
Computing with Large Integers

Jean-Sébastien Coron

University of Luxembourg
http://www.jscoron.fr

1 Addition of positive integers

1.1 Addition algorithm

Implement the big integer addition algorithm, for positive integers. If using the C language
you can use the structure:

typedef struct {
int size;

int *tab;

} bignum;

1.2 Application: Fibonacci Sequence

We define the Fibonacci sequence u0 = 1, u1 = 1, un = un−1+un−2 for n ≥ 2. Write a program
that computes the n terms of the Fibonnaci sequence, for a given n, using the previous addition
algorithm. You can use base B = 10. Check that u100 = 573147844013817084101. What is
the value of u101 ?

2 Multiplication of positive integers

2.1 Multiplication algorithm

Implement the multiplication algorithm on big integers, for positive integers.

2.2 Application: factorial

We define n! = n · (n − 1) . . . 2 · 1. Write a program computing n! for a given n, using the
previous multiplication algorithm. Check that 30! = 265252859812191058636308480000000.
What is the value of 40! ?

3 Modular Exponentiation

Implement the modular exponentiation algorithm from the course.

$ expmod 2342 6762 9343

7147

because 23426762 ≡ 7147 mod 9343.



4 Optional: big number library and RSA implementation

The goal is to implement a big number library in C or C++, and to implement the RSA
algorithm on top of it. A big integer will be represented using an array of digits in base
B = 2k for some integer k. The following struct can be used:

typedef struct {

int sign;

int size;

int *tab;

} bignum;

were sign is the sign bit, and size is the size of the dynamic array tab.

4.1 Functions to be implemented

bignum str2bignum(char *str)

converts a string to a bignum.

bignum add(bignum a, bignum b)

adds the integers a and b.

bignum sub(bignum a,bignum b)

return a− b.

bignum mult(bignum a,bignum b)

returns the product of a and b.

bignum remainderbignum(bignum a,bignum n)

returns the remainder of the division of a by n, for two positive integers a and b. For this,
one can use the Binary Euclidean Algorithm described in the course. This means that the
inputs a and n must first be converted from base B = 2k to binary, and eventually the binary
remainder is converted back to base B = 2k.

bignum addmod(bignum a, bignum b,bignum n)

returns a+ b mod n.

bignum multmod(bignum a,bignum b,bignum n)

returns a · b mod n.

bignum expmod(bignum a,bignum b,bignum n)

returns ab mod n.

bignum inversemod(bignum a,bignum n)

return a−1 mod n if gcd(a, n) = 1.

bignum genrandom(int length)

generates a random integer of size length bits.

int fermat(bignum a,int t)

performs the Fermat test on integer a with security parameter t.

bignum genrandomprime(int length)

generates a random prime of size length bits, using the Fermat primality test.

2



4.2 The RSA algorithm

The goal is to implement the RSA algorithm using the previous library. The following func-
tions must be implemented:

void keygen(bignum *n,bignum *e, bignum *d,int length)

generates an RSA modulus n = p · q, where p and q are two prime integers of size length bit.
The function also generates the public/private exponent pair (e, d).

bignum RSAencrypt(bignum m,bignum e,bignum n)

takes as input a message m, a public exponent e and a RSA modulus n and returns the
corresponding ciphertext c.

bignum RSAdecrypt(bignum c,bignum d,bignum n)

takes as input a ciphertext c, a private exponent d and a RSA modulus n and returns the
corresponding plaintext m.

void testRSA(int length)

generates an RSA public-key (e, n) and its corresponding private-key (d, n). It asks the user
for a message m to encrypt, and outputs the corresponding ciphertext encrypted with public-
key (n, e). It then applies the decryption algorithm with private-key (d, n) and checks that
the original message is recovered.

References

1. V. Shoup, A Computational Introduction to Number Theory and Algebra, available at
http://shoup.net/ntb/.

3


