1

1.

2

Attacks against RSA signatures

Jean-Sébastien Coron

Université du Luxembourg

Fault attacks against RSA signatures

Implement the signature generation algorithm using the Chinese Remainder Theorem
(CRT) using the Sage library. More precisely, to compute s = m? mod N, compute

d mod p—1

sp=s modp=m mod p

and

md mod ¢g—1

54 =5 mod q= mod ¢

Recover s mod N from s, and s, using the CRT.

. Assume that an error occurs during the computation of s,, that is, an incorrect value

s;, # s, is computed while s, is correctly computed. Explain and implement how to
recover the factorization of N from s, following the Bellcore attack [BDL97].

How could such error be detected ? Propose and implement a simple method to detect
such error.

The Desmedt-Odlyzko attack

The goal is to implement the Desmedt-Odlyzko attack [DO85] described in the lecture, with
the RSA signature scheme:

o=H(m)* (mod N)

for a hash function H of size k bits. The attack computes a forged signature as a multiplicative
combination of existing signatures.

2.1 Signature scheme

We assume that we work with a public exponent e = 3. In that case, the key generation can

be implemented as follows:

def keyGen(n=256):

e=3
while True:
p=random_prime(2°(n//2));q=random_prime (2~ (n//2))

if gecd(e,(p-1)*(q-1))==1: break
d=inverse_mod (e, (p-1)*(g-1))
Nn=px*q

return Nn,p,q,e,d

For simplicity the hash function can be computed as follows:

import hashlib

def shal(s,digestsize=50):

m = hashlib.shal()
m.update (s)
return Integer(m.hexdigest () ,base=16) J 2"digestsize

2.2 The attack

1. We generate the list py,...,p¢ of the first £ primes, and we fix the smoothness bound
B = Pe-
2. We find ¢ 4+ 1 messages m; such that the H(m;) are B-smooth:

Vi ¢

H(m;) =p,"" - p,

To detect smooth numbers among H (m;), one can use the factor () function from Sage.
3. We put the corresponding vector of exponent in the rows M; of a (¢ + 1) x £ matrix M:

M, = (v;1 mode,...,v; ¢y mod e)

4. Since we have 7 = £+ 1 vectors of dimension ¢ and we are working modulo a prime e = 3,
one vector must be a linear combination of the others. Such linear combination can be
found by computing the first vector u of the left kernel of the matrix M

u=Matrix (GF(3),M).left_kernel () .matrix () [0]
This gives:

e+1
Zui -M; =0 (mod 3)
i=1

We can then take the first i* such that u;« # 0. We can assume u;+ = 2 (mod 3), otherwise
we can let u <~ —u (mod 3). This enables to write:

Mi* = Z Uj * Mz (HlOd 3)
iF£L*

This enables to write the linear relation on the exponents for all 1 < j < /:

Virg =7+ E Ui * Vij
i£i*

This gives the following multiplicative relation on the H(m;):

¢ L et D uivgj Y4 ¢
Vix ik i ViU
L | e | 11 O I 1) R
j=1 j=1 j=1 =1 izt
) e) Ujg) e
Vi Vi, j _ 7. w;
=\1»7) I { 1w~ | ={1Ip7) - 11 Hma)
j=1 i#ir \j=1 j=1 it

5. Writing

¢
H(m;) = 6°- H H(m;)", where ¢ := Hp;j
ii* j=1
this gives a forgery. Namely, the attacker asks the signatures o; of m; for ¢ # i* and forges
the signature o;« of my«:

o = H(my)1 =6 - H (H(mi)d)ui (mod N)
iki*
o =0+ H o (mod N)
it

2.3 Testing the attack

To test the attack, one can use small parameters, for example digestsize=>50, and a number
of primes ¢ = 100. It can be interesting to optimize the running time by varying ¢ for a fixed
digestsize.

Implement the attack and compute experimentally the number of signatures needed as a
function of the digest size, for small values of digestsize.

References

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of checking
cryptographic protocols for faults (extended abstract). In Advances in Cryptology - EU-
ROCRYPT ’97, International Conference on the Theory and Application of Cryptographic
Techniques, Konstanz, Germany, May 11-15, 1997, Proceeding, pages 37-51, 1997.

[DO85] Yvo Desmedt and Andrew M. Odlyzko. A chosen text attack on the RSA cryptosystem
and some discrete logarithm schemes. In Advances in Cryptology - CRYPTO ’85, Santa
Barbara, California, USA, August 18-22, 1985, Proceedings, pages 516522, 1985.

