Side-Channel Attacks and Countermeasures

Jean-Sébastien Coron

University of Luxembourg

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Side-channel Attacks

- Use side-channel information during execution
 - Timing attack, power attack, fault attack

< ロ > < 同 > < 回 > < 回 > < □ > <

Differential Power Analysis [KJJ99]

Side-channel Attack on SBOX computation

• SBOX computation $y = S(x \oplus k)$ for $x, k \in \{0, 1\}^8$

- We assume that the power consumption *E* is correlated to $S(x \oplus k)$
- $E = H(S(x \oplus k)) + B$, where H() is the Hamming weight and B is some noise.

Statistical Analysis of Power Consumption

• We get many power acquisitions for unknown subkey k:

• Correct subkey k with $y_i = S(x_i \oplus k)$:

$$\mathsf{Corr}((E_i),(y_i)) \neq 0 \longrightarrow \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup$$

• Incorrect subkey k' with $y'_i = S(x_i \oplus k')$:

$$\operatorname{Corr}((E_i),(y'_i)) = 0 \longrightarrow$$

• We can distinguish the two and recover the subkey *k*

Recovering the secret-key

 For AES, we can apply the same attack separately on each of the 16 SBoxes of the first round

• Without countermeasures, only a few thousand power acquisitions are required to recover the secret-key.

Masking countermeasure

Let *x* be a variable dependent on the secret-key:

- Generate a random r (different for each execution)
- Mask *x* using *r* : $x' = x \oplus r$
- Manipulate x' (instead of x) and r independently
- *r* is random ⇒ *x'* is random ⇒ power consumption of *x'* is random ⇒ no information on *x* leaks

True only with one leakage point

Masking countermeasure

Let *x* be a variable dependent on the secret-key:

- Generate a random r (different for each execution)
- Mask *x* using *r* : $x' = x \oplus r$
- Manipulate x' (instead of x) and r independently
- *r* is random ⇒ *x'* is random ⇒ power consumption of *x'* is random ⇒ no information on *x* leaks

True only with one leakage point

First-order masking countermeasure

• How do we compute with $x' = x \oplus r$ instead of x ?

Linear operations: easy

$$x = x' \oplus r \implies f(x) = f(x') \oplus f(r)$$

- We compute f(x') and f(r) separately.
- f(x) is now masked with f(r) instead of r
 - We can write $f(x) = (f(x') \oplus s \oplus f(r) \oplus r \oplus s) \oplus r$

•
$$\Rightarrow$$
 $f(x)$ is still masked by r .

- Example: MixColumns in AES
- Non-linear operations (SBOX): randomized table countermeasure [CJRR99]

Processing non-linear operations

Randomized table countermeasure [CJRR99]

- Table S(x) is shifted as $T(u) = S(u \oplus r) \oplus s$
- One reads $y = T(x') = T(x \oplus r) = S(x) \oplus s$

Processing non-linear operations

Randomized table countermeasure [CJRR99]

- Table S(x) is shifted as $T(u) = S(u \oplus r) \oplus s$
- One reads $y = T(x') = T(x \oplus r) = S(x) \oplus s$

Second-order power attacks

Second-order DPA

- Combine the leakage of x' = x ⊕ r and the leakage of r to recover information about x
- Requires more power curves but can be practical

Solution: Higher-Order Boolean Masking

Basic principle

Each sensitive variable *x* is shared into *n* variables:

 $x = x_1 \oplus x_2 \oplus \cdots \oplus x_n$

- Generate n 1 random variables $x_1, x_2, \ldots, x_{n-1}$
- Initially let $x_n = x \oplus x_1 \oplus x_2 \oplus \cdots \oplus x_{n-1}$

Security against DPA attack of order n -

• Any subset of n - 1 shares is uniformly and independently distributed

 \Rightarrow If we probe at most n - 1 shares x_i , we learn nothing about x

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Solution: Higher-Order Boolean Masking

Basic principle

Each sensitive variable *x* is shared into *n* variables:

 $x = x_1 \oplus x_2 \oplus \cdots \oplus x_n$

- Generate n 1 random variables $x_1, x_2, \ldots, x_{n-1}$
- Initially let $x_n = x \oplus x_1 \oplus x_2 \oplus \cdots \oplus x_{n-1}$

Security against DPA attack of order n-1

 Any subset of n - 1 shares is uniformly and independently distributed

 \Rightarrow If we probe at most n - 1 shares x_i , we learn nothing about x

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

High-order masking of Boolean circuits

Ishai-Sahai-Wagner private circuit [ISW03]

- The adversary can probe any subset of at most *t* wires
- Algorithm to transform any Boolean circuit *C* of size |C| into a circuit of size $O(|C| \cdot t^2)$ that is perfectly secure against such an adversary.
- Any Boolean circuit can be written with only Xor gates $c = a \oplus b$ and And gates $c = a \times b$.
 - High-order masking of $c = a \oplus b$: easy since linear.
 - High-order masking of $c = a \times b$: more complex.
- For security against *t* probes, one must use at least n = 2t + 1 shares.

High-order masking of $c = a \oplus b$

Computation of $a \oplus b$

Inputs: (a_i)_i and (b_i)_i such that
a₁ ⊕ a₂ ⊕ · · · ⊕ a_n = a
b₁ ⊕ b₂ ⊕ · · · ⊕ b_n = b
Output: (c_i)_i such that
(a₁ ⊕ b₁) ⊕ (a₂ ⊕ b₂) ⊕ · · · ⊕ (a_n ⊕ b_n) = a ⊕ b ⇒ c₁ ⊕ c₂ ⊕ · · · ⊕ c_n = a ⊕ b

- We compute $c_i = a_i \oplus b_i$ independently for each *i*
- Complexity: O(n) for n shares
 ⇒ very efficient

・ 同 ト ・ ヨ ト ・ ヨ ト

High-order secure multiplication

Secure Computation of $a \times b$

• Inputs: $(a_i)_i$ and $(b_i)_i$ such that

- $a_1 \oplus a_2 \oplus \cdots \oplus a_n = a$
- $b_1 \oplus b_2 \oplus \cdots \oplus b_n = b$
- **Output:** $(c_i)_i$ such that

• $c_1 \oplus c_2 \oplus c_2 \oplus \cdots \oplus c_n = a \times b$

Ishai-Sahai-Wagner private circuit [ISW03]

- Secure against *t* probes for n = 2t + 1 shares.
- Number of operations: $O(t^2)$
- Requires O(t²) randoms per multiplication.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

High-order secure multiplication

Secure Computation of $a \times b$

• Inputs: $(a_i)_i$ and $(b_i)_i$ such that

- $a_1 \oplus a_2 \oplus \cdots \oplus a_n = a$
- $b_1 \oplus b_2 \oplus \cdots \oplus b_n = b$
- **Output:** $(c_i)_i$ such that

• $c_1 \oplus c_2 \oplus c_2 \oplus \cdots \oplus c_n = a \times b$

Ishai-Sahai-Wagner private circuit [ISW03]

- Secure against *t* probes for n = 2t + 1 shares.
- Number of operations: $O(t^2)$
- Requires $O(t^2)$ randoms per multiplication.

▲ 伺 ▶ ▲ 国 ▶ ▲ 国 ▶

High-order secure multiplication (AND Gate)

• To high-order compute $c = a \times b$, one writes

$$c = a \times b = \left(\bigoplus_{i=1}^{n} a_i\right) \cdot \left(\bigoplus_{i=1}^{n} b_i\right)$$
$$= \bigoplus_{1 \le i, j \le n} a_i b_j$$

- The cross-products $a_i b_j$ are recombined without leaking information about the original inputs *a* and *b*.
 - For this, one needs n(n − 1)/2 additional random bits r_{ij}.

The secure multiplication [ISW03]

Algo. SecMult

```
Input: \bigoplus_i a_i = a and \bigoplus_i b_i = b

Output: shares c_i satisfying \bigoplus_i c_i = a b

1: for i = 1 to n

2: for j = i + 1 to n

3: r_{i,j} \leftarrow \{0,1\}

4: r_{j,i} \leftarrow (r_{i,j} \oplus a_i b_j) \oplus a_j b_i

5: for i = 1 to n

6: c_i \leftarrow a_i b_i

7: for j = 1 to n, j \neq i do c_i \leftarrow c_i \oplus r_{i,j}

8: return (c_1, c_1, \dots, c_n)
```

 $\begin{pmatrix} a_1b_1 & r_{1,2} & r_{1,3} \\ (r_{1,2} \oplus a_2b_1) \oplus a_1b_2 & a_2b_2 & r_{2,3} \\ (r_{1,3} \oplus a_3b_1) \oplus a_1b_3 & (r_{2,3} \oplus a_3b_2) \oplus a_2b_3 & a_3b_3 \end{pmatrix} \xrightarrow{\rightarrow} c_3$

◆□ > ◆圖 > ◆臣 > ◆臣 > ─ 臣

Decomposition of the c_i

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i}b_{j}$$

Example for n = 3

$$\begin{pmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{pmatrix}$$

For *n* shares: requires n(n-1)/2 fresh random values

< ロ > < 同 > < 回 > < 回 > < □ > <

Decomposition of the c_i

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i}b_{j}$$

Example for n = 3 $\begin{pmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{pmatrix} \xrightarrow{\rightarrow} c_1$ $\rightarrow c_2$ $\rightarrow c_3$

For *n* shares: requires n(n-1)/2 fresh random values

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Decomposition of the c_i

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i}b_{j}$$

Example for n = 3

$$\begin{pmatrix} a_1b_1 & 0 & 0\\ a_2b_1 & a_2b_2 & 0\\ a_3b_1 & a_3b_2 & a_3b_3 \end{pmatrix} \oplus \begin{pmatrix} 0 & a_1b_2 & a_1b_3\\ 0 & 0 & a_2b_3\\ 0 & 0 & 0 \end{pmatrix}$$

For *n* shares: requires n(n-1)/2 fresh random values

< ロ > < 同 > < 回 > < 回 > < □ > <

Decomposition of the c_i

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i}b_{j}$$

Example for n = 3

$$\begin{pmatrix} a_1b_1 & 0 & 0 \\ a_2b_1 & a_2b_2 & 0 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{pmatrix} \oplus \begin{pmatrix} 0 & 0 & 0 \\ a_1b_2 & 0 & 0 \\ a_1b_3 & a_2b_3 & 0 \end{pmatrix}$$

For *n* shares: requires n(n-1)/2 fresh random values

< ロ > < 同 > < 回 > < 回 > < □ > <

Decomposition of the c_i

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i}b_{j}$$

Example for n = 3

$$\begin{pmatrix} a_1b_1 & 0 & 0\\ a_2b_1 \oplus a_1b_2 & a_2b_2 & 0\\ a_3b_1 \oplus a_1b_3 & a_3b_2 \oplus a_2b_3 & a_3b_3 \end{pmatrix}$$

For *n* shares: requires n(n-1)/2 fresh random values

< ロ > < 同 > < 回 > < 回 > < □ > <

Decomposition of the c_i

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i}b_{j}$$

Example for n = 3

$$\begin{pmatrix} a_1b_1 & 0 & 0 \\ a_2b_1 \oplus a_1b_2 & a_2b_2 & 0 \\ a_3b_1 \oplus a_1b_3 & a_3b_2 \oplus a_2b_3 & a_3b_3 \end{pmatrix}$$

For *n* shares: requires n(n-1)/2 fresh random values

< ロ > < 同 > < 回 > < 回 > < □ > <

Decomposition of the c_i

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i}b_{j}$$

Example for n = 3

$\begin{pmatrix} a_1b_1 \end{pmatrix}$	0	0)		0	0	0)	
$a_2b_1\oplus a_1b_2$	a_2b_2	0	\oplus	<i>r</i> _{1,2}	0	0	
$a_3b_1 \oplus a_1b_3$	$a_3b_2 \oplus a_2b_3$	a_3b_3		<i>r</i> _{1,3}	<i>r</i> _{2,3}	0)	

For *n* shares: requires n(n-1)/2 fresh random values

< ロ > < 同 > < 回 > < 回 > < □ > <

Decomposition of the c_i

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i}b_{j}$$

Example for n = 3

$$\begin{pmatrix} a_1b_1 & 0 & 0 \\ a_2b_1 \oplus a_1b_2 & a_2b_2 & 0 \\ a_3b_1 \oplus a_1b_3 & a_3b_2 \oplus a_2b_3 & a_3b_3 \end{pmatrix} \oplus \begin{pmatrix} 0 & r_{1,2} & r_{1,3} \\ r_{1,2} & 0 & r_{2,3} \\ r_{1,3} & r_{2,3} & 0 \end{pmatrix}$$

For *n* shares: requires n(n-1)/2 fresh random values

< ロ > < 同 > < 回 > < 回 > < □ > <

Decomposition of the c_i

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i}b_{j}$$

Example for n = 3

$$\begin{pmatrix} a_1b_1 & r_{1,2} & r_{1,3} \\ (r_{1,2} \oplus a_2b_1) \oplus a_1b_2 & a_2b_2 & r_{2,3} \\ (r_{1,3} \oplus a_3b_1) \oplus a_1b_3 & (r_{2,3} \oplus a_3b_2) \oplus a_2b_3 & a_3b_3 \end{pmatrix}$$

For *n* shares: requires n(n-1)/2 fresh random values

< ロ > < 同 > < 回 > < 回 > .

Decomposition of the c_i

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

Example for n = 3

$$\begin{pmatrix} a_1b_1 & r_{1,2} & r_{1,3} \\ (r_{1,2} \oplus a_2b_1) \oplus a_1b_2 & a_2b_2 & r_{2,3} \\ (r_{1,3} \oplus a_3b_1) \oplus a_1b_3 & (r_{2,3} \oplus a_3b_2) \oplus a_2b_3 & a_3b_3 \end{pmatrix} \xrightarrow{\rightarrow} \begin{array}{c} c_1 \\ \rightarrow c_2 \\ \rightarrow c_3 \end{array}$$

For *n* shares: requires n(n-1)/2 fresh random values

< ロ > < 同 > < 回 > < 回 > .

Decomposition of the c_i

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

Example for n = 3

$$\begin{pmatrix} a_1b_1 & r_{1,2} & r_{1,3} \\ (r_{1,2} \oplus a_2b_1) \oplus a_1b_2 & a_2b_2 & r_{2,3} \\ (r_{1,3} \oplus a_3b_1) \oplus a_1b_3 & (r_{2,3} \oplus a_3b_2) \oplus a_2b_3 & a_3b_3 \end{pmatrix} \xrightarrow{\rightarrow} \begin{array}{c} c_1 \\ c_2 \\ c_3 \end{array}$$

For *n* shares: requires n(n-1)/2 fresh random values

< ロ > < 同 > < 回 > < 回 > < □ > <

The secure multiplication [ISW03]

Algo. SecMult

```
Input: \bigoplus_i a_i = a and \bigoplus_i b_i = b

Output: shares c_i satisfying \bigoplus_i c_i = a b

1: for i = 1 to n

2: for j = i + 1 to n

3: r_{i,j} \leftarrow \{0,1\}

4: r_{j,i} \leftarrow (r_{i,j} \oplus a_i b_j) \oplus a_j b_i

5: for i = 1 to n

6: c_i \leftarrow a_i b_i

7: for j = 1 to n, j \neq i do c_i \leftarrow c_i \oplus r_{i,j}

8: return (c_1, c_1, \dots, c_n)
```

 $\begin{pmatrix} a_1b_1 & r_{1,2} & r_{1,3} \\ (r_{1,2} \oplus a_2b_1) \oplus a_1b_2 & a_2b_2 & r_{2,3} \\ (r_{1,3} \oplus a_3b_1) \oplus a_1b_3 & (r_{2,3} \oplus a_3b_2) \oplus a_2b_3 & a_3b_3 \end{pmatrix} \xrightarrow{\rightarrow} c_3$

・ロット (雪) (日) (日) (日)

- The *t*-probing model
 - Protected block-cipher takes as input n = 2t + 1 shares sk_i of the secret key sk, with

$$sk = sk_1 \oplus \cdots \oplus sk_n$$

• Prove that even if the attacker probes *t* variables in the block-cipher, he learns nothing about the secret-key *sk*.

- The *t*-probing model
 - Protected block-cipher takes as input n = 2t + 1 shares sk_i of the secret key sk, with

$$sk = sk_1 \oplus \cdots \oplus sk_n$$

• Prove that even if the attacker probes *t* variables in the block-cipher, he learns nothing about the secret-key *sk*.

• Simulation framework of [ISW03]:

- Show that any t probes can be perfectly simulated from at most n - 1 of the sk_i's.
- Those n 1 shares sk_i are initially uniformly and independently distributed.
- ⇒ the adversary learns nothing from the *t* probes, since he could simulate those *t* probes by himself.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

• Simulation framework of [ISW03]:

- Show that any *t* probes can be perfectly simulated from at most *n* − 1 of the *sk_i*'s.
- Those n 1 shares sk_i are initially uniformly and independently distributed.
- ⇒ the adversary learns nothing from the t probes, since he could simulate those t probes by himself.

• Simulation framework of [ISW03]:

- Show that any *t* probes can be perfectly simulated from at most *n* − 1 of the *sk_i*'s.
- Those *n* 1 shares *sk_i* are initially uniformly and independently distributed.
- ⇒ the adversary learns nothing from the *t* probes, since he could simulate those *t* probes by himself.

Probing Model vs. Reality

- Probing model
 - The attacker can choose at most t variables
 - He learns the value of those *t* variables.
- Reality with power attack
 - The attacker gets a sequence of power consumptions correlated to the variables.
 - Noisy leakage but not limited to t variables

Probing model

Real life leakage

Relevance of probing model

- t-probing model
 - With security against *t* probes, combining *t* power consumption points as in a *t*-th order DPA will reveal no information to the adversary.
 - To recover the key, attacker must perform an attack of order at least *t* + 1 ⇒ more complex.

Probing Model vs. Reality

- Noisy leakage model
 - All variables leak independently with noise
 - Closer to reality
- Probing model vs noisy leakage model
 - Security in probing model ⇒ security in noisy leakage model [DDF14]

Probing model

Application to masking AES

- AES: Substitution-permutation network (SPN)
 - Several rounds of SBoxes and linear layer.

< ∃ >

High-order masking of AES

Ishai-Sahai-Wagner private circuit [ISW03]

- Transform any Boolean circuit *C* into a circuit *C'* of size $O(|C| \cdot t^2)$ perfectly secure against *t* probes, using n = 2t + 1 shares.
- Masking AES: generic approach
 - First write AES as a Boolean circuit *C* and apply [ISW03], with complexity $O(t^2)$.
 - too inefficient.
- Masking linear operations (MixColumns):
 - Easy: compute the $f(x_i)$ separately

$$x = x_1 \oplus x_2 \oplus \dots \oplus x_n$$

$$f(x) = f(x_1) \oplus f(x_2) \oplus \dots \oplus f(x_n)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

High-order masking of AES

Ishai-Sahai-Wagner private circuit [ISW03]

- Transform any Boolean circuit *C* into a circuit *C'* of size $O(|C| \cdot t^2)$ perfectly secure against *t* probes, using n = 2t + 1 shares.
- Masking AES: generic approach
 - First write AES as a Boolean circuit *C* and apply [ISW03], with complexity *O*(*t*²).
 - too inefficient.
- Masking linear operations (MixColumns):
 - Easy: compute the $f(x_i)$ separately

$$x = x_1 \oplus x_2 \oplus \dots \oplus x_n$$

$$f(x) = f(x_1) \oplus f(x_2) \oplus \dots \oplus f(x_n)$$

Secure SBox Computation

Secure Computation of S(x)

- **Inputs:** $(x_i)_i$ such that
 - $x_1 \oplus x_2 \oplus \cdots \oplus x_n = x$
- **Output:** $(y_i)_i$ such that
 - $y_1 \oplus y_2 \oplus \cdots \oplus y_n = S(x)$

[RP10] countermeasure for AES: compute $S(x) = x^{254}$

- 4 multiplications over \mathbb{F}_{2^8} with ISW
- 7 linear squarings

(日)

Secure SBox Computation

Secure Computation of S(x)

- **Inputs:** $(x_i)_i$ such that
 - $x_1 \oplus x_2 \oplus \cdots \oplus x_n = x$
- **Output:** $(y_i)_i$ such that
 - $y_1 \oplus y_2 \oplus \cdots \oplus y_n = S(x)$

[RP10] countermeasure for AES: compute $S(x) = x^{254}$

- 4 multiplications over \mathbb{F}_{2^8} with ISW
- 7 linear squarings

< ロ > < 同 > < 回 > < 回 > .

Secure multiplication over \mathbb{F}_{2^8} : ISW

• Goal: compute $c = a \cdot b$ securely over \mathbb{F}_{2^8}

E

Decomposition of the
$$c_i$$
 over \mathbb{F}_{2^8}
$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

Example of ISW over
$$\mathbb{F}_{2^8}$$
 for $n = 3$

$$\begin{pmatrix} a_1b_1 & r_{1,2} & r_{1,3} \\ (r_{1,2} \oplus a_2b_1) \oplus a_1b_2 & a_2b_2 & r_{2,3} \\ (r_{1,3} \oplus a_3b_1) \oplus a_1b_3 & (r_{2,3} \oplus a_3b_2) \oplus a_2b_3 & a_3b_3 \end{pmatrix} \xrightarrow{\rightarrow} c_3$$

Summary: high-order masking of AES

High-order masking of AES

- Input: *n* shares $sk = sk_1 \oplus sk_2 \oplus \cdots \oplus sk_n$, and a message *m*
- First encode $m = m_1 \oplus \cdots \oplus m_n$
- Process linear operations with *n* shares (easy)
- For SBoxes, write $x^3 = x \times x^2$ and $S(x) = x^{254} = (x)^2 \times (x^3)^4 \times (x^3 \times (x^3)^4)^{16} \in \mathbb{F}_{2^8}$
- Apply ISW for secure multiplication over \mathbb{F}_{2^8}
- Output: decode $c = c_1 \oplus \cdots \oplus c_n$
- Complexity: $O(n^2)$

Security

- Provably secure against *t* probes with *n* = 2*t* + 1 shares
 - Possible with n = t + 1 shares using mask refreshing

Use Lagrange interpolation over 𝔽_{2^k} [CGP12]

$$S(x) = \sum_{i=0}^{2^k - 1} \alpha_i \cdot x^i$$

over \mathbb{F}_{2^k} , for constant coefficients $\alpha_i \in \mathbb{F}_{2^k}$.

- One can evaluate the polynomial with only $O(2^{k/2})$ multiplications.
- Asymptotic complexity is therefore $O(2^{k/2} \cdot n^2)$.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Proof of security for ISW multiplication

- Input: a_i and b_i
- Output: c_i such that $\bigoplus_i c_i = (\bigoplus_i a_i) \cdot (\bigoplus_i b_i)$
- Algorithm: for each $1 \le i < j \le n$, let $r_{ij} \leftarrow \{0, 1\}$ and

$$z_{ij} \leftarrow r_{ij}$$
$$z_{ji} \leftarrow (z_{ij} \oplus a_i b_j) \oplus a_j b_i$$
$$c_i \leftarrow a_i b_i \oplus \bigoplus_{j \neq i} z_{ij}$$

Security property

- Any set of *t* probes can be perfectly simulated with the knowledge of *a*_{|I} and *b*_{|I}, for some subset *I* with |*I*| ≤ 2*t*
- where $a_{|I} = (a_i)_{i \in I}$.

< ロ > < 同 > < 回 > < 回 > .

Proof of security for ISW multiplication

- Construction of the set *I*.
 - Initially $I \leftarrow \emptyset$.
 - If a wire a_i , b_i , $a_i b_i$, z_{ij} (for $i \neq j$) is probed, add i to I.
 - Same for a sum of values of the above form, including *c*_i.
 - For the wires $a_i b_j$ or $z_{ij} \oplus a_i b_j$ for $i \neq j$, add both i, j to I
 - We have $|I| \leq 2t$

Simulation of the probes

- We must show that all probes can be perfectly simulated using only $a_{|I}$ and $b_{|I}$
 - Simulation of probed $a_i, b_i, a_i b_i$: obvious since $i \in I$
 - Same for probed $a_i b_j$ and $z_{ij} \oplus a_i b_j$, since $i, j \in I$
 - There remains the probed *z_{ij}*'s and sums of *z_{ij}*'s, including *c_i*. We must have *i* ∈ *I*.
- We would like to show that if *i* ∈ *I*, we can simulate all *z_{ij}* for *i* ≠ *j*.

	a_1b_1		$Z_{1,i}$		<i>z</i> _{1,<i>n</i>}	c_1
	÷	·.			:	÷
	$Z_{i,1}$	•••	$a_i b_i$	•••	Z _{i,n}	Ci
	÷			·	:	÷
	$z_{n,1}$		Zn,i		$a_n b_n$	c_n

Simulation of row *i* for $i \in I$

- Goal: show that in row *i* for $i \in I$, we can simulate all $z_{i,j}$ for $i \neq j$.
 - Therefore we can also simulate the partial sums of *z_{ij}*, and the final sum *c_i*.
- Simulation of z_{ij} for j > i
 - Easy because $z_{ij} = r_{ij}$ where $r_{ij} \leftarrow \{0, 1\}$

Simulation of row *i* for $i \in I$

• Simulation of z_{ij} for j < i:

 $z_{ij} = (z_{ji} \oplus a_j b_i) \oplus a_i b_j$

• where $z_{ji} = r_{ji}$ with $r_{ji} \leftarrow \{0, 1\}$

- If $j \in I$, easy, since we know a_i, b_i, a_j and b_j .
- If $j \notin I$, then z_{ji} is not used in another probe.
 - Nothing in row j has been probed, otherwise $j \in I$.
 - *z_{ji}* is a one-time-pad, so we can simulate *z_{ij}* as *z_{ij}* ← {0, 1}, without knowing *a_j* and *b_j*.

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Summary: simulation for a single gate

- For a single gate, we can simulate any set of *t* probes
 - using a subset $a_{|I}$ and $b_{|I}$ of the input shares, for $|I| \leq 2t$.
 - We can also simulate the output shares c_{|I}

Simulation for a full circuit

- Simulation for a full circuit:
 - We examine all gadgets as previously, building a common set *I*, still with |*I*| ≤ 2*t*
 - We can perform the simulation inductively, from input to output, using only the shares in *I*.

Jean-Sébastien Coron Side-Channel Attacks and Countermeasures

Simulation for a full circuit

- Simulation for a full circuit:
 - With |*I*| ≤ 2*t* < *n*, the input variables in *a*_{|*I*}, *b*_{|*I*}, *d*_{|*I*} can be perfectly simulated by generating random bits.

Security of ISW transform [ISW03]

 Any circuit *C* can be transformed into a circuit of size O(|C| · t²) perfectly secure against *t* probes.

- Side-channel attacks
 - Timing attack, power attack, fault attack
- Side-channel countermeasures
 - Generic high-order Boolean masking: provable security against *t* probes with [ISW03], with complexity $O(t^2)$
 - High-order masking of AES: ISW multiplication over \mathbb{F}_{2^8} [RP10]
- New: post-quantum algorithms (Kyber, Dilithium)
 - Usually combine arithmetic and Boolean operations
 - Conversion between Boolean and arithmetic masking
 - High-order polynomial comparison for FO transform

References

- CJRR99 Towards Sound Approaches to Counteract Power-Analysis Attacks. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, Pankaj Rohatgi. CRYPTO'99.
 - CGP12 Higher-Order Masking Schemes for S-Boxes. Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël Quisquater, Matthieu Rivain. FSE 2012.
 - ISW03 Private Circuits: Securing Hardware against Probing Attacks. Yuval Ishai, Amit Sahai, David Wagner, CRYPTO'03
 - RP10 Provably Secure Higher-Order Masking of AES. Matthieu Rivain, Emmanuel Prouff, CHES'10.
 - DDF14 Unifying Leakage Models: from Probing Attacks to Noisy Leakage. Duc, Dziembowski, Faust, EUROCRYPT'14