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Discrete-log and elliptic-curve based cryptography

Previous lecture: discrete-log based group
The multiplicative group Z∗

p
ElGamal encryption: security proof
Diffie-Hellman key exchange
Schnorr signature scheme

Elliptic-Curve Cryptography
Defines an alternative group, with generally shorter keys.
El-Gamal over ECC

Pairing-based cryptography
Application to identity-based encryption.

How to hash into elliptic-curves.
Icart’s function
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The multiplicative group Z∗p

Let p be a prime integer.
The set Z∗

p is the set of integers modulo p which are
invertible modulo p.
The set Z∗

p is a cyclic group of order p − 1 for the operation
of multiplication modulo p.

Generators of Z∗
p :

There exists g ∈ Z∗
p such that any h ∈ Z∗

p can be uniquely
written as h = gx (mod p) with 0 ≤ x < p − 1.
The integer x is called the discrete logarithm of h to the
base g, and denoted logg h.
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Elliptic Curves

Defines a new group different from Z∗
p

Security based on the Elliptic Curve Discrete Logarithm
Problem (ECDLP)
Advantage: shorter keys

Elliptic-curve equation over Zp:
y2 = x3 + ax + b where a,b ∈ Zp

Group structure
The set of points together with O can define a group
structure, where O is the point at infinity.
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EC: addition formula in char ̸= 2,3

The group law is defined geometrically by point addition
and point doubling
Let P = (x1, y1) ̸= O and Q = (x2, y2) ̸= O. Then
P + Q = (x3, y3) with:

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

λ =


y2−y1
x2−x1

, if P ̸= Q
3x2

1+a
2y1

, if P = Q

P = (x1, y1) ̸= O ⇒ −P = (x1,−y1)
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Computing a multiple of a point

Double-and-add Algorithm:
input P and d = (dℓ−1, . . . ,d0)
output Q = dP

Q ← P
for i from ℓ− 2 downto 0 do

Q ← 2Q
if di = 1 then Q ← Q + P

output Q

Complexity of computing Q = dP
O(log d) operations
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Computing the group order

Ordinary elliptic-curves
y2 = x3 + ax + b (mod p)
Let n be the number of points, including O.
We must have n = k · q where q is a large prime.
then work in subgroup of order q.

Computing the group order n:
Schoof’s algorithm.
Schoof-Elkies-Atkin algorithm.
or use standardized curves.
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EC El-Gamal encryption

Key generation
Let G be an elliptic curve subgroup of prime order q and G
a generator of G.
Let α R← Zq . Let H = αG.
Public-key : (G,H). Private-key : α

Encryption of m :

Let r R← Zq
Output c = (rG, (rH)x ⊕m) where (rH)x denotes the x
coordinate of rH.

Decryption of c = (C1, c2)

Output m = (αC1)x ⊕ c2
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Introduction to pairing-based cryptography

Pairing-based cryptography
Special bilinear map between two groups to build advanced
cryptographic protocols.
A function e : G×G→ G1 where G and G1 are groups of
prime order q.
e(ga,gb) = e(g,g)ab for all a,b ∈ Z.
Can be constructed from elliptic curves using the Weil or
Tate pairing.

Applications
Identity-Based Encryption (IBE), short signatures,
broadcast encryption...
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Bilinear map

Bilinear map :
Let G and G1 be groups of order q, for a large prime q. Let
g be a generator of G.
Bilinear map: function e such that

e : G×G→ G1

Properties of bilinear map
Bilinear: e(ga,gb) = e(g,g)ab for all a,b ∈ Z.
Non-degenerate: e(g,g) ̸= 1.
Computable: there exists an efficient algorithm to compute
e(h1,h2) for any h1,h2 ∈ G.
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Implementation of bilinear map

Weil pairing or Tate pairing over an elliptic curve.
Let p be a large prime with p = 2 (mod 3). Consider the
Elliptic-Curve:

E/Fp : y2 = x3 + 1

The curve satisfies #E(Fp) = p + 1.

Definition of the Weil Pairing

e(P,Q) =
fP(AQ)

fQ(AP)

Computing the Weil pairing
Using Miller’s algorithm.
Algorithm in O(log p) arithmetic operations mod p =>
O(log3 p) elementary operations.
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Application of the elliptic-curve pairing

Identity-Based Encryption (IBE)
Concept invented in 1984 by Adi Shamir.
First practical realization in 2001 by Boneh and Franklin,
based on bilinear pairing operation over an elliptic-curve.

Principle:
IBE allows for a party to encrypt a message using the
recipient’s identity as the public-key.
The corresponding private-key is provided by a central
authority.
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IBE

Alice sends an email to Bob using his identity as the
public-key.
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IBE

Principle
Alice encrypts her email using Bob’s email address
bob@b.com as the public-key.
Bob receives the message. Bob contacts the key server,
authenticates and obtains his private key.
Bob can use his private-key to decrypt the message.
The private-key can be used to decrypt any future message
sent to Bob by Alice or any other user.

Advantages
Avoids the need to distribute PK certificates.
Users can use their email address as their identity

Drawback
The key server can decrypt any communication
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Definition of IBE

Setup
Output: system public parameters params, and private
master-key master-key.

Keygen
Input: params, master-key and identity v .
Output: private key dv for v .

Encrypt
Input: message m, identity v and params.
Output: ciphertext c.

Decrypt
Input: params, ciphertext c and private-key dv .
Output: plaintext m.
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The Boneh-Franklin IBE scheme

We describe the basic scheme, which achieves only CPA
security

Based on bilinear map: e(ga,hb) = e(g,h)ab

Setup
Let G = ⟨g⟩ of prime order p. Let H1 : {0,1}∗ → G a hash
function.
Generate random a ∈ Zp. Let h = ga.
Public: (g,h). Secret: a.

Keygen
Let v be an identity. Private-key dv = H1(v)a
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Boneh-Franklin

Encryption
Generate a random r ∈ Zp.

C =
(

gr , m ⊕ H2
(
e(H1(v),h)r))

Decryption
To decrypt C = (c1, c2) using dv = H(v)a, compute:

m = H2
(
e(dv , c1)

)
⊕ c2

Why decryption works
Using the bilinearity of e

e(H1(v),h)r = e(H1(v),ga)r = e(H1(v)a,gr ) = e(dv , c1)
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Security of Boneh-Franklin

The security of the Boneh-Franklin scheme can be proven
secure

in the random oracle model
under the BDH assumption.

BDH assumption
BDH problem: given (g,ga,gb,gc), output e(g,g)abc .
BDH assumption: there is no efficient algorithm that solves
the BDH problem.
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Hashing into elliptic-curves

Hashing into Elliptic Curves
Boneh-Franklin IBE: Qid = H1(id) on the curve.
Password based authentication protocols (SPEKE, PAK).

Boneh-Franklin: super-singular curve
Special curve with special operation: pairing.
Hashing is easy.
But larger parameters are required.

How to hash into ordinary curves ?
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SPEKE

Simple Password Exponential Key Exchange (Jablon,
1996)

Let pw be a password shared by Alice and Bob
Let E be the subgroup of an elliptic curve of order q.

Protocol
Alice sends A = a.H(pw) to Bob, where a← Zq
Bob sends B = b.H(pw) to Alice, where b ← Zq
Alice computes K = a.B = ab.H(pw)
Bob computes K = b.A = ab.H(pw)
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Try and Increment

Elliptic curve:

E : y2 = x3 + ax + b (mod p)

Try and Increment:
Input: u an integer. We can take u = H(m).
Output: Q, a point of Ea,b(Fp).

1 For i = 0 to k − 1
1 Set x = u + i
2 If x3 + ax + b is a quadratic residue in Fp, then return

Q = (x , (x3 + ax + b)1/2)

2 end For
3 Return ⊥

Timing attack
The number of trials varies with the input, timing
side-channel leaks information about the input
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Supersingular Elliptic Curve

Supersingular curve:

E : y2 = x3 + 1 (mod p)

with p = 2 (mod 3)
It has p + 1 points.

Hashing into E :
Let y = H(m)
Let x = (y2 − 1)1/3

Return P = (x , y)

p must be large because of MOV attack (at least 512 bits)
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Hashing into Ordinary Curves

Elliptic curve:

E : y2 = x3 + ax + b (mod p)
Icart’s function

Published by Thomas Icart at CRYPTO 2009
Deterministic function into E
Requires p = 2 (mod 3)
Essentially one exponentiation in Fp

Shallue-Woestijne-Ulas algorithm
Deterministic algorithm into E (but requires a test)
Does not require p = 2 (mod 3)
Essentially one exponentiation in Fp
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Icart’s Function

Elliptic curve with p = 2 (mod 3):

Ea,b : y2 = x3 + ax + b (mod p)

Icart’s function: (we can have u = H(m))

fa,b : Fp 7→ Ea,b

u 7→ (x , y)

x =

(
v2 − b − u6

27

)(2p−1)/3

+
u2

3
y = ux + v

v =
3a− u4

6u
.
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Why it Works

Ea,b : y2 = x3 + ax + b (mod p)
Let y = ux + v with u, v two parameters
u2x2 + 2uvx + v2 = x3 + ax + b
x3 − u2x2 + (a− 2uv)x + b − v2 = 0
(x − u2/3)3 + x(a− 2uv − u4/3) = v2 − b − u6/27
We want: a− 2uv − u4/3 = 0

We take v = (3a− u4)/(6u)

We get: (x − u2/3)3 = v2 − b − u6/27

x =

(
v2 − b − u6

27

)1/3

+
u2

3
y = ux + v
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Conclusion

Discrete-logarithm based cryptography
Foundation of many classical protocols (ElGamal,
Diffie-Hellman, Schnorr).

Elliptic-curve cryptography
Provides similar security with much shorter keys, based on
the ECDLP assumption.

Pairing-based cryptography
Enables new applications such as Identity-Based
Encryption (IBE).

Hashing into elliptic curves
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