Hashing into Elliptic Curves Icart's Function The SWU Algorithm Hashing like a Random Oracle

Hashing into Elliptic Curves

Jean-Sébastien Coron

University of Luxembourg

Outline

- Hashing into Elliptic Curves
 - Motivation
 - Classical Techniques
- Icart's Function
- The SWU Algorithm
 - Background
 - SWU Algorithm
- 4 Hashing like a Random Oracle

Introduction

- Hashing into Elliptic Curves
 - Boneh-Franklin IBE: $Q_{id} = H_1(id)$ on the curve.
 - Password based authentication protocols (SPEKE, PAK).
- Boneh-Franklin: super-singular curve
 - Special curve with special operation: pairing.
 - Hashing is easy.
 - But larger parameters are required.
- How to hash into ordinary curves ?

Introduction

- Hashing into Elliptic Curves
 - Boneh-Franklin IBE: $Q_{id} = H_1(id)$ on the curve.
 - Password based authentication protocols (SPEKE, PAK).
- Boneh-Franklin: super-singular curve
 - Special curve with special operation: pairing.
 - Hashing is easy.
 - But larger parameters are required.
- How to hash into ordinary curves ?

Introduction

- Hashing into Elliptic Curves
 - Boneh-Franklin IBE: $Q_{id} = H_1(id)$ on the curve.
 - Password based authentication protocols (SPEKE, PAK).
- Boneh-Franklin: super-singular curve
 - Special curve with special operation: pairing.
 - Hashing is easy.
 - But larger parameters are required.
- How to hash into ordinary curves ?

SPEKE

- Simple Password Exponential Key Exchange (Jablon, 1996)
 - Let pw be a password shared by Alice and Bob
 - Let *E* be the subgroup of an elliptic curve of order *q*.
- Protocol
 - Alice sends A = a.H(pw) to Bob, where $a \leftarrow \mathbb{Z}_q$
 - Bob sends B = b.H(pw) to Alice, where $b \leftarrow \mathbb{Z}_q$
 - Alice computes K = a.B = ab.H(pw)
 - Bob computes K = b.A = ab.H(pw)

Try and Increment

$$E: y^2 = x^3 + ax + b \mod p$$

- Try and Increment: Input: u an integer. We can take u = H(m). Output: Q, a point of $E_{a,b}(\mathbb{F}_p)$.
 - ① For i = 0 to k i

 - ② If $x^3 + ax + b$ is a quadratic residue in \mathbb{F}_p , then return $Q = (x, (x^3 + ax + b)^{1/2})$
 - end For
 - Return ⊥
- Timing Attack

Try and Increment

$$E: y^2 = x^3 + ax + b \mod p$$

- Try and Increment: Input: u an integer. We can take u = H(m). Output: Q, a point of $E_{a,b}(\mathbb{F}_p)$.
 - **1** For i = 0 to k 1

 - ② If $x^3 + ax + b$ is a quadratic residue in \mathbb{F}_p , then return $Q = (x, (x^3 + ax + b)^{1/2})$
 - end For
 - Return ⊥
- Timing Attack

Supersingular Elliptic Curve

Supersingular curve:

$$E: y^2 = x^3 + 1 \mod p$$

- with $p = 2 \mod 3$
- It has p + 1 points.
- Hashing into E:
 - Let y = H(m)
 - Let $x = (y^2 1)^{1/3}$
 - Return P = (x, y)
- p must be large because of MOV attack (at least 512 bits)

Supersingular Elliptic Curve

Supersingular curve:

$$E: y^2 = x^3 + 1 \mod p$$

- with $p = 2 \mod 3$
- It has p + 1 points.
- Hashing into E:
 - Let y = H(m)
 - Let $x = (y^2 1)^{1/3}$
 - Return P = (x, y)
- p must be large because of MOV attack (at least 512 bits)

Supersingular Elliptic Curve

Supersingular curve:

$$E: y^2 = x^3 + 1 \mod p$$

- with $p = 2 \mod 3$
- It has p + 1 points.
- Hashing into E:
 - Let y = H(m)
 - Let $x = (y^2 1)^{1/3}$
 - Return P = (x, y)
- p must be large because of MOV attack (at least 512 bits)

Hashing into Ordinary Curves

$$E: y^2 = x^3 + ax + b \mod p$$

- Icart's function
 - Published by Thomas Icart at CRYPTO 2009
 - Deterministic function into E
 - Requires $p = 2 \mod 3$
 - Essentially one exponentiation in \mathbb{F}_p
- Shallue-Woestijne-Ulas algorithm
 - Deterministic algorithm into E (but requires a test)
 - Does not require $p = 2 \mod 3$
 - Essentially one exponentiation in \mathbb{F}_p

Hashing into Ordinary Curves

$$E: y^2 = x^3 + ax + b \mod p$$

- Icart's function
 - Published by Thomas Icart at CRYPTO 2009
 - Deterministic function into E
 - Requires $p = 2 \mod 3$
 - Essentially one exponentiation in \mathbb{F}_p
- Shallue-Woestijne-Ulas algorithm
 - Deterministic algorithm into *E* (but requires a test)
 - Does not require $p = 2 \mod 3$
 - Essentially one exponentiation in \mathbb{F}_p

Hashing into Ordinary Curves

$$E: y^2 = x^3 + ax + b \mod p$$

- Icart's function
 - Published by Thomas Icart at CRYPTO 2009
 - Deterministic function into E
 - Requires $p = 2 \mod 3$
 - Essentially one exponentiation in \mathbb{F}_p
- Shallue-Woestijne-Ulas algorithm
 - Deterministic algorithm into E (but requires a test)
 - Does not require $p = 2 \mod 3$
 - Essentially one exponentiation in \mathbb{F}_p

Icart's Function

• Elliptic curve with $p = 2 \mod 3$:

$$E_{a,b}: y^2 = x^3 + ax + b \mod p$$

• Icart's function: (we can have u = H(m))

$$f_{a,b}: \mathbb{F}_p \mapsto E_{a,b}$$

 $u \mapsto (x,y)$

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{(2p-1)/3} + \frac{u^2}{3}$$
$$y = ux + v$$
$$v = \frac{3a - u^4}{6u}.$$

Icart's Function

• Elliptic curve with $p = 2 \mod 3$:

$$E_{a,b}: y^2 = x^3 + ax + b \mod p$$

• Icart's function: (we can have u = H(m))

$$f_{a,b}: \mathbb{F}_p \mapsto E_{a,b}$$

 $u \mapsto (x,y)$

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{(2p-1)/3} + \frac{u^2}{3}$$

$$y = ux + v$$

$$v = \frac{3a - u^4}{6u}.$$

- $E_{a,b}: y^2 = x^3 + ax + b \mod p$
- Let y = ux + v with u, v two parameters

$$u^2x^2 + 2uvx + v^2 = x^3 + ax + b$$

$$x^3 - u^2x^2 + (a - 2uv)x + b - v^2 = 0$$

$$(x - u^2/3)^3 + x(a - 2uv - u^4/3) = v^2 - b - u^6/27$$

- We want: $a 2uv u^4/3 = 0$
 - We take $v = (3a u^4)/(6u)$
- We get: $(x u^2/3)^3 = v^2 b u^6/27$

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{1/3} + \frac{u^2}{3}$$
$$y = ux + v$$

- $E_{a,b}: y^2 = x^3 + ax + b \mod p$
- Let y = ux + v with u, v two parameters

•
$$u^2x^2 + 2uvx + v^2 = x^3 + ax + b$$

$$x^3 - u^2x^2 + (a - 2uv)x + b - v^2 = 0$$

•
$$(x - u^2/3)^3 + x(a - 2uv - u^4/3) = v^2 - b - u^6/27$$

- We want: $a 2uv u^4/3 = 0$
 - We take $v = (3a u^4)/(6u)$
- We get: $(x u^2/3)^3 = v^2 b u^6/27$

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{1/3} + \frac{u^2}{3}$$
$$y = ux + v$$

- $E_{a,b}: y^2 = x^3 + ax + b \mod p$
- Let y = ux + v with u, v two parameters

•
$$u^2x^2 + 2uvx + v^2 = x^3 + ax + b$$

•
$$x^3 - u^2x^2 + (a - 2uv)x + b - v^2 = 0$$

•
$$(x - u^2/3)^3 + x(a - 2uv - u^4/3) = v^2 - b - u^6/27$$

- We want: $a 2uv u^4/3 = 0$
 - We take $v = (3a u^4)/(6u)$
- We get: $(x u^2/3)^3 = v^2 b u^6/27$

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{1/3} + \frac{u^2}{3}$$

$$v = ux + v$$

- $E_{a,b}: y^2 = x^3 + ax + b \mod p$
- Let y = ux + v with u, v two parameters

•
$$u^2x^2 + 2uvx + v^2 = x^3 + ax + b$$

•
$$x^3 - u^2x^2 + (a - 2uv)x + b - v^2 = 0$$

•
$$(x - u^2/3)^3 + x(a - 2uv - u^4/3) = v^2 - b - u^6/27$$

- We want: $a 2uv u^4/3 = 0$
 - We take $v = (3a u^4)/(6u)$
- We get: $(x u^2/3)^3 = v^2 b u^6/27$

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{1/3} + \frac{u^2}{3}$$
$$y = ux + v$$

- $E_{a,b}: y^2 = x^3 + ax + b \mod p$
- Let y = ux + v with u, v two parameters

•
$$u^2x^2 + 2uvx + v^2 = x^3 + ax + b$$

•
$$x^3 - u^2x^2 + (a - 2uv)x + b - v^2 = 0$$

•
$$(x - u^2/3)^3 + x(a - 2uv - u^4/3) = v^2 - b - u^6/27$$

- We want: $a 2uv u^4/3 = 0$
 - We take $v = (3a u^4)/(6u)$
- We get: $(x u^2/3)^3 = v^2 b u^6/27$

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{1/3} + \frac{u^2}{3}$$
$$y = ux + v$$

- $E_{a,b}: y^2 = x^3 + ax + b \mod p$
- Let y = ux + v with u, v two parameters

•
$$u^2x^2 + 2uvx + v^2 = x^3 + ax + b$$

•
$$x^3 - u^2x^2 + (a - 2uv)x + b - v^2 = 0$$

•
$$(x - u^2/3)^3 + x(a - 2uv - u^4/3) = v^2 - b - u^6/27$$

• We want:
$$a - 2uv - u^4/3 = 0$$

• We take
$$v = (3a - u^4)/(6u)$$

• We get:
$$(x - u^2/3)^3 = v^2 - b - u^6/27$$

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{1/3} + \frac{u^2}{3}$$
$$y = ux + v$$

- $E_{a,b}: y^2 = x^3 + ax + b \mod p$
- Let y = ux + v with u, v two parameters

•
$$u^2x^2 + 2uvx + v^2 = x^3 + ax + b$$

•
$$x^3 - u^2x^2 + (a - 2uv)x + b - v^2 = 0$$

•
$$(x - u^2/3)^3 + x(a - 2uv - u^4/3) = v^2 - b - u^6/27$$

- We want: $a 2uv u^4/3 = 0$
 - We take $v = (3a u^4)/(6u)$
- We get: $(x u^2/3)^3 = v^2 b u^6/27$

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{1/3} + \frac{u^2}{3}$$
$$y = ux + v$$

- $E_{a,b}: y^2 = x^3 + ax + b \mod p$
- Let y = ux + v with u, v two parameters

•
$$u^2x^2 + 2uvx + v^2 = x^3 + ax + b$$

•
$$x^3 - u^2x^2 + (a - 2uv)x + b - v^2 = 0$$

•
$$(x - u^2/3)^3 + x(a - 2uv - u^4/3) = v^2 - b - u^6/27$$

- We want: $a 2uv u^4/3 = 0$
 - We take $v = (3a u^4)/(6u)$
- We get: $(x u^2/3)^3 = v^2 b u^6/27$

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{1/3} + \frac{u^2}{3}$$
$$y = ux + v$$

- $E_{a,b}: y^2 = x^3 + ax + b \mod p$
- Let y = ux + v with u, v two parameters

•
$$u^2x^2 + 2uvx + v^2 = x^3 + ax + b$$

•
$$x^3 - u^2x^2 + (a - 2uv)x + b - v^2 = 0$$

•
$$(x - u^2/3)^3 + x(a - 2uv - u^4/3) = v^2 - b - u^6/27$$

- We want: $a 2uv u^4/3 = 0$
 - We take $v = (3a u^4)/(6u)$
- We get: $(x u^2/3)^3 = v^2 b u^6/27$

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{1/3} + \frac{u^2}{3}$$

 $y = ux + v$

Quadratic residues and square-roots

Definition

Let p be a prime. $a \in \mathbb{Z}_p^*$ is said to be a quadratic residue modulo p, or a square modulo p, if there exsists an $x \in \mathbb{Z}_p^*$ such that $x^2 = a \mod p$. If no such x exists, then a is called a quadratic non-residue modulo p. The set of all quadratic resitudes modulo p is denoted by \mathbb{Q}_p , and the set of all quadratic non-residues is denoted \mathbb{Q}_p

Definition

Let $a \in Q_p$. If $x \in \mathbb{Z}_p$ satisfies $x^2 = a \mod p$, then x is called a square root of $a \mod p$.

Facts

- Let p be an odd prime and let g be a generator of \mathbb{Z}_p^* .
 - $a \in Q_p \Leftrightarrow a = g^{2i} \mod p$ for some $i \in \mathbb{Z}$.
 - $|Q_p| = (p-1)/2$ and $|\bar{Q}_p| = (p-1)/2$.
- If p is an odd prime and a ∈ Q_p, then a has exactly two square roots modulo p.
- Let p be an odd prime with $p = 3 \mod 4$ and let $a \in Q_p$. Then x and -x are the two square roots of a, where:

$$x = a^{(p+1)/4} \mod p$$

Legendre symbol

Definition

The Legendre symbol with respect to an odd prime *p* is defined by:

$$\left(\frac{x}{p}\right) = \begin{cases} 1 & \text{if } x \neq 0 \mod p \text{ and } x \text{ is a square modulo } p \\ 0 & \text{if } x = 0 \mod p \\ -1 & \text{otherwise.} \end{cases}$$

Fact

Let $p \neq 2$ be a prime. For any integer x,

$$\left(\frac{x}{p}\right) = x^{\frac{p-1}{2}} \mod p$$

Shallue-Woestijne-Ulas algorithm

- Shallue-Woestijne published at ANTS 2006
 - Simplified by Ulas in 2007
 - Simplified by Icart in 2009.

Theorem (Simplified Ulas maps)

Let \mathbb{F}_q be a field and let $g(x) := x^3 + ax + b$, where $ab \neq 0$. Let:

$$X_2(t) = \frac{-b}{a} \left(1 + \frac{1}{t^4 - t^2} \right), \ X_3(t) = -t^2 X_2(t), \ U(t) = t^3 g(X_2(t))$$

Then
$$U(t)^2 = -g(X_2(t)) \cdot g(X_3(t))$$

- When $q = 3 \mod 4$:
 - -1 is not a square
 - either $g(X_2(t))$ or $g(X_3(t))$ must be a square

Shallue-Woestijne-Ulas algorithm

- Shallue-Woestijne published at ANTS 2006
 - Simplified by Ulas in 2007
 - Simplified by Icart in 2009.

Theorem (Simplified Ulas maps)

Let \mathbb{F}_q be a field and let $g(x) := x^3 + ax + b$, where $ab \neq 0$. Let:

$$X_2(t) = \frac{-b}{a} \left(1 + \frac{1}{t^4 - t^2} \right), \ X_3(t) = -t^2 X_2(t), \ U(t) = t^3 g(X_2(t))$$

Then
$$U(t)^2 = -g(X_2(t)) \cdot g(X_3(t))$$

- When $q = 3 \mod 4$:
 - -1 is not a square
 - either $g(X_2(t))$ or $g(X_3(t))$ must be a square

Simplified SWU algorithm

Simplified SWU algorithm:

Input: \mathbb{F}_q such that $q=3 \mod 4$, parameters a,b and input $t\in \mathbb{F}_q$. We can have t=H(m)

Output: $(x,y) \in E_{a,b}(\mathbb{F}_q)$

- $0 \alpha \leftarrow -t^2$
- $2 X_2 \leftarrow \frac{-b}{a} \left(1 + \frac{1}{\alpha^2 + \alpha} \right)$
- $3 X_3 \leftarrow \alpha \cdot X_2$
- If h_2 is a square, return $(X_2, h_2^{(q+1)/4})$, otherwise return $(X_3, h_3^{(q+1)/4})$

- $E: y^2 = x^3 + ax + b \mod p$
- Let $g(x) = x^3 + ax + b$
- Let u be a non-quadratic residue and consider the equation in x:

$$g(u \cdot x) = u^3 \cdot g(x)$$

- We can solve for x:
 - $(ux)^3 + a(ux) + b = u^3(x^3 + ax + b) = u^3x^3 + u^3ax + u^3b$
 - $x \cdot a(u u^3) = b(u^3 1) \Rightarrow x = \frac{b(u^3 1)}{a(u u^3)}$
- Since u is not a square, either $g(u \cdot x)$ or g(x) must be a square
- When $p = 3 \mod 4$, we can take $u = -t^2 \mod p$

- $E: y^2 = x^3 + ax + b \mod p$
- Let $g(x) = x^3 + ax + b$
- Let u be a non-quadratic residue and consider the equation in x:

$$g(u \cdot x) = u^3 \cdot g(x)$$

- We can solve for x:
 - $(ux)^3 + a(ux) + b = u^3(x^3 + ax + b) = u^3x^3 + u^3ax + u^3b$
 - $x \cdot a(u u^3) = b(u^3 1) \Rightarrow x = \frac{b(u^3 1)}{a(u u^3)}$
- Since u is not a square, either $g(u \cdot x)$ or g(x) must be a square
- When $p = 3 \mod 4$, we can take $u = -t^2 \mod p$

- $E: y^2 = x^3 + ax + b \mod p$
- Let $g(x) = x^3 + ax + b$
- Let *u* be a non-quadratic residue and consider the equation in *x*:

$$g(u\cdot x)=u^3\cdot g(x)$$

- We can solve for x:
 - $(ux)^3 + a(ux) + b = u^3(x^3 + ax + b) = u^3x^3 + u^3ax + u^3b$ • $x \cdot a(u - u^3) = b(u^3 - 1) \Rightarrow x = \frac{b(u^3 - 1)}{a(u - u^3)}$
- Since u is not a square, either $g(u \cdot x)$ or g(x) must be a
- When $p = 3 \mod 4$, we can take $u = -t^2 \mod p$

- $E: y^2 = x^3 + ax + b \mod p$
- Let $g(x) = x^3 + ax + b$
- Let *u* be a non-quadratic residue and consider the equation in *x*:

$$g(u \cdot x) = u^3 \cdot g(x)$$

- We can solve for x:
 - $(ux)^3 + a(ux) + b = u^3(x^3 + ax + b) = u^3x^3 + u^3ax + u^3b$ • $x \cdot a(u - u^3) = b(u^3 - 1) \Rightarrow x = \frac{b(u^3 - 1)}{a(u - u^3)}$
- Since u is not a square, either $g(u \cdot x)$ or g(x) must be a square
- When $p = 3 \mod 4$, we can take $u = -t^2 \mod p$

- $E: y^2 = x^3 + ax + b \mod p$
- Let $g(x) = x^3 + ax + b$
- Let *u* be a non-quadratic residue and consider the equation in *x*:

$$g(u \cdot x) = u^3 \cdot g(x)$$

- We can solve for x:
 - $(ux)^3 + a(ux) + b = u^3(x^3 + ax + b) = u^3x^3 + u^3ax + u^3b$
 - $x \cdot a(u u^3) = b(u^3 1) \Rightarrow x = \frac{b(u^3 1)}{a(u u^3)}$
- Since u is not a square, either $g(u \cdot x)$ or g(x) must be a square
- When $p = 3 \mod 4$, we can take $u = -t^2 \mod p$

- $E: y^2 = x^3 + ax + b \mod p$
- Let $g(x) = x^3 + ax + b$
- Let *u* be a non-quadratic residue and consider the equation in *x*:

$$g(u \cdot x) = u^3 \cdot g(x)$$

- We can solve for x:
 - $(ux)^3 + a(ux) + b = u^3(x^3 + ax + b) = u^3x^3 + u^3ax + u^3b$
 - $x \cdot a(u u^3) = b(u^3 1) \Rightarrow x = \frac{b(u^3 1)}{a(u u^3)}$
- Since u is not a square, either $g(u \cdot x)$ or g(x) must be a square
- When $p = 3 \mod 4$, we can take $u = -t^2 \mod p$

- $E: y^2 = x^3 + ax + b \mod p$
- Let $g(x) = x^3 + ax + b$
- Let u be a non-quadratic residue and consider the equation in x:

$$g(u\cdot x)=u^3\cdot g(x)$$

- We can solve for x:
 - $(ux)^3 + a(ux) + b = u^3(x^3 + ax + b) = u^3x^3 + u^3ax + u^3b$
 - $x \cdot a(u u^3) = b(u^3 1) \Rightarrow x = \frac{b(u^3 1)}{a(u u^3)}$
- Since u is not a square, either g(u ⋅ x) or g(x) must be a square
- When $p = 3 \mod 4$, we can take $u = -t^2 \mod p$

- $E: y^2 = x^3 + ax + b \mod p$
- Let $g(x) = x^3 + ax + b$
- Let u be a non-quadratic residue and consider the equation in x:

$$g(u \cdot x) = u^3 \cdot g(x)$$

- We can solve for x:
 - $(ux)^3 + a(ux) + b = u^3(x^3 + ax + b) = u^3x^3 + u^3ax + u^3b$
 - $x \cdot a(u u^3) = b(u^3 1) \Rightarrow x = \frac{b(u^3 1)}{a(u u^3)}$
- Since u is not a square, either $g(u \cdot x)$ or g(x) must be a square
- When $p = 3 \mod 4$, we can take $u = -t^2 \mod p$

- Random Oracle Model:
 - Idealized model of computation in which the hash function is seen as a random oracle
 - Uniformly distributed output for any input
 - Many schemes proven secure in the ROM: Boneh-Franklin, etc.
- $H(m) = f_{a,b}(h(m))$ does not behave as a random oracle into the curve, even if h is a random oracle.
- Random oracle into the curve:

$$H(m) = f_{a,b}(h_1(m)) + h_2(m).G$$

- Random Oracle Model:
 - Idealized model of computation in which the hash function is seen as a random oracle
 - Uniformly distributed output for any input
 - Many schemes proven secure in the ROM: Boneh-Franklin, etc.
- $H(m) = f_{a,b}(h(m))$ does not behave as a random oracle into the curve, even if h is a random oracle.
- Random oracle into the curve:

$$H(m) = f_{a,b}(h_1(m)) + h_2(m).G$$

- Random Oracle Model:
 - Idealized model of computation in which the hash function is seen as a random oracle
 - Uniformly distributed output for any input
 - Many schemes proven secure in the ROM: Boneh-Franklin, etc.
- $H(m) = f_{a,b}(h(m))$ does not behave as a random oracle into the curve, even if h is a random oracle.
- Random oracle into the curve:

$$H(m) = f_{a,b}(h_1(m)) + h_2(m).G$$

- Random Oracle Model:
 - Idealized model of computation in which the hash function is seen as a random oracle
 - Uniformly distributed output for any input
 - Many schemes proven secure in the ROM: Boneh-Franklin, etc.
- $H(m) = f_{a,b}(h(m))$ does not behave as a random oracle into the curve, even if h is a random oracle.
- Random oracle into the curve:

$$H(m) = f_{a,b}(h_1(m)) + h_2(m).G$$