
Implementation of homomorphic LWE-based encryption

Jean-Sébastien Coron

Université du Luxembourg

1 Introduction

In [BV11], the authors described a fully homomorphic encryption scheme based on the learn-
ing with errors (LWE) assumption. In particular, they introduced a new relinearization tech-
nique for performing the ciphertext multiplication for a “somewhat homomorphic” encryption
scheme based on LWE.

1. Install the Sage library, available at http://www.sagemath.org/. Alternatively, you can
use the Sage Cell Server at https://sagecell.sagemath.org.

2. Implement the functions below. The implementation of the functions in Section 4.2 and
after is optional.

3. Please submit a .ipynb file.

2 Basic LWE encryption

We first recall basic lattice-based encryption, starting from the Regev scheme [Reg05]. Let
q ∈ Z be a prime number. Let s⃗ ∈ Z be the secret-key. An LWE ciphertext for a message
m ∈ {0, 1} is c⃗ ∈ Fn

q such that

⟨c⃗, s⃗⟩ = e+m · ⌊q/2⌉ (mod q)

with s1 = 1. For the error e, we can take the binomial distribution χ with parameter κ, for
some small κ. One can let e = h(u) − h(v) where u, v ← {0, 1}κ, where h is the Hamming
weight function.

def hw(x):

return sum(x.digits(base=2))

def binom(kappa=2):

return hw(ZZ.random_element(2^kappa))-hw(ZZ.random_element(2^kappa))

Symmetric-key encryption. For simplicity, we first consider a symmetric scheme. We
consider a secret-key s⃗ = (s1, · · · , sn) with random components modulo q, with s1 = 1.

def genKey(n=10 ,kappa=2,nq=8): # nq is the bitsize of q

...

return n,kappa ,q,s

An LWE ciphertext is a vector of n elements in Zq. We have taken s1 = 1, so

⟨c⃗, s⃗⟩ = c1 +

n∑
i=2

ci · si = e+m · ⌊q/2⌉ (mod q)

In the code below, we take as input a scaling factor ∆, so that ⟨c⃗, s⃗⟩ = e + m · ∆ (mod q).
Therefore, ∆ = ⌊q/2⌉ by default.

def LWEencSym(mes ,q,kappa ,s,Delta=None):

pass

Decryption is performed by computing m = th(⟨c⃗, s⃗⟩ mod q), where th(x) = 1 if q/4 ≤
x ≤ 3q/4, and 0 otherwise.

def th(x,q):

pass

def LWEdecrypt(c,s,q):

pass

Public-key encryption. To encrypt, one can use a matrixA ∈ Fm×n
q of row vectors a⃗i ∈ Fn

q ,
such that ⟨⃗ai, s⃗⟩ = ei for ei ← χ, for all 1 ≤ i ≤ m. This can be written A · s⃗ = e⃗ (mod q).

Therefore, every row of A⃗ is an LWE encryption of 0.

def vecBinom(n,kappa=2):

return vector([binom(kappa) for i in range(n)])

def genKeyPK(n=10 ,ell=40 ,kappa=2,nq=12):

return kappa ,q,A,s

To encrypt a message m ∈ {0, 1}, one generates a linear combination of the row vectors
a⃗i:

c⃗ =
⌊q
2

⌉
· (m, 0, . . . , 0) + u⃗ · A⃗ (mod q)

where u⃗← χℓ.

def LWEenc(mes ,A,kappa ,q):

pass

For decryption, we compute:

⟨c⃗, s⃗⟩ =
⌊q
2

⌉
·m+ u⃗ ·A · s⃗ =

⌊q
2

⌉
·m+ ⟨u⃗, e⃗⟩ (mod q)

For correct decryption, we must have |⟨u⃗, e⃗⟩| < q/4. We can fix the parameters so that this is
the case, except with negligible probability. For a constant κ, the distribution of ⟨u⃗, e⃗⟩ looks
like a Gaussian with standard deviation O(

√
n). Hence we can take q = O(

√
n). We can take

m = O(n), for a proof of security based on the leftover hash lemma.

3 Homomorphic addition

LWE ciphertexts can be added, with a small increase in the noise.

⟨c⃗1, s⃗⟩ = e1 +m1 · (q + 1)/2 (mod q)

⟨c⃗2, s⃗⟩ = e2 +m2 · (q + 1)/2 (mod q)

⟨c⃗1 + c⃗2, s⃗⟩ = e1 + e2 + (m1 +m2) · (q + 1)/2 (mod q)

def LWEadd(c1 ,c2):

pass

2

def testLWEadd(nt=100):

kappa ,q,A,s=genKeyPK ()

for i in range(nt):

m1=ZZ.random_element(2)

m2=ZZ.random_element(2)

c1=LWEenc(m1,A,kappa ,q)

c2=LWEenc(m2,A,kappa ,q)

c3=LWEadd(c1,c2)

assert LWEdecrypt(c3,s,q)==(m1+m2)%2

4 Homomorphic multiplication

Homomorphic multiplication is more complex. It has three steps:

1. Tensor product
2. Binary decomposition
3. Key switching

4.1 Tensor product

LWE ciphertexts can be multiplied by tensor product.

2⟨c⃗1, s⃗⟩·⟨c⃗2, s⃗⟩ = 2

(
n∑

i=1

c1,isi

)(
n∑

i=1

c2,isi

)
= 2(e1+(q+1)/2·m1)·(e2+(q+1)/2·m2) (mod q)

which gives:
n∑

i=1

n∑
j=1

2c1,ic2,j · sisj = e+m1m2 · (q + 1)/2 (mod q)

for e = 2e1e2 +m1e2 +m2e1. Hence c⃗′ = (2c1,i · c2,j)i,j ∈ Zn2

q is a new LWE ciphertext for

the secret-key s⃗′ = (si · sj)i,j ∈ Zn2

q , with

⟨c⃗′, s⃗′⟩ = e+m1m2 · (q + 1)/2 (mod q)

Therefore, the bitsize of the noise has roughly doubled. However, we get a ciphertext with n2

components instead of n.

def tensorprod(v1 ,v2):

return vector(v1.tensor_product(v2).list())

def LWEmult_tens(c1 ,c2 ,q):

pass

def testLWEmult_tens(nt=100):

kappa ,q,A,s=genKeyPK ()

sp=tensorprod(s,s)

for i in range(nt):

m1=ZZ.random_element(2)

m2=ZZ.random_element(2)

c1=LWEenc(m1,A,kappa ,q)

c2=LWEenc(m2,A,kappa ,q)

c3=LWEmult_tens(c1,c2,q)

assert LWEdecrypt(c3,sp,q)==m1*m2

The main problem is that the product ciphertext has now n2 components instead of n.
We would like to get back to n components. The first step is to get a ciphertext with binary
components only, using an expanded secret-key. In the second step, we apply a key switching.

3

4.2 Binary decomposition

We want to have a ciphertext with binary components only. This is easy using binary decom-
position. For any 0 ≤ a, b < q, we have, using nq = ⌈log2 q⌉:

a · b =
nq−1∑
i=0

ai · 2ib (mod q)

= ⟨BitDecomp(a),PowerOf2(b)⟩

where BitDecomp(a) = (a0, . . . , anq−1) and PowerOf2(b) = (b, 21b, . . . , 2nq−1b). We can ex-
tend BitDecomp and PowerOf2 to vectors by applying it component wise, and flattening the
resulting matrix into a vector.

Therefore, given c⃗ ∈ Zm
q and s⃗ ∈ Zm

q , we can let c⃗′ = BitDecomp(c⃗), and s⃗′ = PowerOf2(s⃗),
and we get:

⟨c⃗′, s⃗′⟩ = ⟨BitDecomp(c⃗),PowerOf2(s⃗)⟩ = ⟨c⃗, s⃗⟩

Therefore, we get a new ciphertext c⃗′ with binary components only, which encrypts the same
message under the new secret key s⃗′, as the original c⃗ under s⃗.

def bitdecomp(v,q):

pass

def powerof2(v,q):

pass

4.3 Key switching

We now explain how to switch keys. Given a binary ciphertext c⃗ ∈ {0, 1}m under key s⃗ ∈ Zm
q

and another key s⃗′ ∈ Zn
q , we show how to get a new ciphertext c⃗′ ∈ Zn

q encrypting the same
message m under the new key s⃗′. We start from a ciphertext c⃗ under s⃗:

u = ⟨c⃗, s⃗⟩ =
m∑
i=1

ci · si (mod q)

We consider LWE pseudo-encryptions t⃗i of each si under the new key s⃗′:

⟨⃗ti, s⃗′⟩ = fi + si (mod q)

for some small errors fi. This enables to write:

u =

m∑
i=1

ci
(
⟨⃗ti, s⃗′⟩ − fi

)
=

〈
m∑
i=1

cit⃗i, s⃗
′

〉
−

m∑
i=1

ci · fi (mod q)

Therefore, we can define a new ciphertext

c⃗′ =

m∑
i=1

cit⃗i (mod q)

and we get
⟨c⃗′, s⃗′⟩ = ⟨c⃗, s⃗⟩+ f (mod q)

for a small additional error f , because the ci’s are binary. Therefore, the two ciphertexts
encrypt the same message.

4

def switchKey(s,sp ,q,kappa):

pass

swenc=switchKey(powerof2(tensorprod(s,s),q),s,q,kappa)

def LWEmult(c1 ,c2 ,swenc ,q):

pass

References

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) lwe. In Proceedings of the 52nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 97–106. IEEE, 2011.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual ACM Symposium
on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 84–93. ACM, 2005.

5

