
Side-Channel Attacks and
Countermeasures

Jean-Sébastien Coron

University of Luxembourg

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Side-channel Attacks

Use side-channel information during execution
Timing attack, power attack, fault attack

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Differential Power Analysis [KJJ99]

Average trace

Differential trace

Group by predicted
SBox output bit

1

0

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Side-channel Attack on SBOX computation

x ⊕

k

S y = S(x ⊕ k)

E

SBOX computation y = S(x ⊕ k) for x, k ∈ {0, 1}8
We assume that the power consumption E is correlated to
S(x ⊕ k)
E = H(S(x ⊕ k)) + B, where H() is the Hamming weight and
B is some noise.

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Statistical Analysis of Power Consumption
We get many power acquisitions for unknown subkey k:

xi ⊕

k

S yi = S(xi ⊕ k)

Ei = H(S(xi ⊕ k)) + Bi

Correct subkey k with yi = S(xi ⊕ k):

Corr((Ei), (yi)) ≠ 0

Incorrect subkey k′ with y′i = S(xi ⊕ k′):

Corr((Ei), (y′i)) = 0

We can distinguish the two and
recover the subkey k

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Recovering the secret-key

For AES, we can apply the same attack separately on
each of the 16 SBoxes of the first round

⊕

S

⊕

S

⊕

S

⊕

S

⊕

S

⊕

S

⊕

S

⊕

S

⊕

S

⊕

S

⊕

S

⊕

S

⊕

S

⊕

S

⊕

S

⊕

S

Without countermeasures, only a few thousand power
acquisitions are required to recover the secret-key.

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Countermeasure

Masking countermeasure
Let x be a variable dependent on the secret-key:

Generate a random r (different for each execution)
Mask x using r : x′ = x ⊕ r
Manipulate x′ (instead of x) and r independently

r is random ⇒ x′ is random ⇒ power consumption of
x′ is random ⇒ no information on x leaks

☞ True only with one leakage point

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Countermeasure

Masking countermeasure
Let x be a variable dependent on the secret-key:

Generate a random r (different for each execution)
Mask x using r : x′ = x ⊕ r
Manipulate x′ (instead of x) and r independently

r is random ⇒ x′ is random ⇒ power consumption of
x′ is random ⇒ no information on x leaks

☞ True only with one leakage point

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

First-order masking countermeasure

How do we compute with x′ = x ⊕ r instead of x ?

Linear operations: easy

x = x′ ⊕ r ⇒ f (x) = f (x′) ⊕ f (r)
We compute f (x′) and f (r) separately.
f (x) is now masked with f (r) instead of r

We can write f (x) = (f (x′) ⊕ s ⊕ f (r) ⊕ r ⊕ s) ⊕ r
⇒ f (x) is still masked by r.
Example: MixColumns in AES

Non-linear operations (SBOX):
randomized table countermeasure
[CJRR99]

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Processing non-linear operations
Randomized table countermeasure [CJRR99]

Table S(x) is shifted as T (u) = S(u ⊕ r) ⊕ s
One reads y = T (x′) = T (x ⊕ r) = S(x) ⊕ s

S(0)

S(FF)

S(x)

...

...

x

S(u)
Original table in ROM

...

...

x′
=

x ⊕ r
T (x′) = S

(
(x⊕r)⊕r

)
⊕s

= S(x) ⊕ s

T (u) = S(u ⊕ r) ⊕ s
Randomized table

in RAM

r-shift

S(0) ⊕ s
...

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Processing non-linear operations
Randomized table countermeasure [CJRR99]

Table S(x) is shifted as T (u) = S(u ⊕ r) ⊕ s
One reads y = T (x′) = T (x ⊕ r) = S(x) ⊕ s

S(0)

S(FF)

S(x)

...

...

x

S(u)
Original table in ROM

...

...

x′
=

x ⊕ r
T (x′) = S

(
(x⊕r)⊕r

)
⊕s

= S(x) ⊕ s

T (u) = S(u ⊕ r) ⊕ s
Randomized table

in RAM

r-shift

S(0) ⊕ s
...

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Second-order power attacks

Second-order DPA
Combine the leakage of x′ = x ⊕ r and the leakage of r
to recover information about x
Requires more power curves but can be practical

E(x′) E(r)

f (E(x′),E(r)) correlated
with x = x′ ⊕ r

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Solution: Higher-Order Boolean Masking

Basic principle
Each sensitive variable x is shared into n variables:

x = x1 ⊕ x2 ⊕ · · · ⊕ xn

Generate n − 1 random variables x1, x2, . . . , xn−1

Initially let xn = x ⊕ x1 ⊕ x2 ⊕ · · · ⊕ xn−1

Security against DPA attack of order n − 1
Any subset of n − 1 shares is uniformly and
independently distributed
⇒ If we probe at most n − 1 shares
xi, we learn nothing about x

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Solution: Higher-Order Boolean Masking

Basic principle
Each sensitive variable x is shared into n variables:

x = x1 ⊕ x2 ⊕ · · · ⊕ xn

Generate n − 1 random variables x1, x2, . . . , xn−1

Initially let xn = x ⊕ x1 ⊕ x2 ⊕ · · · ⊕ xn−1

Security against DPA attack of order n − 1
Any subset of n − 1 shares is uniformly and
independently distributed
⇒ If we probe at most n − 1 shares
xi, we learn nothing about x

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

High-order masking of Boolean circuits

Ishai-Sahai-Wagner private circuit [ISW03]
The adversary can probe any subset of at most t wires
Algorithm to transform any Boolean circuit C of size |C |
into a circuit of size O(|C | · t2) that is perfectly secure
against such an adversary.

Any Boolean circuit can be written with only Xor gates
c = a ⊕ b and And gates c = a × b.

High-order masking of c = a ⊕ b: easy since linear.
High-order masking of c = a × b: more complex.

For security against t probes, one
must use at least n = 2t + 1 shares.

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

High-order masking of c = a ⊕ b

Computation of a ⊕ b
Inputs: (ai)i and (bi)i such that

a1 ⊕ a2 ⊕ · · · ⊕ an = a
b1 ⊕ b2 ⊕ · · · ⊕ bn = b

Output: (ci)i such that
(a1 ⊕ b1) ⊕ (a2 ⊕ b2) ⊕ · · · ⊕ (an ⊕ bn) = a ⊕ b ⇒
c1 ⊕ c2 ⊕ · · · ⊕ cn = a ⊕ b

We compute ci = ai ⊕ bi independently for each i
Complexity: O(n) for n shares
⇒ very efficient

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

High-order secure multiplication

Secure Computation of a × b
Inputs: (ai)i and (bi)i such that

a1 ⊕ a2 ⊕ · · · ⊕ an = a
b1 ⊕ b2 ⊕ · · · ⊕ bn = b

Output: (ci)i such that
c1 ⊕ c2 ⊕ c2 ⊕ · · · ⊕ cn = a × b

Ishai-Sahai-Wagner private circuit [ISW03]
Secure against t probes for n = 2t + 1 shares.
Number of operations: O(t2)
Requires O(t2) randoms per
multiplication.

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

High-order secure multiplication

Secure Computation of a × b
Inputs: (ai)i and (bi)i such that

a1 ⊕ a2 ⊕ · · · ⊕ an = a
b1 ⊕ b2 ⊕ · · · ⊕ bn = b

Output: (ci)i such that
c1 ⊕ c2 ⊕ c2 ⊕ · · · ⊕ cn = a × b

Ishai-Sahai-Wagner private circuit [ISW03]
Secure against t probes for n = 2t + 1 shares.
Number of operations: O(t2)
Requires O(t2) randoms per
multiplication.

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

High-order secure multiplication (AND Gate)

To high-order compute c = a × b, one writes

c = a × b =

(n⊕
i=1

ai

)
·
(n⊕

i=1
bi

)
=

⊕
1⩽i,j⩽n

aibj

The cross-products aibj are recombined without leaking
information about the original inputs a and b.

For this, one needs n(n − 1)/2
additional random bits rij.

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

The secure multiplication [ISW03]
Algo. SecMult
Input:

⊕
i ai = a and

⊕
i bi = b

Output: shares ci satisfying
⊕

i ci = a b
1: for i = 1 to n
2: for j = i + 1 to n
3: ri,j ← {0,1}
4: rj,i ← (ri,j ⊕ aibj) ⊕ ajbi
5: for i = 1 to n
6: ci ← aibi
7: for j = 1 to n, j ≠ i do ci ← ci ⊕ ri,j
8: return (c1, c1, . . . , cn)

©­«
a1b1 r1,2 r1,3

(r1,2 ⊕ a2b1) ⊕ a1b2 a2b2 r2,3

(r1,3 ⊕ a3b1) ⊕ a1b3 (r2,3 ⊕ a3b2) ⊕ a2b3 a3b3

ª®¬
→ c1

→ c2

→ c3

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Ishai-Sahai-Wagner (ISW) Scheme

Decomposition of the ci⊕
i

ci =

(⊕
i

ai

) (⊕
i

bi

)
=

⊕
i,j

aibj

Example for n = 3

©­­«
a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

ª®®¬
☞ For n shares: requires n(n − 1)/2
fresh random values

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Ishai-Sahai-Wagner (ISW) Scheme

Decomposition of the ci⊕
i

ci =

(⊕
i

ai

) (⊕
i

bi

)
=

⊕
i,j

aibj

Example for n = 3

©­­«
a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

ª®®¬
→ c1
→ c2
→ c3

☞ For n shares: requires n(n − 1)/2
fresh random values

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Ishai-Sahai-Wagner (ISW) Scheme

Decomposition of the ci⊕
i

ci =

(⊕
i

ai

) (⊕
i

bi

)
=

⊕
i,j

aibj

Example for n = 3

©­­«
a1b1 0 0
a2b1 a2b2 0
a3b1 a3b2 a3b3

ª®®¬ ⊕
©­­«
0 a1b2 a1b3

0 0 a2b3

0 0 0

ª®®¬
☞ For n shares: requires n(n − 1)/2
fresh random values

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Ishai-Sahai-Wagner (ISW) Scheme

Decomposition of the ci⊕
i

ci =

(⊕
i

ai

) (⊕
i

bi

)
=

⊕
i,j

aibj

Example for n = 3

©­­«
a1b1 0 0
a2b1 a2b2 0
a3b1 a3b2 a3b3

ª®®¬ ⊕
©­­«

0 0 0
a1b2 0 0
a1b3 a2b3 0

ª®®¬
☞ For n shares: requires n(n − 1)/2
fresh random values

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Ishai-Sahai-Wagner (ISW) Scheme

Decomposition of the ci⊕
i

ci =

(⊕
i

ai

) (⊕
i

bi

)
=

⊕
i,j

aibj

Example for n = 3

©­­«
a1b1 0 0

a2b1 ⊕ a1b2 a2b2 0
a3b1 ⊕ a1b3 a3b2 ⊕ a2b3 a3b3

ª®®¬
☞ For n shares: requires n(n − 1)/2
fresh random values

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Ishai-Sahai-Wagner (ISW) Scheme

Decomposition of the ci⊕
i

ci =

(⊕
i

ai

) (⊕
i

bi

)
=

⊕
i,j

aibj

Example for n = 3

©­­«
a1b1 0 0

a2b1 ⊕ a1b2 a2b2 0
a3b1 ⊕ a1b3 a3b2 ⊕ a2b3 a3b3

ª®®¬
☞ For n shares: requires n(n − 1)/2
fresh random values

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Ishai-Sahai-Wagner (ISW) Scheme

Decomposition of the ci⊕
i

ci =

(⊕
i

ai

) (⊕
i

bi

)
=

⊕
i,j

aibj

Example for n = 3

©­­«
a1b1 0 0

a2b1 ⊕ a1b2 a2b2 0
a3b1 ⊕ a1b3 a3b2 ⊕ a2b3 a3b3

ª®®¬ ⊕
©­­«

0 0 0
r1,2 0 0
r1,3 r2,3 0

ª®®¬
☞ For n shares: requires n(n − 1)/2
fresh random values

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Ishai-Sahai-Wagner (ISW) Scheme

Decomposition of the ci⊕
i

ci =

(⊕
i

ai

) (⊕
i

bi

)
=

⊕
i,j

aibj

Example for n = 3

©­­«
a1b1 0 0

a2b1 ⊕ a1b2 a2b2 0
a3b1 ⊕ a1b3 a3b2 ⊕ a2b3 a3b3

ª®®¬ ⊕
©­­«

0 r1,2 r1,3

r1,2 0 r2,3

r1,3 r2,3 0

ª®®¬
☞ For n shares: requires n(n − 1)/2
fresh random values

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Ishai-Sahai-Wagner (ISW) Scheme

Decomposition of the ci⊕
i

ci =

(⊕
i

ai

) (⊕
i

bi

)
=

⊕
i,j

aibj

Example for n = 3

©­­«
a1b1 r1,2 r1,3

(r1,2 ⊕ a2b1) ⊕ a1b2 a2b2 r2,3

(r1,3 ⊕ a3b1) ⊕ a1b3 (r2,3 ⊕ a3b2) ⊕ a2b3 a3b3

ª®®¬
☞ For n shares: requires n(n − 1)/2
fresh random values

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Ishai-Sahai-Wagner (ISW) Scheme

Decomposition of the ci⊕
i

ci =

(⊕
i

ai

) (⊕
i

bi

)
=

⊕
i,j

aibj

Example for n = 3

©­­«
a1b1 r1,2 r1,3

(r1,2 ⊕ a2b1) ⊕ a1b2 a2b2 r2,3

(r1,3 ⊕ a3b1) ⊕ a1b3 (r2,3 ⊕ a3b2) ⊕ a2b3 a3b3

ª®®¬
→ c1
→ c2
→ c3

☞ For n shares: requires n(n − 1)/2
fresh random values

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Ishai-Sahai-Wagner (ISW) Scheme

Decomposition of the ci⊕
i

ci =

(⊕
i

ai

) (⊕
i

bi

)
=

⊕
i,j

aibj

Example for n = 3

©­­«
a1b1 r1,2 r1,3

(r1,2 ⊕ a2b1) ⊕ a1b2 a2b2 r2,3

(r1,3 ⊕ a3b1) ⊕ a1b3 (r2,3 ⊕ a3b2) ⊕ a2b3 a3b3

ª®®¬
→ c1
→ c2
→ c3

☞ For n shares: requires n(n − 1)/2
fresh random values

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

The secure multiplication [ISW03]
Algo. SecMult
Input:

⊕
i ai = a and

⊕
i bi = b

Output: shares ci satisfying
⊕

i ci = a b
1: for i = 1 to n
2: for j = i + 1 to n
3: ri,j ← {0,1}
4: rj,i ← (ri,j ⊕ aibj) ⊕ ajbi
5: for i = 1 to n
6: ci ← aibi
7: for j = 1 to n, j ≠ i do ci ← ci ⊕ ri,j
8: return (c1, c1, . . . , cn)

©­­«
a1b1 r1,2 r1,3

(r1,2 ⊕ a2b1) ⊕ a1b2 a2b2 r2,3

(r1,3 ⊕ a3b1) ⊕ a1b3 (r2,3 ⊕ a3b2) ⊕ a2b3 a3b3

ª®®¬
→ c1

→ c2

→ c3

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

ISW security model
The t-probing model

Protected block-cipher takes as input n = 2t + 1 shares ski
of the secret key sk, with

sk = sk1 ⊕ · · · ⊕ skn

Prove that even if the attacker probes t variables in the
block-cipher, he learns nothing about the secret-key sk.

m (sk1, sk2, . . . , skn)

c

Block cipher

t probes

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

ISW security model
The t-probing model

Protected block-cipher takes as input n = 2t + 1 shares ski
of the secret key sk, with

sk = sk1 ⊕ · · · ⊕ skn

Prove that even if the attacker probes t variables in the
block-cipher, he learns nothing about the secret-key sk.

m (sk1, sk2, . . . , skn)

c

Block cipher

t probes

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

ISW security model
Simulation framework of [ISW03]:

m (sk1, sk2, . . . , skn)

c

Block cipher

t probes Sim

Show that any t probes can be perfectly simulated from at
most n − 1 of the ski’s.
Those n − 1 shares ski are initially
uniformly and independently distributed.
⇒ the adversary learns nothing from the t
probes, since he could simulate those t
probes by himself.

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

ISW security model
Simulation framework of [ISW03]:

m (sk1, sk2, . . . , skn)

c

Block cipher

t probes Sim

Show that any t probes can be perfectly simulated from at
most n − 1 of the ski’s.
Those n − 1 shares ski are initially
uniformly and independently distributed.
⇒ the adversary learns nothing from the t
probes, since he could simulate those t
probes by himself.

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

ISW security model
Simulation framework of [ISW03]:

m (sk1, sk2, . . . , skn)

c

Block cipher

t probes Sim

Show that any t probes can be perfectly simulated from at
most n − 1 of the ski’s.
Those n − 1 shares ski are initially
uniformly and independently distributed.
⇒ the adversary learns nothing from the t
probes, since he could simulate those t
probes by himself.

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Probing Model vs. Reality

Probing model
The attacker can choose at most t variables
He learns the value of those t variables.

Reality with power attack
The attacker gets a sequence of power consumptions
correlated to the variables.
Noisy leakage but not limited to t variables

Block cipher

t probes

Probing model

Real life leakage

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Relevance of probing model

t-probing model
With security against t probes, combining t power
consumption points as in a t-th order DPA will reveal no
information to the adversary.
To recover the key, attacker must perform an attack of order
at least t + 1⇒ more complex.

Block cipher

t probes

Probing model

Real life leakage

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Probing Model vs. Reality

Noisy leakage model
All variables leak independently with noise
Closer to reality

Probing model vs noisy leakage model
Security in probing model⇒ security in noisy leakage
model [DDF14]

Block cipher

t probes

Probing model

Real life leakage

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Application to masking AES
AES: Substitution-permutation network (SPN)

Several rounds of SBoxes and linear layer.

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

High-order masking of AES
Ishai-Sahai-Wagner private circuit [ISW03]

Transform any Boolean circuit C into a circuit C′ of size
O(|C | · t2) perfectly secure against t probes, using
n = 2t + 1 shares.

Masking AES: generic approach
First write AES as a Boolean circuit C and apply [ISW03],
with complexity O(t2).
too inefficient.

Masking linear operations (MixColumns):
Easy: compute the f (xi) separately

x = x1 ⊕ x2 ⊕ · · · ⊕ xn

f (x) = f (x1) ⊕ f (x2) ⊕ · · · ⊕ f (xn)

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

High-order masking of AES
Ishai-Sahai-Wagner private circuit [ISW03]

Transform any Boolean circuit C into a circuit C′ of size
O(|C | · t2) perfectly secure against t probes, using
n = 2t + 1 shares.

Masking AES: generic approach
First write AES as a Boolean circuit C and apply [ISW03],
with complexity O(t2).
too inefficient.

Masking linear operations (MixColumns):
Easy: compute the f (xi) separately

x = x1 ⊕ x2 ⊕ · · · ⊕ xn

f (x) = f (x1) ⊕ f (x2) ⊕ · · · ⊕ f (xn)

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Secure SBox Computation
Secure Computation of S(x)

Inputs: (xi)i such that
x1 ⊕ x2 ⊕ · · · ⊕ xn = x

Output: (yi)i such that
y1 ⊕ y2 ⊕ · · · ⊕ yn = S(x)

[RP10] countermeasure for AES: compute S(x) = x254

x x3 x12

x2 x15 x240 x252 x254

4 multiplications over F28 with ISW
7 linear squarings

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Secure SBox Computation
Secure Computation of S(x)

Inputs: (xi)i such that
x1 ⊕ x2 ⊕ · · · ⊕ xn = x

Output: (yi)i such that
y1 ⊕ y2 ⊕ · · · ⊕ yn = S(x)

[RP10] countermeasure for AES: compute S(x) = x254

x x3 x12

x2 x15 x240 x252 x254

4 multiplications over F28 with ISW
7 linear squarings

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Secure multiplication over F28: ISW

Goal: compute c = a · b securely over F28

Decomposition of the ci over F28⊕
i

ci =

(⊕
i

ai

) (⊕
i

bi

)
=

⊕
i,j

aibj

Example of ISW over F28 for n = 3

©­­«
a1b1 r1,2 r1,3

(r1,2 ⊕ a2b1) ⊕ a1b2 a2b2 r2,3

(r1,3 ⊕ a3b1) ⊕ a1b3 (r2,3 ⊕ a3b2) ⊕ a2b3 a3b3

ª®®¬
→ c1
→ c2
→ c3

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Summary: high-order masking of AES
High-order masking of AES

Input: n shares sk = sk1 ⊕ sk2 ⊕ · · · ⊕ skn, and a message m
First encode m = m1 ⊕ · · · ⊕ mn
Process linear operations with n shares (easy)
For SBoxes, write x3 = x × x2 and
S(x) = x254 = (x)2 × (x3)4 × (x3 × (x3)4)16 ∈ F28

Apply ISW for secure multiplication over F28

Output: decode c = c1 ⊕ · · · ⊕ cn

Complexity: O(n2)

Security
Provably secure against t probes
with n = 2t + 1 shares

Possible with n = t + 1 shares using
mask refreshing

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Extension to any SBOX

Use Lagrange interpolation over F2k [CGP12]

S(x) =
2k−1∑︁
i=0

𝛼i · xi

over F2k , for constant coefficients 𝛼i ∈ F2k .
One can evaluate the polynomial with only O(2k/2)
multiplications.
Asymptotic complexity is therefore O(2k/2 · n2).

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Proof of security for ISW multiplication

Input: ai and bi

Output: ci such that
⊕

i ci =
(⊕

i ai
)
·
(⊕

i bi
)

Algorithm: for each 1 ⩽ i < j ⩽ n, let rij ← {0, 1} and
zij ← rij

zji ← (zij ⊕ aibj) ⊕ ajbi

ci ← aibi ⊕
⊕
j≠i

zij

Security property
Any set of t probes can be perfectly simulated with the
knowledge of a|I and b|I, for some
subset I with |I | ⩽ 2t
where a|I = (ai)i∈I.

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Proof of security for ISW multiplication

Construction of the set I.
Initially I ← ∅.
If a wire ai, bi, aibi, zij (for i ≠ j) is probed, add i to I.
Same for a sum of values of the above form, including ci.
For the wires aibj or zij ⊕ aibj for i ≠ j, add both i, j to I
We have |I | ⩽ 2t

a1b1 · · · z1,i · · · z1,n c1
...

. . .
...

...(zi,1 · · · aibi · · · zi,n) ci
...

. . .
...

...

zn,1 · · · zn,i · · · anbn cn

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Simulation of the probes

We must show that all probes can be perfectly simulated
using only a|I and b|I

Simulation of probed ai, bi, aibi: obvious since i ∈ I
Same for probed aibj and zij ⊕ aibj, since i, j ∈ I
There remains the probed zij’s and sums of zij’s, including
ci. We must have i ∈ I.

We would like to show that if i ∈ I, we can simulate all zij
for i ≠ j.

a1b1 · · · z1,i · · · z1,n c1
...

. . .
...

...(zi,1 · · · aibi · · · zi,n) ci
...

. . .
...

...

zn,1 · · · zn,i · · · anbn cn

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Simulation of row i for i ∈ I

Goal: show that in row i for i ∈ I, we can simulate all zi,j for
i ≠ j.

Therefore we can also simulate the partial sums of zij, and
the final sum ci.

Simulation of zij for j > i
Easy because zij = rij where rij ← {0, 1}

a1b1 · · · z1,i · · · z1,n c1
...

. . .
...

...(zi,1 · · · aibi · · · zi,j · · · zi,n) ci

...
. . .

...
...

zn,1 · · · zn,i · · · anbn cn

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Simulation of row i for i ∈ I
Simulation of zij for j < i:

zij = (zji ⊕ ajbi) ⊕ aibj

where zji = rji with rji ← {0, 1}
If j ∈ I, easy, since we know ai, bi, aj and bj.
If j ∉ I, then zji is not used in another probe.

Nothing in row j has been probed, otherwise j ∈ I.
zji is a one-time-pad, so we can simulate zij as zij ← {0, 1},
without knowing aj and bj.

a1b1 · · · z1,i · · · z1,n c1

...
. . . zj,i

...
...(zi,1 · · · zi,j · · · aibi · · · zi,n) ci

...
. . .

...
...

zn,1 · · · zn,i · · · anbn cn

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Summary: simulation for a single gate

For a single gate, we can simulate any set of t probes
using a subset a |I and b |I of the input shares, for |I | ⩽ 2t.
We can also simulate the output shares c |I

t probes

a|I

b|I

c|I

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Simulation for a full circuit
Simulation for a full circuit:

We examine all gadgets as previously, building a common
set I, still with |I | ⩽ 2t
We can perform the simulation inductively, from input to
output, using only the shares in I.

t probes

a|I

b|I

c|I

d|I

e|I

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Simulation for a full circuit
Simulation for a full circuit:

With |I | ⩽ 2t < n, the input variables in a |I , b |I , d |I can be
perfectly simulated by generating random bits.

t probes

a|I

b|I

c|I

d|I

e|I

Security of ISW transform [ISW03]
Any circuit C can be transformed
into a circuit of size O(|C | · t2)
perfectly secure against t probes.

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Conclusion

Side-channel attacks
Timing attack, power attack, fault attack

Side-channel countermeasures
Generic high-order Boolean masking: provable security
against t probes with [ISW03], with complexity O(t2)
High-order masking of AES: ISW multiplication over F28

[RP10]
New: post-quantum algorithms (Kyber, Dilithium)

Usually combine arithmetic and Boolean operations
Conversion between Boolean and
arithmetic masking
High-order polynomial comparison for
FO transform

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

References
CJRR99 Towards Sound Approaches to Counteract

Power-Analysis Attacks. Suresh Chari, Charanjit S.
Jutla, Josyula R. Rao, Pankaj Rohatgi. CRYPTO’99.

CGP12 Higher-Order Masking Schemes for S-Boxes. Claude
Carlet, Louis Goubin, Emmanuel Prouff, Michaël
Quisquater, Matthieu Rivain. FSE 2012.

ISW03 Private Circuits: Securing Hardware against Probing
Attacks. Yuval Ishai, Amit Sahai, David Wagner,
CRYPTO’03

RP10 Provably Secure Higher-Order Masking of AES.
Matthieu Rivain, Emmanuel Prouff, CHES’10.

DDF14 Unifying Leakage Models: from Probing Attacks to
Noisy Leakage. Duc, Dziembowski, Faust,
EUROCRYPT’14

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

