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@ Hashing into Elliptic Curves

@ Boneh-Franklin IBE: Qg = H4(id) on the curve.
@ Password based authentication protocols (SPEKE, PAK).

@ Boneh-Franklin: super-singular curve

@ Special curve with special operation: pairing.
@ Hashing is easy.
@ But larger parameters are required.
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Hashing into Elliptic Curves Motivation

Classical Techniques
New Techniques

Introduction

@ Hashing into Elliptic Curves

@ Boneh-Franklin IBE: Qg = H4(id) on the curve.
@ Password based authentication protocols (SPEKE, PAK).

@ Boneh-Franklin: super-singular curve

@ Special curve with special operation: pairing.
@ Hashing is easy.
@ But larger parameters are required.

@ How to hash into ordinary curves ?
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Hashing into Elliptic Curves

Motivation
Classical Techniques
New Techniques

@ Simple Password Exponential Key Exchange (Jablon,
1996)

o Let pw be a password shared by Alice and Bob

@ Let E be the subgroup of an elliptic curve of order g.
@ Protocol

@ Alice sends A = a.H(pw) to Bob, where a < Z,

@ Bob sends B = b.H(pw) to Alice, where b + Zq

@ Alice computes K = a.B = ab.H(pw)

@ Bob computes K = b.A = ab.H(pw)
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Hashing into Elliptic Curves Motivation

Classical Techniques
New Techniques

Try and Increment

@ Elliptic curve:

E:y?=x3>+ax+b modp
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Hashing into Elliptic Curves Motivation

Classical Techniques
New Techniques

Try and Increment

@ Elliptic curve:

E:y?=x3>+ax+b modp

@ Try and Increment:
Input: u an integer. We can take u = H(m).
Output: Q, a point of E4 p(Fp).
©Q Fori=0tok —1
@ Setx=u-+i
@ 1f x® + ax + b is a quadratic residue in Fp, then return
Q = (x, (x* +ax + b)'/?)
© end For
© Return L

@ Timing Attack
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Hashing into Elliptic Curves Motivation

Classical Techniques
New Techniques

Supersingular Elliptic Curve

@ Supersingular curve:

E:y2=x>+1 modp

o withp=2 mod 3
@ It has p + 1 points.
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Hashing into Elliptic Curves Motivation

Classical Techniques
New Techniques

Supersingular Elliptic Curve

@ Supersingular curve:

E:y2=x>+1 modp

o withp=2 mod 3

@ It has p + 1 points.
@ Hashing into E:

o Lety =H(m)

o Letx = (y? —1)¥/3

@ Return P = (x,y)
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Hashing into Elliptic Curves Motivation

Classical Techniques
New Techniques

Supersingular Elliptic Curve

@ Supersingular curve:

E:y2=x>+1 modp

o withp=2 mod 3

@ It has p + 1 points.
@ Hashing into E:

o Lety =H(m)

o Letx = (y? —1)¥/3

@ Return P = (x,y)

@ p must be large because of MOV attack (at least 512 bits)
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Hashing into Elliptic Curves Motivation

Classical Techniques
New Techniques

Hashing into Ordinary Curves

@ Elliptic curve:

E:y>=x®+ax+b modp
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Hashing into Elliptic Curves Motivation

Classical Techniques
New Techniques

Hashing into Ordinary Curves

@ Elliptic curve:

E:y>=x®+ax+b modp
@ Icart’s function
@ Published by Thomas Icart at CRYPTO 2009
@ Deterministic function into E
@ Requiresp =2 mod 3
o Essentially one exponentiation in Fp
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Hashing into Elliptic Curves Motivation

Classical Techniques
New Techniques

Hashing into Ordinary Curves

@ Elliptic curve:

E:y>=x®+ax+b modp
@ Icart’s function
@ Published by Thomas Icart at CRYPTO 2009
@ Deterministic function into E
@ Requiresp =2 mod 3
o Essentially one exponentiation in Fp

@ Shallue-Woestijne-Ulas algorithm

@ Deterministic algorithm into E (but requires a test)
@ Does notrequire p =2 mod 3
o Essentially one exponentiation in Fp
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Icart’s Function

Icart’s Function

@ Elliptic curve withp =2 mod 3:
Eap:y>=x3+ax+b modp
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Icart’s Function

Icart’s Function

@ Elliptic curve withp =2 mod 3:
Eap:y>=x3+ax+b modp

@ Icart’s function: (we can have u = H(m))
fa7b . Fp — Ea7b
u = (xy)

6\ (2p—1)/3 2
o)
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Icart’s Function

Why it Works

@ Eup:y?=x3+ax+b modp
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Icart’s Function

Why it Works

@ Eup:y?=x3+ax+b modp
@ Lety = ux + v with u,v two parameters
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Icart’s Function

Why it Works

@ Eup:y?=x3+ax+b modp
@ Lety = ux + v with u,v two parameters
@ UXx?+2uvx +vZ=x3+ax +b
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Icart’s Function

Why it Works

@ Eup:y?=x3+ax+b modp

@ Lety = ux + v with u,v two parameters
@ UXx?+2uvx +vZ=x3+ax +b

@ x3-—ux?+(a—2uv)x +b—-v2=0
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Icart’s Function

Why it Works

@ Eup:y?=x3+ax+b modp

@ Lety = ux + v with u,v two parameters

@ UXx?+2uvx +vZ=x3+ax +b

@ x3-—ux?+(a—2uv)x +b—-v2=0

@ (x —u?/3)®+x(a—2uv —u*/3)=v% - b —ub/27
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Icart’s Function

Why it Works

Eap:y?=x3+ax +b mod p

Lety = ux + v with u, v two parameters

u?x2 +2uvx +v2=x3+ax+b
x3—u?x?+(@a—2uv)x +b—-v2=0

(x —u?/3)% +x(a—2uv —u?/3) =v2? —b —u®/27
We want: a — 2uv —u?4/3 =0
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Icart’s Function

Why it Works

Eap:y?=x3+ax +b mod p
Lety = ux + v with u, v two parameters
u?x2 +2uvx +v2=x3+ax+b
x3—u?x?+(@a—2uv)x +b—-v2=0
(x —u?/3)% +x(a—2uv —u?/3) =v2? —b —u®/27
We want: a — 2uv —u?4/3 =0

@ We take v = (3a — u*)/(6u)
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Icart’s Function

Why it Works

@ Eup:y?=x3+ax+b modp
@ Lety = ux + v with u,v two parameters
@ UXx?+2uvx +vZ=x3+ax +b
@ x3-—ux?+(a—2uv)x +b—-v2=0
@ (x —u?/3)®+x(a—2uv —u*/3)=v% - b —ub/27
@ Wewant: a—2uv —u4/3=0
@ We take v = (3a — u*)/(6u)
We get: (x —u?/3)% =v? —b —ub/27
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Icart’s Function

Why it Works

@ Eup:y?=x3+ax+b modp
@ Lety = ux + v with u,v two parameters
@ UXx?+2uvx +vZ=x3+ax +b
@ x3-—ux?+(a—2uv)x +b—-v2=0
@ (x —u?/3)®+x(a—2uv —u*/3)=v% - b —ub/27
@ Wewant: a—2uv —u4/3=0
@ We take v = (3a — u*)/(6u)
We get: (x —u?/3)% =v? —b —ub/27
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Background
The SWU Algorithm SWU Algorithm

Quadratic residues and square-roots

Definition

Let p be a prime. a € Zj is said to be a quadratic residue
modulo p, or a square modulo p, if there exsists an x € Z; such
that x2 =a mod p. If no such x exists, then ais called a
guadratic non-residue modulo p. The set of all quadratic
resitudes modulo p is denoted by Qp, and the set of all
quadratic non-residues is denoted Qp

A\

Definition
Leta € Qp. If x € Z, satisfies x> = a mod p, then x is called a
square root of a modulo p.

>
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Background
The SWU Algorithm SWU Algorithm

*

@ Let p be an odd prime and let g be a generator of Z.

@ acQp<a=g® modp forsomei € Z.
° [Qpl=(p—1)/2and [Qp| =(p —1)/2.
@ If pis an odd prime and a € Qp, then a has exactly two
square roots modulo p.

@ Let p be an odd prime withp =3 mod 4 and let a € Qp.
Then x and —x are the two square roots of a, where:

x =alP*/4 mod p
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Background
The SWU Algorithm SWU Algorithm

Legendre symbol

The Legendre symbol with respect to an odd prime p is defined
by:

0 ifx=0 modp

(x) 1 ifx#0 modpandx is asquare modulo p
—1 otherwise.
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Background
The SWU Algorithm SWU Algorithm

Shallue-Woestijne-Ulas algorithm

@ Shallue-Woestijne published at ANTS 2006
@ Simplified by Ulas in 2007
@ Simplified by Icart in 2009.

Theorem (Simplified Ulas maps)

Let Fq be a field and let g(x) := x3 + ax + b, where ab # 0. Let:

_ =0

Xe(t) = 5 (14 gz )« Xalt) = ~%a(t), V(1) = Cae)

Then U(t)* = —g(X2(t)) - 9 (Xa(t))
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Background
The SWU Algorithm SWU Algorithm

Shallue-Woestijne-Ulas algorithm

@ Shallue-Woestijne published at ANTS 2006
@ Simplified by Ulas in 2007
@ Simplified by Icart in 2009.

Theorem (Simplified Ulas maps)

Let Fq be a field and let g(x) := x3 + ax + b, where ab # 0. Let:

_ =0

Xe(t) = 5 (14 gz )« Xalt) = ~%a(t), V(1) = Cae)

Then U(t)* = —g(X2(t)) - 9 (Xa(t))

@ Whenqg =3 mod 4:
@ —1lis not a square
@ either g(Xz(t)) or g(Xs(t)) must be a square
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Background
The SWU Algorithm SWU Algorithm

Simplified SWU algorithm

Simplified SWU algorithm:

Input: Fq such that g = 3 mod 4, parameters a, b and input
t € Fq. We can have t = H(m)

Output: (x,y) € Eap(Fq)

% ] a — —t2

b 1
@ X 2 (1+ )
9 X3<—O&‘X2

Q hy, < (X2)3+a-X2+b; hs < (X3)3+a-X3+b
@ If h, is a square, return (X, h§q+1)/4), otherwise return
(X, NS4
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Background
The SWU Algorithm SWU Algorithm

Why it works

@E:y?=x3+ax+b modp
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Background
The SWU Algorithm SWU Algorithm

Why it works

@E:y?=x3+ax+b modp
o Letg(x)=x3+ax +b
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Background
The SWU Algorithm SWU Algorithm

Why it works

@E:y?=x3+ax+b modp
o Letg(x)=x3+ax +b

@ Let u be a non-quadratic residue and consider the

equation in x:
3

g(u-x) =u”-g(x)
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Background
The SWU Algorithm SWU Algorithm

Why it works

@E:y?=x3+ax+b modp
o Letg(x)=x3+ax +b

@ Let u be a non-quadratic residue and consider the

equation in x:

3

g(u-x) =u”-g(x)

@ We can solve for x:
o (ux)®+a(ux)+b=ud(x®+ax +b) =u3x3+udax + ub
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Background
The SWU Algorithm SWU Algorithm

Why it works

@E:y?=x3+ax+b modp

o Letg(x)=x3+ax +b

@ Let u be a non-quadratic residue and consider the
equation in x:

3

g(u-x) =u”-g(x)

@ We can solve for x:

o (ux)®+a(ux)+b=ud(x®+ax +b) =u3x®+udax + ub
o x-a(u—ud)=b(ud-1)
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Background
The SWU Algorithm SWU Algorithm

Why it works

@E:y?=x3+ax+b modp
o Letg(x)=x3+ax +b

@ Let u be a non-quadratic residue and consider the
equation in x:

.g(x)

gu-x)=u
@ We can solve for x:
o (ux)®+a(ux)+b=ud(x®+ax +b) =u3x®+udax + ub

o x-a(u -~ u?) =b(u® - 1)= x = B}
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Background
The SWU Algorithm SWU Algorithm

Why it works

@E:y?=x3+ax+b modp
o Letg(x)=x3+ax +b

@ Let u be a non-quadratic residue and consider the
equation in x:

3

g(u-x) =u”-g(x)

@ We can solve for x:
o (ux)®+a(ux)+b=ud(x®+ax +b) =u3x®+udax + ub

o x-a(u -~ u?) =b(u® - 1)= x = B}
@ Since u is not a square, either g(u - x) or g(x) must be a

square
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Background
The SWU Algorithm SWU Algorithm

Why it works

E:y?=x3+ax+b modp

Letg(x) =x3+ax+b

Let u be a non-quadratic residue and consider the
equation in x:

3

g(u-x) =u”-g(x)

We can solve for x:
o (ux)®+a(ux)+b=ud(x®+ax +b) =u3x®+udax + ub

o x-a(u -~ u?) =b(u® - 1)= x = B}
@ Since u is not a square, either g(u - x) or g(x) must be a
square

@ When p =3 mod 4, we can take u = —t?> mod p
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Hashing like a Random Oracle

Hashing like a Random Oracle

@ Random Oracle Model:
@ Idealized model of computation in which the hash function
is seen as a random oracle
@ Uniformly distributed output for any input
@ Many schemes proven secure in the ROM: Boneh-Franklin,
etc.
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Hashing like a Random Oracle

Hashing like a Random Oracle

@ Random Oracle Model:
@ Idealized model of computation in which the hash function
is seen as a random oracle
@ Uniformly distributed output for any input
@ Many schemes proven secure in the ROM: Boneh-Franklin,
etc.
@ H(m) = f3p(h(m)) does not behave as a random oracle
into the curve, even if h is a random oracle.
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Hashing like a Random Oracle

Hashing like a Random Oracle

@ Random Oracle Model:
@ Idealized model of computation in which the hash function
is seen as a random oracle
@ Uniformly distributed output for any input
@ Many schemes proven secure in the ROM: Boneh-Franklin,
etc.
@ H(m) = f3p(h(m)) does not behave as a random oracle
into the curve, even if h is a random oracle.

® Random oracle into the curve:
H(m) = fap(h1(m)) + ha(m).G
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Hashing like a Random Oracle

Hashing like a Random Oracle

@ Random Oracle Model:
@ Idealized model of computation in which the hash function
is seen as a random oracle
@ Uniformly distributed output for any input
@ Many schemes proven secure in the ROM: Boneh-Franklin,
etc.
@ H(m) = f3p(h(m)) does not behave as a random oracle
into the curve, even if h is a random oracle.

® Random oracle into the curve:
H(m) = fap(h1(m)) + ha(m).G

@ See An Indifferentiable Hash Function into Elliptic Curves,
Jean-Sébastien Coron and Thomas Icart,
http://eprint.iacr.org/ 2009/ 340
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