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Discrete-log and elliptic-curve based cryptography

@ Previous lecture: discrete-log based group

e The multiplicative group Z

e ElGamal encryption: security proof
o Diffie-Hellman key exchange

e Schnorr signature scheme
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@ Previous lecture: discrete-log based group
e The multiplicative group Z
e ElGamal encryption: security proof
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@ Elliptic-Curve Cryptography
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@ Pairing-based cryptography
e Application to identity-based encryption.
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@ Icart’s function
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The multiplicative group Z,

@ Let p be a prime integer.
e The set Z; is the set of integers modulo p which are
invertible modulo p.
e The set Z; is a cyclic group of order p — 1 for the operation
of multiplication modulo p.
@ Generators of Zj, :
e There exists g € Zj such that any h € Z can be uniquely
written as h=g* (mod p)with0 < x < p—1.
e The integer x is called the discrete logarithm of hto the
base g, and denoted log, h.
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Elliptic Curves

@ Defines a new group different from Zj
e Security based on the Elliptic Curve Discrete Logarithm
Problem (ECDLP)
e Advantage: shorter keys
@ Elliptic-curve equation over Zp:
o y2=x3+ax+bwhere a,b € Z,
@ Group structure

e The set of points together with O can define a group
structure, where O is the point at infinity.
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EC: addition formula in char # 2,3

@ The group law is defined geometrically by point addition
and point doubling

@ Let P=(x1,y1) # O and Q = (X2, y2) # O. Then
P+ Q = (x3,y3) with:
X3 = )\2—X1—X2
Y3 = X1 —X3) =y
A{ Ly ifP#£Q
- 3x%+a .
5, TP=Q
@ P=(x1,1) #0 = —P=(x1,-1)
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Computing a multiple of a point

@ Double-and-add Algorithm:
input Pand d = (dp_1,...,dp)

output Q = dP

Q«+ P

for i from ¢ — 2 downto O do
Q<+ 2Q
ifdi=1then Q<+ Q+ P

output Q

@ Complexity of computing Q = dP
e O(log d) operations
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Computing the group order

@ Ordinary elliptic-curves
o y2=x3+ax+b (mod p)
o Let nbe the number of points, including O.
e We must have n = k - g where q is a large prime.
e then work in subgroup of order g.

@ Computing the group order n:

e Schoof’s algorithm.
e Schoof-Elkies-Atkin algorithm.
e or use standardized curves.
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EC El-Gamal encryption

@ Key generation

o Let G be an elliptic curve subgroup of prime order g and G
a generator of G.

o Letad Zq. Let H = aG.

e Public-key : (G, H). Private-key : o
@ Encryption of m:

o Letr& Zq

e Output ¢ = (rG, (rH)x ® m) where (rH)x denotes the x
coordinate of rH.

@ Decryption of ¢ = (Cy, ¢2)
e Output m= (aC1 )x ®d C
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Introduction to pairing-based cryptography

@ Pairing-based cryptography
@ Special bilinear map between two groups to build advanced
cryptographic protocols.
e Afunction e: G x G — G1 where G and G+ are groups of
prime order q.
e (9%, g°) =e(g,g9)® foralla,b c Z.
e Can be constructed from elliptic curves using the Weil or
Tate pairing.
@ Applications
e Identity-Based Encryption (IBE), short signatures,
broadcast encryption...
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Bilinear map

@ Bilinear map :

e Let G and Gy be groups of order q, for a large prime q. Let
g be a generator of G.
e Bilinear map: function e such that

e :GxG— Gy

@ Properties of bilinear map
e Bilinear: e(g?, g°) = e(g,g)? for all a,b € Z.
e Non-degenerate: e(g,g) # 1.
e Computable: there exists an efficient algorithm to compute
e(hy, ho) forany hy, h € G.
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Implementation of bilinear map

@ Weil pairing or Tate pairing over an elliptic curve.

o Let p be alarge prime with p =2 (mod 3). Consider the
Elliptic-Curve:
E/Fp:y? = x5 41

o The curve satisfies #E(F,) = p + 1.
@ Definition of the Weil Pairing

fr(Aq)

e(F.Q) = fa(Ap)

@ Computing the Weil pairing
e Using Miller's algorithm.
e Algorithm in O(log p) arithmetic operations mod p =>
O(log® p) elementary operations.
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Application of the elliptic-curve pairing

@ |dentity-Based Encryption (IBE)
e Concept invented in 1984 by Adi Shamir.
e First practical realization in 2001 by Boneh and Franklin,
based on bilinear pairing operation over an elliptic-curve.

@ Principle:
o IBE allows for a party to encrypt a message using the
recipient’s identity as the public-key.
e The corresponding private-key is provided by a central
authority.
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IBE

@ Alice sends an email to Bob using his identity as the

Key_server
A
2. Bob 3. Private-key
authenticates for Bob.
1. Alice encrypts with Tﬁ

public-key bob@b.com

Send secure ema|I
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IBE

@ Principle

e Alice encrypts her email using Bob’s email address
bob@b. com as the public-key.

o Bob receives the message. Bob contacts the key server,
authenticates and obtains his private key.

e Bob can use his private-key to decrypt the message.

e The private-key can be used to decrypt any future message
sent to Bob by Alice or any other user.

@ Advantages

e Avoids the need to distribute PK certificates.
e Users can use their email address as their identity

@ Drawback
e The key server can decrypt any communication
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Definition of IBE

@ Setup
e Output: system public parameters params, and private
master-key master-key.
@ Keygen
e Input: params, master-key and identity v.
e Output: private key d, for v.
@ Encrypt
e Input: message m, identity v and params.
o Output: ciphertext c.
@ Decrypt

e Input: params, ciphertext ¢ and private-key d,.
e Output: plaintext m.
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The Boneh-Franklin IBE scheme

@ We describe the basic scheme, which achieves only CPA

security
e Based on bilinear map: e(g?, h°) = e(g, h)#
@ Setup
e Let G = (g) of prime order p. Let H; : {0,1}* — G a hash
function.

e Generate random a € Z,. Let h = g2.
e Public: (g, h). Secret: a.

@ Keygen
o Let v be an identity. Private-key d, = H;(v)?
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Boneh-Franklin

@ Encryption
e Generate a random r € Zp.

C= (g', ma He(e(Hs(v), h)’))

@ Decryption
e To decrypt C = (¢1, ¢2) using d, = H(v)?3, compute:

m= Hg(e(dv, C1)) Xe)

@ Why decryption works
e Using the bilinearity of e

e(Hi(v),h)" = e(Hi(v),g%)" = e(Hi(v)?,9") = e(dy, ¢1)
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Security of Boneh-Franklin

@ The security of the Boneh-Franklin scheme can be proven
secure
@ in the random oracle model
e under the BDH assumption.
@ BDH assumption
e BDH problem: given (g, g%, g°, g°), output e(g, g)%°.
o BDH assumption: there is no efficient algorithm that solves
the BDH problem.
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Hashing into elliptic-curves

@ Hashing into Elliptic Curves

e Boneh-Franklin IBE: Qs = H;(id) on the curve.

e Password based authentication protocols (SPEKE, PAK).
@ Boneh-Franklin: super-singular curve

e Special curve with special operation: pairing.
e Hashing is easy.
o But larger parameters are required.

@ How to hash into ordinary curves ?
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SPEKE

@ Simple Password Exponential Key Exchange (Jablon,
1996)

o Let pw be a password shared by Alice and Bob

o Let E be the subgroup of an elliptic curve of order q.
@ Protocol
Alice sends A = a.H(pw) to Bob, where a < Z4
Bob sends B = b.H(pw) to Alice, where b « Zq
Alice computes K = a.B = ab.H(pw)
Bob computes K = b.A = ab.H(pw)
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Try and Increment

@ Elliptic curve:
E:y?=x3+ax+b (modp)

@ Try and Increment:
Input: u an integer. We can take u = H(m).
Output: Q, a point of E, p(Fp).
@Q Fori=0tok—1
Q Setx=u+1i
@ If x® + ax + bis a quadratic residue in Fp, then return
Q= (x,(x* +ax + b)'"/?)
@ end For
© Return L
@ Timing attack
e The number of trials varies with the input, timing
side-channel leaks information about the input
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Supersingular Elliptic Curve

@ Supersingular curve:

E:y?=x34+1 (mod p)
e with p=2 (mod 3)
e It has p+ 1 points.
@ Hashing into E:
e Lety =H(m)
o Letx = (y2—-1)"/3
e Return P = (x,y)
@ p must be large because of MOV attack (at least 512 bits)
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Hashing into Ordinary Curves

@ Elliptic curve:

E:y?=x3+ax+b (modp)
@ Icart’s function
Published by Thomas Icart at CRYPTO 2009
Deterministic function into E
Requires p =2 (mod 3)
Essentially one exponentiation in IF,,
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Hashing into Ordinary Curves

@ Elliptic curve:

E:y?=x3+ax+b (modp)
@ Icart’s function
e Published by Thomas Icart at CRYPTO 2009
e Deterministic function into E
e Requires p =2 (mod 3)
o Essentially one exponentiation in I,
@ Shallue-Woestijne-Ulas algorithm
e Deterministic algorithm into E (but requires a test)
e Does not require p =2 (mod 3)
o Essentially one exponentiation in I,
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Icart’s Function

@ Elliptic curve with p =2 (mod 3):

Eop:y?=x]+ax+b (modp)
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Icart’s Function

@ Elliptic curve with p =2 (mod 3):

Eop:y?=x]+ax+b (modp)
@ Icart’s function: (we can have u = H(m))

fa,b:Fp —> Ea,b
u — (x,y)

6\ (20—1)/3 2
X = (vz—b—u> +%
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Why it Works

@ E,p:y?=x%+ax+b (mod p)
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Why it Works

@ E,p:y?=x%+ax+b (mod p)
@ Let y = ux + v with u, v two parameters
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Why it Works

@ E,p:y?=x%+ax+b (mod p)
@ Let y = ux + v with u, v two parameters
@ u’x?+2uvx+vZ=x3+ax+b
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Why it Works

@ E,p:y?=x%+ax+b (mod p)

@ Let y = ux + v with u, v two parameters
@ u’x?+2uvx+vZ=x3+ax+b

o x3—uPx2+(a-2uv)x+b—-v2=0
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Why it Works

@ E,p:y?=x%+ax+b (mod p)

@ Let y = ux + v with u, v two parameters

@ u’x?+2uvx+vZ=x3+ax+b

o x3—uPx2+(a-2uv)x+b—-v2=0

o (x —u?/3)% + x(a—2uv — u*/3) =v? - b—ub/27
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Why it Works

@ E,p:y?=x%+ax+b (mod p)

@ Let y = ux + v with u, v two parameters

o ’x®+2uvx+vi=x3+ax+b

o x3—uPx2+(a-2uv)x+b—-v2=0
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@ Wewant: a—2uv —u*/3=0
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Why it Works

@ E,p:y?=x%+ax+b (mod p)
@ Let y = ux + v with u, v two parameters
@ u’x?+2uvx+vZ=x3+ax+b
o x3—uPx2+(a-2uv)x+b—-v2=0
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Why it Works

@ E,p:y?=x%+ax+b (mod p)
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Conclusion

@ Discrete-logarithm based cryptography

e Foundation of many classical protocols (ElGamal,
Diffie-Hellman, Schnorr).

@ Elliptic-curve cryptography
e Provides similar security with much shorter keys, based on
the ECDLP assumption.

@ Pairing-based cryptography
e Enables new applications such as Identity-Based
Encryption (IBE).

@ Hashing into elliptic curves
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