TP 02: Chinese Remainder, and Computing with Large Integers

Jean-Sébastien Coron

Université du Luxembourg http://www.jscoron.fr

1 Chinese Remainder

Write a program restection taking as input a_1, n_1, a_2, n_2 with $gcd(n_1, n_2) = 1$, and printing z such that $z \equiv a_1 \mod n_1$ and $z \equiv a_2 \mod n_2$.

\$ restechinois 4 5 3 7 24

because $24 \equiv 4 \mod 5$ and $24 \equiv 3 \mod 7$.

2 Addition

Implement in C language the big integer addition algorithm. You can use the structure:

```
typedef struct {
  int sign;
  int size;
  int *tab;
} bignum;
```

3 Fibonacci Sequence

We define the Fibonacci sequence $u_0 = 1$, $u_1 = 1$, $u_n = u_{n-1} + u_{n-2}$ for $n \ge 2$. Write a program that computes the *n* terms of the Fibonaci sequence, for a given *n*, using the previous addition algorithm. You can use base B = 10.

Check that $u_{100} = 573147844013817084101$. What is the value of u_{101} ?

4 Multiplication

Implement in C the multiplication algorithm on big integers.

5 Factorial

We define $n! = n \cdot (n-1) \dots 2 \cdot 1$. Write a program computing n! for a given n, using the previous multiplication algorithm.

Check that 30! = 265252859812191058636308480000000. What is the value of 40! ?

6 Modular Exponentiation

Write a program expmod that implements the modular exponentiation algorithm from the course, for small integers.

\$ expmod 2342 6762 9343 7147

because $2342^{6762} \equiv 7147 \mod 9343$.