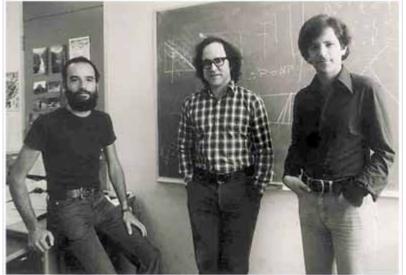
Key distribution issue

- Symmetric cryptography
 - How to initially distribute the key to establish a secure channel ?



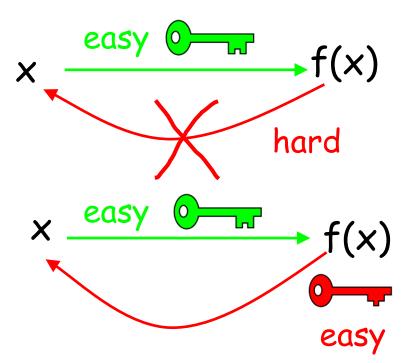
Asymmetric encryption

Solves the key distribution issue


Analogy: the mailbox

- Bob wants to send a letter to Alice
 - Bob obtains Alice's adress
 - Bob puts his letter in Alice's mailbox
 - Alice opens her mailbox and read Bob's letter.
- Properties of the mailbox
 - Anybody can put a letter in the mailbox
 - Only Alice can open her mailbox

RSA (1977)


- Invented by Rivest, Shamir and Adleman
- First realization of asymmetric encryption.
- Implements a trapdoor one-way permutation.
- Still the most widely PK algorithm in use.

Trapdoor one-way permutation

Trapdoor unknown:

Trapdoor known:

- Asymmetric encryption:
 - Everybody can encrypt to Alice using
 Only Alice can decrypt using

RSA

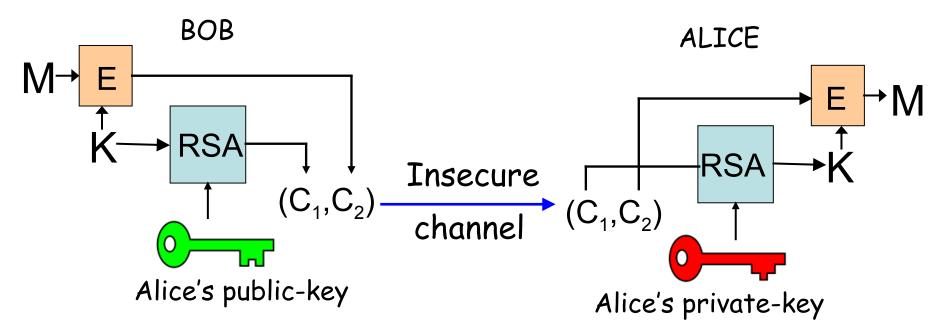
Public key: n=p.q and e

- Primes p and q remain secret.

- Private key: d such that e.d=1 mod (p-1)(q-1)
- Encryption using public n,e: c=m^e mod n
- Decryption using private d: m=c^d mod n
- PKCS#1 v2.1

RSA

- Decryption works because m=c^d=(m^e)^d=m^{e.d}=m because e.d=1 mod f
- Security is based on the hardness of factorization
 - Given n=p.q, no known efficient algorithm to recover p and q.
 - Factorization record: 663 bits (2005)
- Public modulus n must be large enough
 At least 1024 bits. 2048 bits is better.


Implementation of RSA

- Required: computing with large integers
 more than 1024 bits.
- In software
 - big integer library: GMP, NTL
- In hardware
 - Cryptoprocessor for smart-card
 - Hardware accelerator for PC.

Speed of RSA

- RSA much slower than AES and other secret key algorithms.
 - to encrypt long messages, encrypt a symmetric key K with RSA, and encrypt the long message with K.

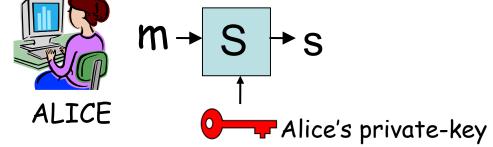
Security of RSA

- Security of RSA is based on the hardness of factorization
 - Given n=p.q, no known efficient algorithm to recover p and q.
 - Factorization record: 768 bits (2009)
- Public modulus n must be large enough
 At least 1024 bits, 2048 bits is better.
- Factoring is just one line of attack
 - not necessarily the most practical
 - more attacks to take into account...

Attacks against RSA

- Dictionary attack
 - If only two possible messages m_0 and m_1 , then only two ciphertexts $c_0=m_0^e$ [n] and $c_1=m_1^e$ [n].
 - Encryption must be probabilistic (or nonstatic).
- Coppersmith's attack (1996)
 - Applies for RSA with small e, when some part of the message is known

Attacks against RSA


- Chosen-ciphertext attack:
 Given ciphertext c to be decrypted
 - Generate a random r
 - Ask for the decryption of the random looking ciphertext c'=c*(r^e)[n]
 - One gets m'=c'd=cd*(r^e)d=cd*r=m*r[n]
 - This enables to compute m=m'/r [n]

Attacks against RSA

- One cannot use plain RSA encryption
 - one must add some randomness
 - one must apply some preformatting to the message
- Example: PKCS#1 v1.5
 - Encryption: F(m)=0002 | r | 00 | m, then $c=F(m)^{e}[n]$
 - Decryption: recover F(m), check redundancy.
- Bleichenbacher's attack against PKCS#1 v1.5
 - Appeared in 1998. Could be use against web-servers using SSL protocol.

Digital signature

- A bit string that depends on the message m and the user's public-key
 - Only Alice can sign a message using her private-key

🖵 Alice's public-key

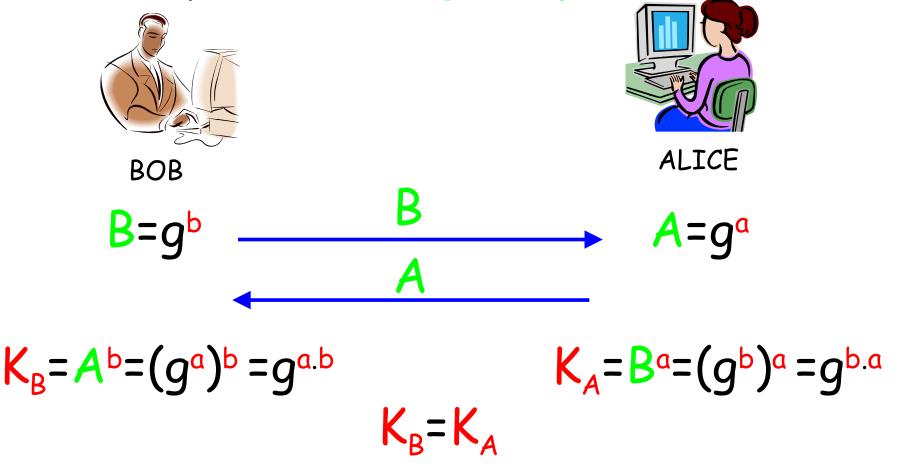
Anybody can verify Alice's signature of m
 given her public-key
 m
 v
 v
 v

BOB

Digital signature

- A digital signature provides:
 - Authenticity: only Alice can produce a signature of a message valid under her public-key.
 - Integrity: the signed message cannot be modified.
 - Non-repudiation: Alice cannot later claim that she did not sign the message

Signing with RSA


- Public key: n=p.q and e
- Private key: d such that
 e.d=1 mod (p-1)(q-1)
- Signing using private d: s=m^d mod n
- Verifying using public n,e: check that m=s^e mod n
- ISO 9796-2, PKCS#1 v2.1

Other signature schemes

- Digital Signature Algorithm (DSA) (1993)
 - Digital Signature Standard (DSS) proposed by NIST, specified in FIPS 186.
 - Security based on the hardness of discrete log.
 - ECDSA: a variant of DSA for elliptic-curves
- Rabin signature scheme
 - Similar to RSA but with e=2
- El-Gamal signature scheme (1984)
 - Based on the discrete-log problem

Diffie-Hellman key exchange (1976)

Public parameters: g and p

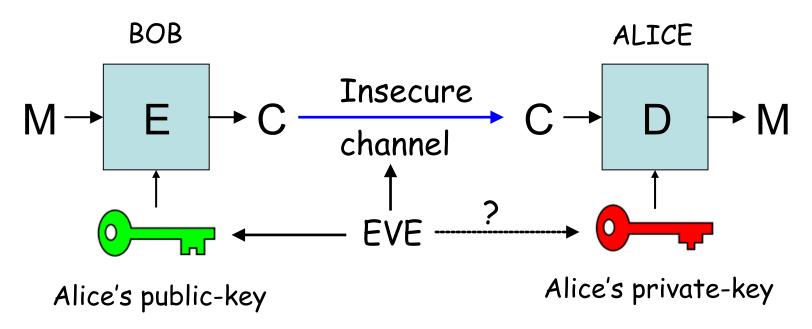
Security of Diffie-Hellman

- Based on the hardness of the discretelog problem:
 - Given $A=g^a \mod p$, find a
 - No efficient algorithm for large p.
- No authentication
 - Vulnerable to the man in the middle attack
- Authenticated key exchange
 - Using a PKI. Alice and Bob can sign A and B
 - Password-authenticated key-exchange IEEE P1363.2

Lessons from the past

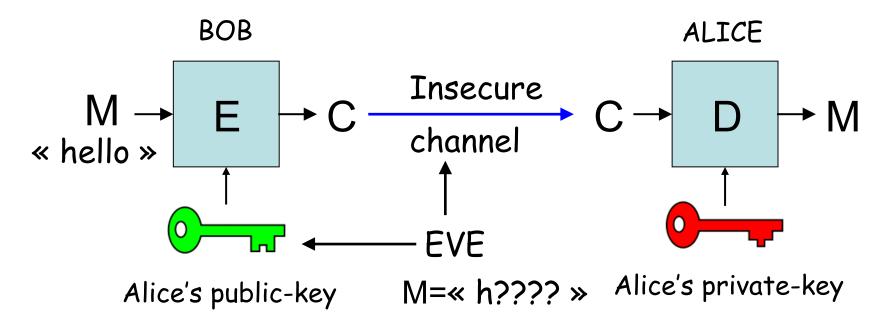
- Cryptography is a permanent race between construction and attacks
 - but somehow this has changed with modern cryptography and security proofs.
- Security should rely on the secrecy of the key and not of the algorithm
 - Open algorithms enables open scrutiny.

Modern cryptography


- New functionalities
 - Identity-based encryption, voting, electronic money, auction...
- Formalization of security notions
 - What is a secure encryption scheme? a secure signature scheme?
- Construction of schemes or protocols that provably achieve these security notions
 - Based on some hardness assumption (e.g., factoring is hard).
- Modern cryptography is about security proofs.
 - A scheme without security proof is useless.

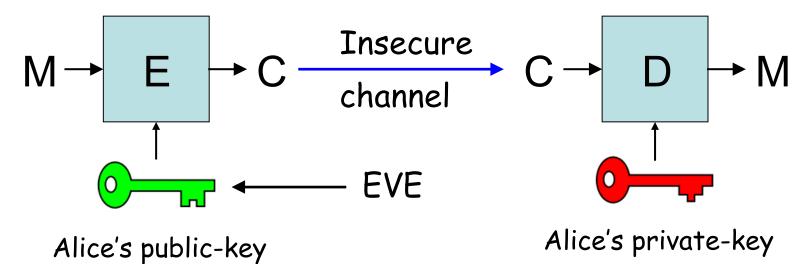
Security models

- To be rigorous when speaking about security, one must specify
 - the attacker's goal:
 does he need to recover the key or only
 decrypt a particular ciphertext or less ?
 - the attacker's power: does he get only the user's public-key, or more ?


Attacker's goal

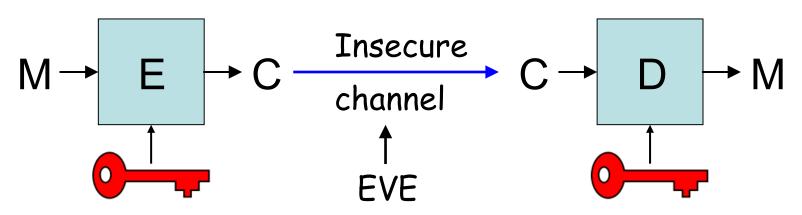
- One may think that the adversary's goal is always to recover the private key.
 - complete break
 - may be too ambitious in practice

Attacker's goal

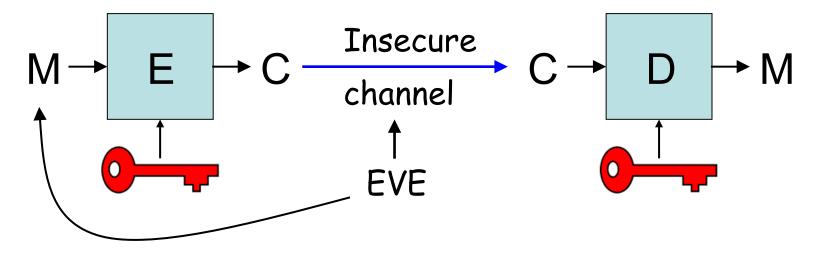

- More modest goal: being able to decrypt one ciphertext.
 - or recover some information about a plaintext (for example, the first character)

- Specify the power of the attacker
- Public-key only
 - the attacker gets only the public-key
 - Weakest adversary

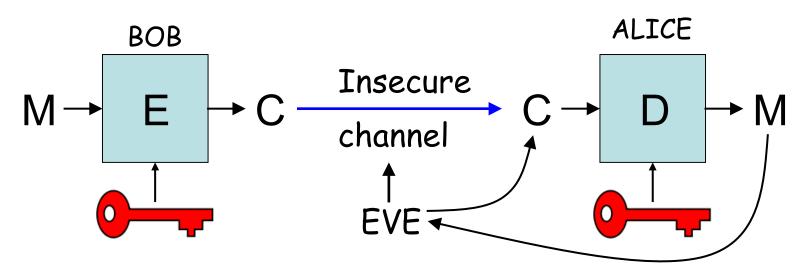
BOB


ALICE

- Ciphertext-only attack
 - the attacker gets only a set of ciphertexts
 - primitive ciphers (Ceasar's cipher, monoalphabetic substitution cipher) were vulnerable.


- Known-plaintext attack
 - Attack has access to plaintext/ciphertext pairs.
 - In practice, attacker may have some hint on some plaintexts.
 - Used during WW2 to break Enigma cipher. BOB ALICE

- Chosen plaintext attack
 - Attacker can obtain encryption of plaintexts of his choice.
 - For PK encryption, equivalent to PK only attack.



ALICE

Chosen-ciphertext attack

- Most powerful attack
- The attacker can obtain decryption of messages of his choice
- May be realistic in practice
 - attacker gets access to a decryption machine
 - encryption algorithm used in a more complex protocol in which users can obtain decryption of chosen ciphertexts.

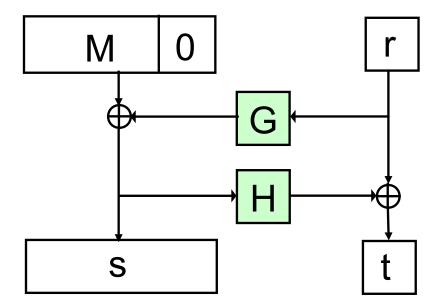
Attack scenario

- One must specify
 - the attacker's goal (total break, partial decryption...)
 - The attack model (chosen plaintext, chosen ciphertext...)
- Strongest security model: combines
 - weakest goal: obtaining only one bit of information about a plaintext
 - strongest adversary: chosen ciphertext attack

Strongest security notion

- Indistinguishability under adaptive chosen ciphertext attack (IND-CCA2)
 - Formalized in 1991 by Rackoff et Simon
 - A ciphertext should give no information about the corresponding plaintext, even under an adaptive chosen-ciphertext attack.
 - Has become standard security notion for encryption.

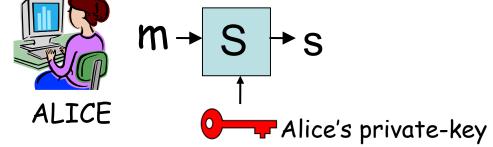
IND-CCA2 schemes


- OAEP
 - Designed by Bellare and Rogaway in 1994.
 - Appears in PKCS#1 v2.1 standard.
- Cramer-Shoup (1998)
 - Based on discrete-log.
 - Proven secure without the random oracle model.

Reminder: textbook RSA encryption

- Public key: n=p.q and e
 - Primes p and q remain secret.
- Private key: d such that e.d=1 mod (p-1)(q-1)
- Encryption using public n,e: c=m^e mod n
- Decryption using private d: m=c^d mod n

RSA-OAEP


Ciphertext is c=(s¹)^e[n]

IND-CCA2 secure in the RO model

Digital signature

- A bit string that depends on the message m and the user's public-key
 - Only Alice can sign a message using her private-key

🖵 Alice's public-key

Anybody can verify Alice's signature of m
 given her public-key
 m
 v
 v
 v

BOB

Reminder : textbook RSA signatures

- Public key: n=p.q and e
- Private key: d such that
 e.d=1 mod (p-1)(q-1)
- Signing using private d: s=m^d mod n
- Verifying using public n,e: check that m=s^e mod n

Attacks against RSA signatures

- Given $s_1 = m_1^d \mod n$ and $s_2 = m_2^d \mod n$
 - one can compute the signature of $m_1 * m_2$ without knowing d

 $s = s_1^* s_2^* = (m_1^d)^* (m_2^d) \mod n = (m_1^* m_2)^d \mod n$

- One cannot use plain RSA signature
 - One must apply some pre-formatting to the message to cancel the mathematical structure.

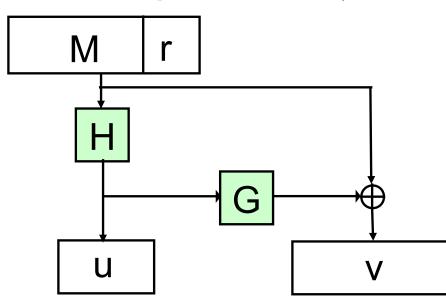
RSA signature

- To prevent these attacks, one uses a hash function
 - PKCS#1 v1.5 : F(m)=0001 FF ... FF00 | c | H(m) s=F(m)^d mod n
 - ISO 9796-2: F(m)=6A | m[1] | H(m) | BC s=F(m)^d mod n

Attack scenario for signature schemes

- We must specify
 - the adversary's goal
 - the adversary's power
- Adversary's goal
 - Controlled forgery: the adversary produces the signature of a message of his choice
 - Existential forgery: the adversary produces the signature of a (possibly meaningless) message

Adversary's power

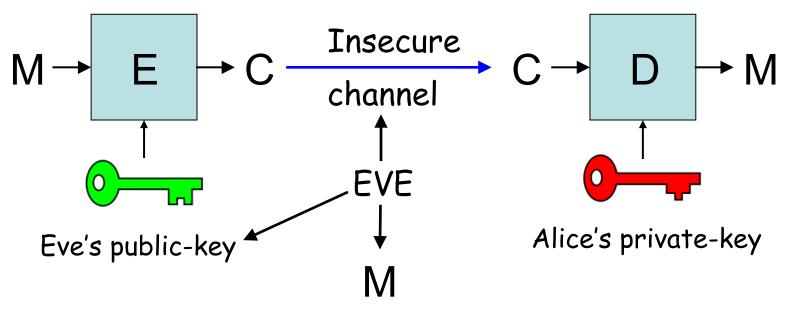

- No-message attack
 - The adversary gets only the public-key
- Known message attack
 - The adversary obtains a set of pairs message/signatures
- Chosen message attack
 - The adversary can obtain the signature of any message of his choice, adaptively.

Strongest security notion

- Combines weakest goal with strongest adversary
- Existential unforgeability under an adaptive chosen message attack
 - Defined by Goldwasser, Micali and Rivest in 1988
 - It must be infeasible for an attacker to forge the signature of a message, even if he can obtain signature of messages of his choice.

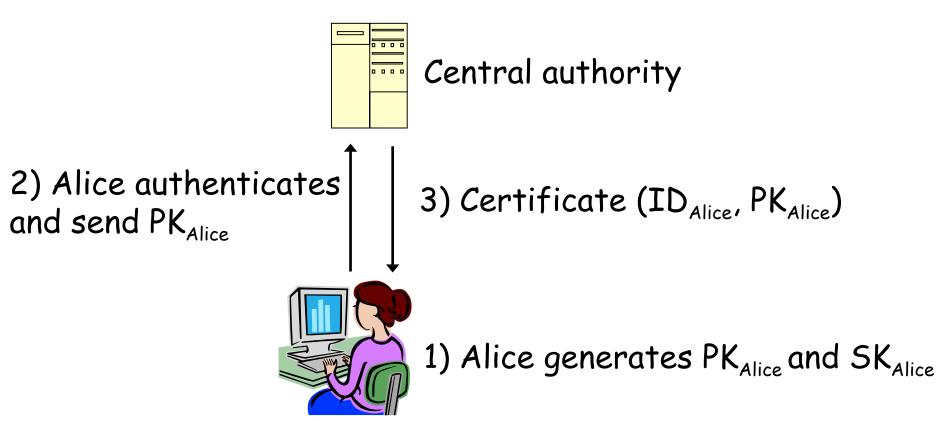
Example of secure signature schemes

- Designed by Bellare and Rogaway in 1996
- IEEE P1363a standard and PKCS#1 v2.1
- 2 variants: PSS and PSS-R that provides message recovery.


 $s=(u \mid v)^d \mod n$

Conclusion

- What is cryptography ?
 - Cryptography's aim it to construct protocols that achieve some goal despite the presence of an adversary
- Scientific approach:
 - To be rigorous, one must define what it means to be secure
 - Then one tries to construct schemes that satisfies the definition, in a provable way.


PK Authentication

- Public-keys need to be authenticated
 - Bob needs to be sure that the public-key belongs to Alice.
 - Otherwise, impersonation attack BOB ALICE

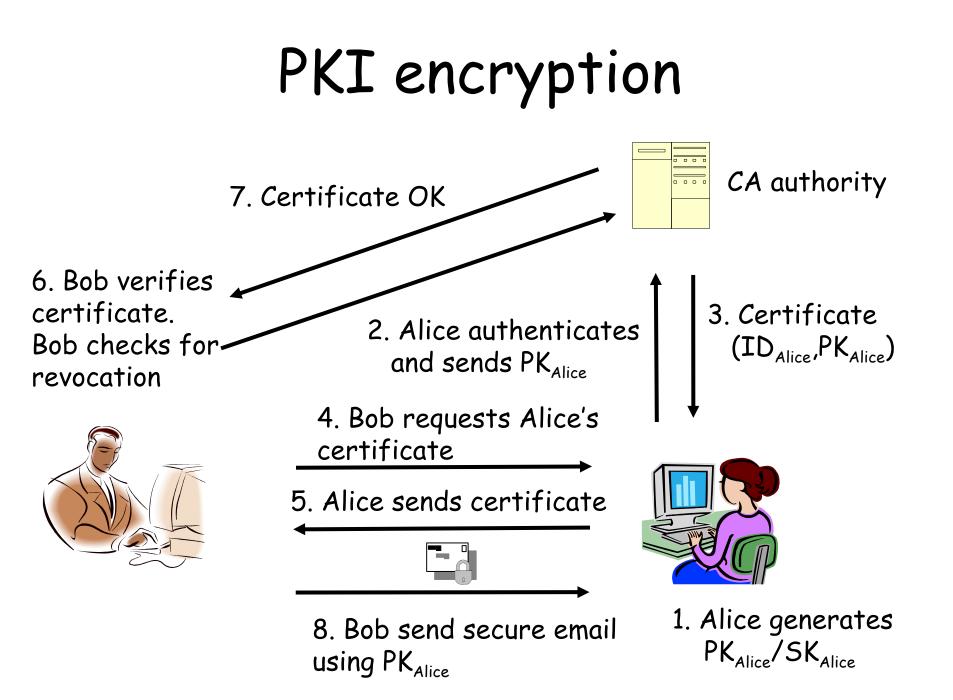
Public-key Infrastructure

- A central authority binds public-keys to identities.
 - Public-key is stored in a certificate

Public-key certificate

- Certificate:
 - the signature of the certificate authority binds together a public-key with an identity.
 - Bob can be sure that the public-key belongs to Alice by checking the signature using the CA public-key.
 - The CA is trusted by all participants.

Certificate Authority

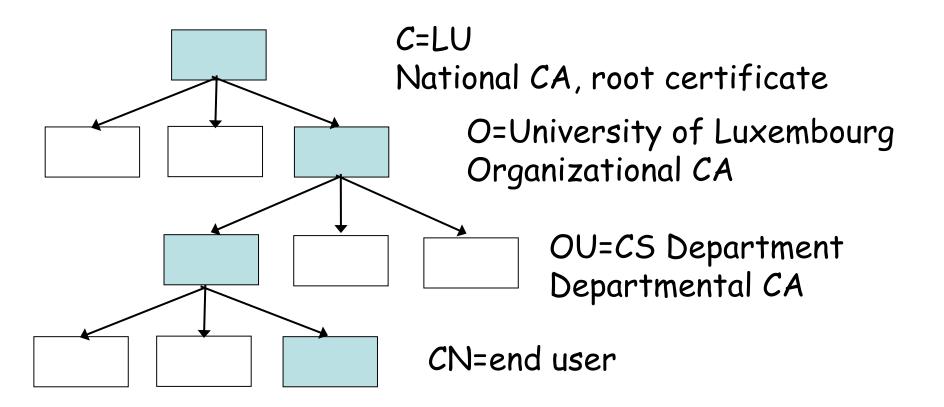

- CA issues PK certificates that attest that the PK in the certificate belongs to the identity in the certificate
 - CA must verify user's identity before issuing certificate
 - If the CA's private key is compromised, security is lost.
- Largest providers of certificates
 - Verisign, Geotrust

Public-key certificate

- A public-key certificate may include
 - user's public-key
 - name (person, computer, or company)
 - validity period.
 - location (URL) of a revocation center.
 - digital signature of the certificate, produced by the CA's private key.

Certificate revocation

- Certificate revocation when
 - Private-key is compromised
 - Identity/PK binding incorrect.
- A user should always check the validity of a certificate
 - CA can maintain a Certificate Revocation List (CRL)
 - Must be up to date and readily available


Hierarchy of certificates

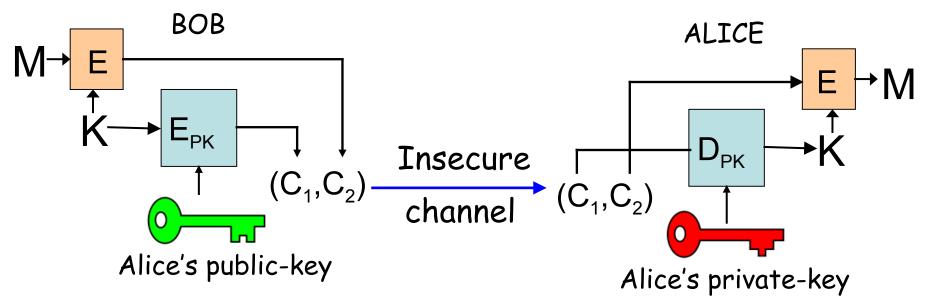
- Bob may not know Alice's CA
 - The CA may be Alice's employer, and Bob may work for a different company.
- Alice's certificate can include her CA's public-key signed by a higher level CA₂

- This CA_2 may be recognized by Bob

• This leads to a hierarchy of certificates

Certificate Hierarchy

Certificate Standard

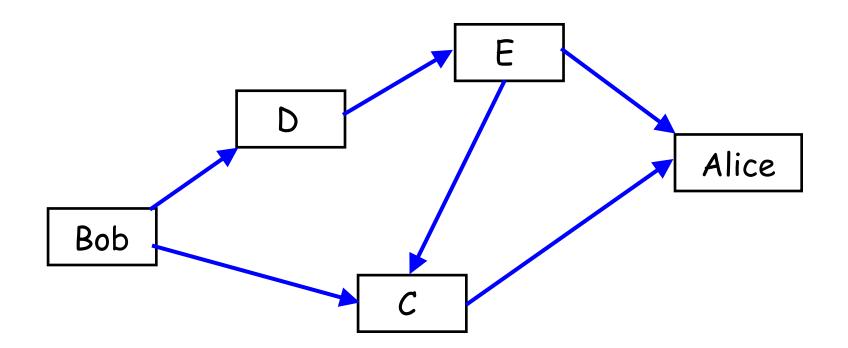

- X509
 - Most common certificate standard
 - Specifies certificate format and certificate validation path.
 - Assumes a hierarchy of CA
 - Root certificate is implicitly trusted
 - Specifies certificate revocation list (CRL) implementation

Root certificate

- Unsigned public-key certificate located at the top of a certificate chain.
 - Typically in X509 standard
 - Implicitly trusted
- Included in web browsers
 - Used for SSL/TLS connections
 - One needs to trust the browser's publisher to include correct root certificates.
 - Single point of failure
- In practice, hierarchy is flat.

PGP

- PGP (Pretty Good Privacy)
 - Software that provides email encryption and signature (and more).
 - First version by P. Zimmermann in 1991.
 - Uses PK encryption to encrypt a shared key, which is used to encrypt the message.



PGP

- Digital signature
 - When sending a message m, Bob can sign m with his private key.
 - Alice checks the signature with Bob's PK, so that Alice is convinced that m was sent by Bob and received unaltered.
 - RSA signature or DSA signature.
 - Used by default with encryption, but can be used for plaintext as well

PGP Web of trust

- Any party can sign the (PK,ID) of another.
- Decentralized web of trust

OpenPGP and GnuPG

- OpenPGP
 - Standard for PGP encryption since 1997.
 - Avoids patented algorithms
- GNU Privacy Guard (GnuPG)
 - developed by Free Software Foundation and freely available with source code.
 - Supports ElGamal, DSA, RSA, AES, 3DES, Blowfish, Twofish, CAST5, MD5, SHA-1, RIPE-MD-160 and TIGER.

SSL

- Used to provide secure web-browsing.
 - SSL 3.0 similar to TLS 1.0
 - ensures confidentiality, integrity and authenticity over the Internet.
- Generally, only the server is authenticated
 - Mutual authentication requires a PKI for the client.

SSL

- Three steps
 - Negotiation for algorithms used.
 - Certificate verification and PK encryption for session key.
 - Symmetric encryption for traffic encryption.

Cipher suite negotiation

- Client sends a ClientHello message to specify supported algorithms
 - For example, RSA, AES and HMAC-SHA-1
- Server sends a ServerHello message to specify its choice of algorithm.
 - Server adapts to client capabilities.

SSL: second phase

- Server sends certificate to client.
 - Generally, X509 certificate
- Server can request client certificate for mutual authentication
 - Rarely used in practice
- Client and Server establish a « master secret »
 - by PK encryption of a random seed by the client (generally RSA)
 - or possibly by Diffie-Hellman key exchange (rarely used)

SSL second phase (2)

- Server authenticated by proof of possession of private key
 - Ability to decrypt client data.
 - Both sides share the same « master secret »
- Client/server finish
 - Authenticate all previously exchanged data with MACs

SSL: third phase

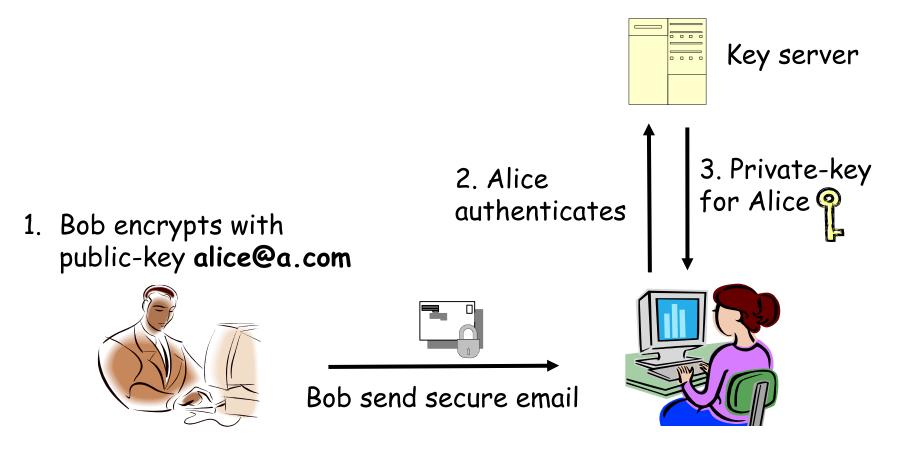
- Traffic encryption
 - Using symmetric cipher
 - Some early implementations of SSL used 40-bit keys because of US government restrictions on crypto export
 - Now relaxed export restrictions. Modern implementations use 128 bit keys for symmetric key.
- Integrity protection via MACs

Applications of SSL

Mainly used to secure HTTP => HTTPS

🥹 Welcome to Gmail - Mozilla Firefox	
<u>File E</u> dit <u>V</u> iew <u>G</u> o <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp	0
🗇 🕶 🚽 🌫 🥰 🛞 😭 🗋 https://www.google.com/accounts/ServiceLogin?service=mail&passive=true&continue=t 🖨 💌 💽	
🗋 Bible Jokes!!! 🔰 step5_brief.php 🗋 ocw.mit.edu 🗋 CGR Forums 📄 List of errors 🗋 Drakeshangout.com 🗋 1 💆 Amazon Web Servic 🔷	
🗙 Disable* 👿 CSS* 🎭 Forms* 💩 Images* 🔱 Information* 🖄 Miscellaneous* 🧭 Outline* 📮 Resize* 🏷 Validation* 💩 View Source 🛞 Options*	
Welcome to Gmail	
A Google approach to email.	
Gmail is an experiment in a new kind of webmail, built on the idea that you should never have to delete mail and you should always be able to find the message you want. The key features are:	Sign in to Gmail with your Google Account
 Search, don't sort. Use Google search to find the exact message you want, no matter when it was sent or received. 	Username: Password:
 Don't throw anything away. Over 2075 megabytes (and counting) of free storage so you'll never need to delete another message. 	 Don't ask for my password for 2 weeks. Sign in
 Keep it all in context. Each message is grouped with all its replies and displayed as a conversation. 	Forgot your password?
 No pop-up ads. No untargeted banners. You see only <u>relevant text ads</u> and links to related web pages of interest. 	Learn more <u>about Gmail</u> .
Done www.google com 🖹 🚽	

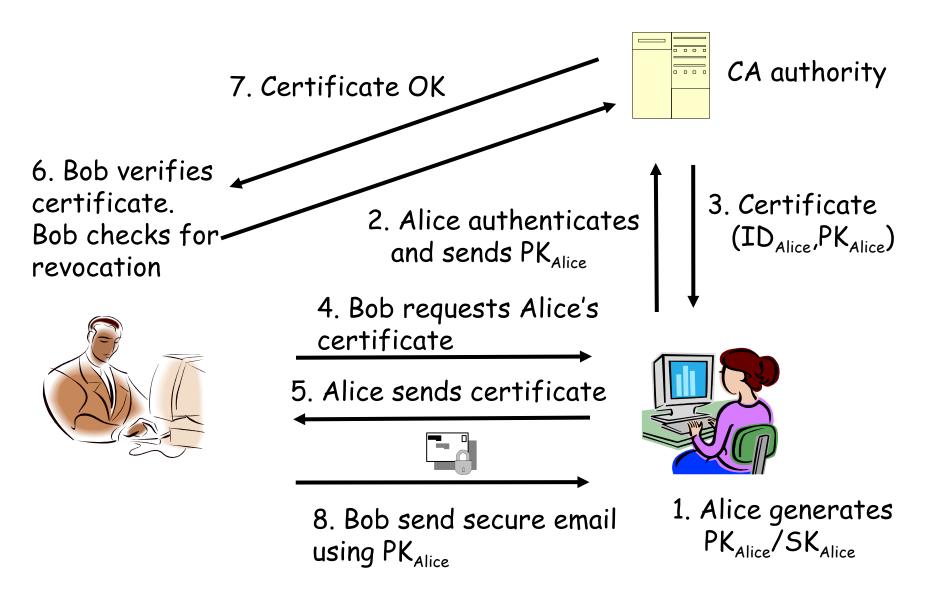
Credit card via https


- https only protects the credit card number during transit between the user's computer and the server
 - Does not protect against an attack on the server
- Attack on the server usually easier than interception in transit.
 - Credit card number often saved in a database in merchant site
 - Attacks generally concentrate on the server and database

Identity-Based encryption

- Principle
 - Allows a party to encrypt a message using the recipient's identity as the public-key
 - The corresponding private key is provided by a central authority
- History
 - Concept invented by Shamir in 1984
 - First realization by Boneh and Franklin in 2001

IBE


 Bob sends an email to Alice using his identity as the public-key

IBE

- Principle
 - Bob encrypts his email using Alice's email adress alice@a.com as the public key
 - Alice receives the message. She contacts the key server, authenticates, and receives her private key.
 - Alice uses her private-key to decrypt the message
 - This private-key can be used to decrypt any future message sent to Alice by Bob or any other user.

Difference with conventional PKI

Adantages of IBE

- Simplification compared to PKI
 - No need to distribute PK certificates
 - Users can use their email adress as PK
 - Recipient does not have to be online to present PK certificate.
 - Sender does not have to be online to check validity of certificate
 - Bob can send an email to Alice even if Alice has not yet registered in the system

Boneh-Franklin

- First efficient IBE, proposed by Boneh and Franklin at Crypto 2001
 - Most famous IBE scheme to date.
 - Based on the bilinear pairing operation on an Elliptic-Curve.
 - Provably secure encryption scheme
 - IBCS#1 standard, published by Voltage Security.

Applications of IBE

- Email encryption
 - A company hosts the Private-Key generator (PKG) and distributes private-keys to its employees.
 - Employees can communicate securely between themselves, using their email address as their public-key
 - Nobody expect the mail recipient (and the PKG) can decipher the communications
 - Private-keys can also be distributed outside the company

Revocation of Public-keys

- Key-revocation in IBE is simple
 - Bob encrypts his email to Alice using the publickey « alice@company.com || current-year »
 - Alice can only decrypt if she has obtained the private-key for the corresponding year.
 - With « alice@company.com || current-date » instead, Alice must obtain a new private-key every day
 - Key revocation: the PKG simply stops issuing private-keys to Alice if Alice leaves the company. Then she can no longer read her email
- Encrypting into the future
 - With « alice@company.com || future-date »

Conclusion

- Public-key Infrastructure
 - Necessary to authenticate public-keys
 - Difficult to set up and maintain
 - Certificate Revocation List
 - Used for PGP encryption and SSL/TLS.
- IBE could be an alternative
 - But central authority can decrypt everything.