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1 Introduction

In [BV11], the authors described a fully homomorphic encryption scheme based on the learn-
ing with errors (LWE) assumption. In particular, they introduced a new relinearization tech-
nique for performing the ciphertext multiplication for a “somewhat homomorphic” encryption
scheme based on LWE.

1. Install the Sage library, available at http://www.sagemath.org/. Alternatively, you can
use the Sage Cell Server at https://sagecell.sagemath.org.

2. Implement the functions below. The implementation of the functions in Section 4.2 and
after is optional.

3. Please submit a .ipynb file.

2 Basic LWE encryption

We first recall basic lattice-based encryption, starting from the Regev scheme [Reg05]. Let
q ∈ Z be a prime number. Let s⃗ ∈ Z be the secret-key. An LWE ciphertext for a message
m ∈ {0, 1} is c⃗ ∈ Fn

q such that

⟨c⃗, s⃗⟩ = e+m · ⌊q/2⌉ (mod q)

with s1 = 1. For the error e, we can take the binomial distribution χ with parameter κ, for
some small κ. One can let e = h(u) − h(v) where u, v ← {0, 1}κ, where h is the Hamming
weight function.

def hw(x):

return sum(x.digits(base=2))

def binom(kappa=2):

return hw(ZZ.random_element(2^kappa))-hw(ZZ.random_element(2^kappa))

Symmetric-key encryption. For simplicity, we first consider a symmetric scheme. We
consider a secret-key s⃗ = (s1, · · · , sn) with random components modulo q, with s1 = 1.

def genKey(n=10 ,kappa=2,nq=8): # nq is the bitsize of q

...

return n,kappa ,q,s

An LWE ciphertext is a vector of n elements in Zq. We have taken s1 = 1, so

⟨c⃗, s⃗⟩ = c1 +

n∑
i=2

ci · si = e+m · ⌊q/2⌉ (mod q)

In the code below, we take as input a scaling factor ∆, so that ⟨c⃗, s⃗⟩ = e + m · ∆ (mod q).
Therefore, ∆ = ⌊q/2⌉ by default.



def LWEencSym(mes ,q,kappa ,s,Delta=None):

pass

Decryption is performed by computing m = th(⟨c⃗, s⃗⟩ mod q), where th(x) = 1 if q/4 ≤
x ≤ 3q/4, and 0 otherwise.

def th(x,q):

pass

def LWEdecrypt(c,s,q):

pass

Public-key encryption. To encrypt, one can use a matrixA ∈ Fm×n
q of row vectors a⃗i ∈ Fn

q ,
such that ⟨⃗ai, s⃗⟩ = ei for ei ← χ, for all 1 ≤ i ≤ m. This can be written A · s⃗ = e⃗ (mod q).

Therefore, every row of A⃗ is an LWE encryption of 0.

def vecBinom(n,kappa=2):

return vector([binom(kappa) for i in range(n)])

def genKeyPK(n=10 ,ell=40 ,kappa=2,nq=12):

return kappa ,q,A,s

To encrypt a message m ∈ {0, 1}, one generates a linear combination of the row vectors
a⃗i:

c⃗ =
⌊q
2

⌉
· (m, 0, . . . , 0) + u⃗ · A⃗ (mod q)

where u⃗← χℓ.

def LWEenc(mes ,A,kappa ,q):

pass

For decryption, we compute:

⟨c⃗, s⃗⟩ =
⌊q
2

⌉
·m+ u⃗ ·A · s⃗ =

⌊q
2

⌉
·m+ ⟨u⃗, e⃗⟩ (mod q)

For correct decryption, we must have |⟨u⃗, e⃗⟩| < q/4. We can fix the parameters so that this is
the case, except with negligible probability. For a constant κ, the distribution of ⟨u⃗, e⃗⟩ looks
like a Gaussian with standard deviation O(

√
n). Hence we can take q = O(

√
n). We can take

m = O(n), for a proof of security based on the leftover hash lemma.

3 Homomorphic addition

LWE ciphertexts can be added, with a small increase in the noise.

⟨c⃗1, s⃗⟩ = e1 +m1 · (q + 1)/2 (mod q)

⟨c⃗2, s⃗⟩ = e2 +m2 · (q + 1)/2 (mod q)

⟨c⃗1 + c⃗2, s⃗⟩ = e1 + e2 + (m1 +m2) · (q + 1)/2 (mod q)

def LWEadd(c1 ,c2):

pass
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def testLWEadd(nt=100):

kappa ,q,A,s=genKeyPK ()

for i in range(nt):

m1=ZZ.random_element(2)

m2=ZZ.random_element(2)

c1=LWEenc(m1,A,kappa ,q)

c2=LWEenc(m2,A,kappa ,q)

c3=LWEadd(c1,c2)

assert LWEdecrypt(c3,s,q)==(m1+m2)%2

4 Homomorphic multiplication

Homomorphic multiplication is more complex. It has three steps:

1. Tensor product
2. Binary decomposition
3. Key switching

4.1 Tensor product

LWE ciphertexts can be multiplied by tensor product.

2⟨c⃗1, s⃗⟩·⟨c⃗2, s⃗⟩ = 2

(
n∑

i=1

c1,isi

)(
n∑

i=1

c2,isi

)
= 2(e1+(q+1)/2·m1)·(e2+(q+1)/2·m2) (mod q)

which gives:
n∑

i=1

n∑
j=1

2c1,ic2,j · sisj = e+m1m2 · (q + 1)/2 (mod q)

for e = 2e1e2 +m1e2 +m2e1. Hence c⃗′ = (2c1,i · c2,j)i,j ∈ Zn2

q is a new LWE ciphertext for

the secret-key s⃗′ = (si · sj)i,j ∈ Zn2

q , with

⟨c⃗′, s⃗′⟩ = e+m1m2 · (q + 1)/2 (mod q)

Therefore, the bitsize of the noise has roughly doubled. However, we get a ciphertext with n2

components instead of n.

def tensorprod(v1 ,v2):

return vector(v1.tensor_product(v2).list())

def LWEmult_tens(c1 ,c2 ,q):

pass

def testLWEmult_tens(nt=100):

kappa ,q,A,s=genKeyPK ()

sp=tensorprod(s,s)

for i in range(nt):

m1=ZZ.random_element(2)

m2=ZZ.random_element(2)

c1=LWEenc(m1,A,kappa ,q)

c2=LWEenc(m2,A,kappa ,q)

c3=LWEmult_tens(c1,c2,q)

assert LWEdecrypt(c3,sp,q)==m1*m2

The main problem is that the product ciphertext has now n2 components instead of n.
We would like to get back to n components. The first step is to get a ciphertext with binary
components only, using an expanded secret-key. In the second step, we apply a key switching.
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4.2 Binary decomposition

We want to have a ciphertext with binary components only. This is easy using binary decom-
position. For any 0 ≤ a, b < q, we have, using nq = ⌈log2 q⌉:

a · b =
nq−1∑
i=0

ai · 2ib (mod q)

= ⟨BitDecomp(a),PowerOf2(b)⟩

where BitDecomp(a) = (a0, . . . , anq−1) and PowerOf2(b) = (b, 21b, . . . , 2nq−1b). We can ex-
tend BitDecomp and PowerOf2 to vectors by applying it component wise, and flattening the
resulting matrix into a vector.

Therefore, given c⃗ ∈ Zm
q and s⃗ ∈ Zm

q , we can let c⃗′ = BitDecomp(c⃗), and s⃗′ = PowerOf2(s⃗),
and we get:

⟨c⃗′, s⃗′⟩ = ⟨BitDecomp(c⃗),PowerOf2(s⃗)⟩ = ⟨c⃗, s⃗⟩

Therefore, we get a new ciphertext c⃗′ with binary components only, which encrypts the same
message under the new secret key s⃗′, as the original c⃗ under s⃗.

def bitdecomp(v,q):

pass

def powerof2(v,q):

pass

4.3 Key switching

We now explain how to switch keys. Given a binary ciphertext c⃗ ∈ {0, 1}m under key s⃗ ∈ Zm
q

and another key s⃗′ ∈ Zn
q , we show how to get a new ciphertext c⃗′ ∈ Zn

q encrypting the same
message m under the new key s⃗′. We start from a ciphertext c⃗ under s⃗:

u = ⟨c⃗, s⃗⟩ =
m∑
i=1

ci · si (mod q)

We consider LWE pseudo-encryptions t⃗i of each si under the new key s⃗′:

⟨⃗ti, s⃗′⟩ = fi + si (mod q)

for some small errors fi. This enables to write:

u =

m∑
i=1

ci
(
⟨⃗ti, s⃗′⟩ − fi

)
=

〈
m∑
i=1

cit⃗i, s⃗
′

〉
−

m∑
i=1

ci · fi (mod q)

Therefore, we can define a new ciphertext

c⃗′ =

m∑
i=1

cit⃗i (mod q)

and we get
⟨c⃗′, s⃗′⟩ = ⟨c⃗, s⃗⟩+ f (mod q)

for a small additional error f , because the ci’s are binary. Therefore, the two ciphertexts
encrypt the same message.
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def switchKey(s,sp ,q,kappa):

pass

swenc=switchKey(powerof2(tensorprod(s,s),q),s,q,kappa)

def LWEmult(c1 ,c2 ,swenc ,q):

pass
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