
Attacks against RSA signatures

Jean-Sébastien Coron

Université du Luxembourg

1 Fault attacks against RSA signatures

1. Implement the signature generation algorithm using the Chinese Remainder Theorem
(CRT) using the Sage library. More precisely, to compute s = md mod N , compute

sp = s mod p = md mod p−1 mod p

and
sq = s mod q = md mod q−1 mod q

Recover s mod N from sp and sq using the CRT.
2. Assume that an error occurs during the computation of sp, that is, an incorrect value

s′p ̸= sp is computed while sq is correctly computed. Explain and implement how to
recover the factorization of N from s, following the Bellcore attack [BDL97].

3. How could such error be detected ? Propose and implement a simple method to detect
such error.

2 The Desmedt-Odlyzko attack

The goal is to implement the Desmedt-Odlyzko attack [DO85] described in the lecture, with
the RSA signature scheme:

σ = H(m)d (mod N)

for a hash function H of size k bits. The attack computes a forged signature as a multiplicative
combination of existing signatures.

2.1 Signature scheme

We assume that we work with a public exponent e = 3. In that case, the key generation can
be implemented as follows:

def keyGen(n=256):

e=3

while True:

p=random_prime(2^(n// 2));q=random_prime(2^(n// 2))

if gcd(e,(p-1)*(q-1))==1: break

d=inverse_mod(e,(p-1)*(q-1))

Nn=p*q

return Nn ,p,q,e,d

For simplicity the hash function can be computed as follows:

import hashlib

def sha1(s,digestsize=50):

m = hashlib.sha1()

m.update(s)

return Integer(m.hexdigest (),base=16) % 2^digestsize



2.2 The attack

1. We generate the list p1, . . . , pℓ of the first ℓ primes, and we fix the smoothness bound
B = pℓ.

2. We find ℓ+ 1 messages mi such that the H(mi) are B-smooth:

H(mi) = p
vi,1
1 · · · pvi,ℓℓ

To detect smooth numbers among H(mi), one can use the factor() function from Sage.
3. We put the corresponding vector of exponent in the rows Mi of a (ℓ+ 1)× ℓ matrix M:

Mi = (vi,1 mod e, . . . , vi,ℓ mod e)

4. Since we have τ = ℓ+1 vectors of dimension ℓ and we are working modulo a prime e = 3,
one vector must be a linear combination of the others. Such linear combination can be
found by computing the first vector u of the left kernel of the matrix M

u=Matrix(GF(3),M).left_kernel ().matrix ()[0]

This gives:
ℓ+1∑
i=1

ui ·Mi = 0 (mod 3)

We can then take the first i⋆ such that ui⋆ ̸= 0. We can assume ui⋆ = 2 (mod 3), otherwise
we can let u← −u (mod 3). This enables to write:

Mi⋆ =
∑
i ̸=i⋆

ui ·Mi (mod 3)

This enables to write the linear relation on the exponents for all 1 ≤ j ≤ ℓ:

vi⋆,j = γj · e+
∑
i ̸=i⋆

ui · vi,j

This gives the following multiplicative relation on the H(mi):

H(mi⋆) =

ℓ∏
j=1

p
vi⋆,j

j =

ℓ∏
j=1

p
γj ·e+

∑
i̸=i⋆

ui·vi,j

j =

 ℓ∏
j=1

p
γj

j

e

·
ℓ∏

j=1

∏
i ̸=i⋆

p
vi,j ·ui

j

=

 ℓ∏
j=1

p
γj

j

e

·
∏
i̸=i⋆

 ℓ∏
j=1

p
vi,j

j

ui

=

 ℓ∏
j=1

p
γj

j

e

·
∏
i ̸=i⋆

H(mi)
ui

5. Writing

H(mi⋆) = δe ·
∏
i ̸=i⋆

H(mi)
ui , where δ :=

ℓ∏
j=1

p
γj

j

this gives a forgery. Namely, the attacker asks the signatures σi of mi for i ̸= i⋆ and forges
the signature σi⋆ of mi⋆ :

σi⋆ = H(mi⋆)
d = δ ·

∏
i ̸=i⋆

(
H(mi)

d
)ui

(mod N)

σi⋆ = δ ·
∏
i ̸=i⋆

σui
i (mod N)

2



2.3 Testing the attack

To test the attack, one can use small parameters, for example digestsize=50, and a number
of primes ℓ = 100. It can be interesting to optimize the running time by varying ℓ for a fixed
digestsize.

Implement the attack and compute experimentally the number of signatures needed as a
function of the digest size, for small values of digestsize.

References

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of checking
cryptographic protocols for faults (extended abstract). In Advances in Cryptology - EU-
ROCRYPT ’97, International Conference on the Theory and Application of Cryptographic
Techniques, Konstanz, Germany, May 11-15, 1997, Proceeding, pages 37–51, 1997.

[DO85] Yvo Desmedt and Andrew M. Odlyzko. A chosen text attack on the RSA cryptosystem
and some discrete logarithm schemes. In Advances in Cryptology - CRYPTO ’85, Santa
Barbara, California, USA, August 18-22, 1985, Proceedings, pages 516–522, 1985.

3


