Jean-Sébastien Coron

University of Luxembourg

April 26, 2025

Jean-Sébastien Coron Discrete-log and elliptic-curve based cryptography

・ 回 ト ・ ヨ ト ・ ヨ ト

ъ

- Previous lecture: discrete-log based group
 - The multiplicative group \mathbb{Z}_{p}^{*}
 - ElGamal encryption: security proof
 - Diffie-Hellman key exchange
 - Schnorr signature scheme
- Elliptic-Curve Cryptography
 - Defines an alternative group, with generally shorter keys.
 - El-Gamal over ECC
- Pairing-based cryptography
 - Application to identity-based encryption.
- How to hash into elliptic-curves.
 - Icart's function

ヘロト 人間 ト ヘヨト ヘヨト

- Previous lecture: discrete-log based group
 - The multiplicative group \mathbb{Z}_{p}^{*}
 - ElGamal encryption: security proof
 - Diffie-Hellman key exchange
 - Schnorr signature scheme
- Elliptic-Curve Cryptography
 - Defines an alternative group, with generally shorter keys.
 - EI-Gamal over ECC
- Pairing-based cryptography
 - Application to identity-based encryption.
- How to hash into elliptic-curves.
 - Icart's function

ヘロト ヘアト ヘビト ヘビト

- Previous lecture: discrete-log based group
 - The multiplicative group \mathbb{Z}_{p}^{*}
 - ElGamal encryption: security proof
 - Diffie-Hellman key exchange
 - Schnorr signature scheme
- Elliptic-Curve Cryptography
 - Defines an alternative group, with generally shorter keys.
 - EI-Gamal over ECC
- Pairing-based cryptography
 - Application to identity-based encryption.
- How to hash into elliptic-curves.
 - Icart's function

ヘロト ヘアト ヘビト ヘビト

- Previous lecture: discrete-log based group
 - The multiplicative group \mathbb{Z}_p^*
 - ElGamal encryption: security proof
 - Diffie-Hellman key exchange
 - Schnorr signature scheme
- Elliptic-Curve Cryptography
 - Defines an alternative group, with generally shorter keys.
 - El-Gamal over ECC
- Pairing-based cryptography
 - Application to identity-based encryption.
- How to hash into elliptic-curves.
 - Icart's function

・ 同 ト ・ 臣 ト ・ 臣 ト …

- Let *p* be a prime integer.
 - The set Z^{*}_p is the set of integers modulo *p* which are invertible modulo *p*.
 - The set Z^{*}_p is a cyclic group of order p − 1 for the operation of multiplication modulo p.
- Generators of \mathbb{Z}_p^* :
 - There exists $g \in \mathbb{Z}_p^*$ such that any $h \in \mathbb{Z}_p^*$ can be uniquely written as $h = g^x \pmod{p}$ with $0 \le x .$
 - The integer *x* is called the *discrete logarithm* of *h* to the base *g*, and denoted log_{*g*} *h*.

イロト イポト イヨト イヨト

- Defines a new group different from \mathbb{Z}_p^*
 - Security based on the Elliptic Curve Discrete Logarithm Problem (ECDLP)
 - Advantage: shorter keys
- Elliptic-curve equation over \mathbb{Z}_p :

•
$$y^2 = x^3 + ax + b$$
 where $a, b \in \mathbb{Z}_p$

- Group structure
 - The set of points together with \mathcal{O} can define a group structure, where \mathcal{O} is the point at infinity.

イロト イ理ト イヨト イヨト

EC: addition formula in char \neq 2,3

- The group law is defined geometrically by point addition and point doubling
- Let $P = (x_1, y_1) \neq \mathcal{O}$ and $Q = (x_2, y_2) \neq \mathcal{O}$. Then $P + Q = (x_3, y_3)$ with:

$$x_3 = \lambda^2 - x_1 - x_2$$

$$y_3 = \lambda(x_1 - x_3) - y_1$$

$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1}, & \text{if } P \neq Q \\ \frac{3x_1^2 + a}{2y_1}, & \text{if } P = Q \end{cases}$$

$$P = (x_1, y_1) \neq \mathcal{O} \Rightarrow -P = (x_1, -y_1)$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Computing a multiple of a point

• Double-and-add Algorithm: input *P* and $d = (d_{\ell-1}, \dots, d_0)$ output Q = dP $Q \leftarrow P$ for *i* from $\ell - 2$ downto 0 do $Q \leftarrow 2Q$ if $d_i = 1$ then $Q \leftarrow Q + P$ output Q

- Complexity of computing Q = dP
 - $\mathcal{O}(\log d)$ operations

・ 同 ト ・ ヨ ト ・ ヨ ト …

Computing the group order

Ordinary elliptic-curves

- $y^2 = x^3 + ax + b \pmod{p}$
- Let *n* be the number of points, including \mathcal{O} .
- We must have $n = k \cdot q$ where q is a large prime.
- then work in subgroup of order q.
- Computing the group order *n*:
 - Schoof's algorithm.
 - Schoof-Elkies-Atkin algorithm.
 - or use standardized curves.

一回 ト イヨト イヨト

EC El-Gamal encryption

- Key generation
 - Let G be an elliptic curve subgroup of prime order q and G a generator of G.
 - Let $\alpha \stackrel{R}{\leftarrow} \mathbb{Z}_q$. Let $H = \alpha G$.
 - Public-key : (G, H). Private-key : α
- Encryption of *m* :

• Let
$$r \stackrel{R}{\leftarrow} \mathbb{Z}_q$$

- Output $c = (rG, (rH)_x \oplus m)$ where $(rH)_x$ denotes the *x* coordinate of *rH*.
- Decryption of $c = (C_1, c_2)$
 - Output $m = (\alpha C_1)_x \oplus c_2$

・聞き ・ヨト ・ヨト

Introduction to pairing-based cryptography

- Pairing-based cryptography
 - Special bilinear map between two groups to build advanced cryptographic protocols.
 - A function $e : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_1$ where \mathbb{G} and \mathbb{G}_1 are groups of prime order q.
 - $e(g^a,g^b) = e(g,g)^{ab}$ for all $a,b \in \mathbb{Z}$.
 - Can be constructed from elliptic curves using the Weil or Tate pairing.
- Applications
 - Identity-Based Encryption (IBE), short signatures, broadcast encryption...

<ロト < 同ト < 回ト < 回ト = 三

- Bilinear map :
 - Let G and G₁ be groups of order *q*, for a large prime *q*. Let *g* be a generator of G.
 - Bilinear map: function e such that

 $e : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_1$

- Properties of bilinear map
 - Bilinear: $e(g^a, g^b) = e(g, g)^{ab}$ for all $a, b \in \mathbb{Z}$.
 - Non-degenerate: $e(g, g) \neq 1$.
 - Computable: there exists an efficient algorithm to compute $e(h_1, h_2)$ for any $h_1, h_2 \in \mathbb{G}$.

ヘロト ヘアト ヘビト ヘビト

Implementation of bilinear map

- Weil pairing or Tate pairing over an elliptic curve.
 - Let *p* be a large prime with *p* = 2 (mod 3). Consider the Elliptic-Curve:

$$E/\mathbb{F}_p: y^2 = x^3 + 1$$

- The curve satisfies $\#E(\mathbb{F}_p) = p + 1$.
- Definition of the Weil Pairing

$$e(P,Q) = rac{f_P(\mathcal{A}_Q)}{f_Q(\mathcal{A}_P)}$$

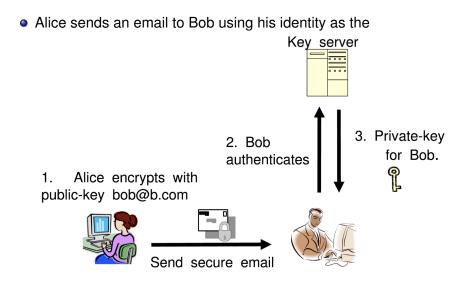
- Computing the Weil pairing
 - Using Miller's algorithm.
 - Algorithm in $\mathcal{O}(\log p)$ arithmetic operations mod $p \Rightarrow \mathcal{O}(\log^3 p)$ elementary operations.

イロン 不得 とくほ とくほ とう

Application of the elliptic-curve pairing

- Identity-Based Encryption (IBE)
 - Concept invented in 1984 by Adi Shamir.
 - First practical realization in 2001 by Boneh and Franklin, based on bilinear pairing operation over an elliptic-curve.
- Principle:
 - IBE allows for a party to encrypt a message using the recipient's identity as the public-key.
 - The corresponding private-key is provided by a central authority.

イロト イ理ト イヨト イヨト



Principle

- Alice encrypts her email using Bob's email address bob@b.com as the public-key.
- Bob receives the message. Bob contacts the key server, authenticates and obtains his private key.
- Bob can use his private-key to decrypt the message.
- The private-key can be used to decrypt any future message sent to Bob by Alice or any other user.
- Advantages
 - Avoids the need to distribute PK certificates.
 - Users can use their email address as their identity
- Drawback
 - The key server can decrypt any communication

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition of IBE

- Setup
 - Output: system public parameters *params*, and private master-key *master-key*.
- Keygen
 - Input: params, master-key and identity v.
 - Output: private key d_v for v.
- Encrypt
 - Input: message *m*, identity *v* and *params*.
 - Output: ciphertext c.
- Decrypt
 - Input: params, ciphertext c and private-key d_v.
 - Output: plaintext m.

ヘロト 人間 とくほ とくほ とう

1

The Boneh-Franklin IBE scheme

- We describe the basic scheme, which achieves only CPA security
 - Based on bilinear map: $e(g^a, h^b) = e(g, h)^{ab}$
- Setup
 - Let $\mathbb{G} = \langle g \rangle$ of prime order *p*. Let $H_1 : \{0, 1\}^* \to \mathbb{G}$ a hash function.
 - Generate random $a \in \mathbb{Z}_p$. Let $h = g^a$.
 - Public: (g, h). Secret: a.
- Keygen
 - Let v be an identity. Private-key $d_v = H_1(v)^a$

イロト イポト イヨト イヨト 一臣

- Encryption
 - Generate a random $r \in \mathbb{Z}_p$.

$$C = \left(g^r, \ m \oplus H_2(e(H_1(v), h)^r)\right)$$

Decryption

• To decrypt $C = (c_1, c_2)$ using $d_v = H(v)^a$, compute:

$$m = H_2(e(d_v, c_1)) \oplus c_2$$

- Why decryption works
 - Using the bilinearity of e

$$e(H_1(v),h)^r = e(H_1(v),g^a)^r = e(H_1(v)^a,g^r) = e(d_v,c_1)$$

ヘロト ヘアト ヘビト ヘビト

1

- The security of the Boneh-Franklin scheme can be proven secure
 - in the random oracle model
 - under the BDH assumption.
- BDH assumption
 - BDH problem: given (g, g^a, g^b, g^c) , output $e(g, g)^{abc}$.
 - BDH assumption: there is no efficient algorithm that solves the BDH problem.

・ 聞 と く ヨ と く ヨ と …

Hashing into elliptic-curves

Hashing into Elliptic Curves

- Boneh-Franklin IBE: $Q_{id} = H_1(id)$ on the curve.
- Password based authentication protocols (SPEKE, PAK).
- Boneh-Franklin: super-singular curve
 - Special curve with special operation: pairing.
 - Hashing is easy.
 - But larger parameters are required.
- How to hash into ordinary curves ?

米間 とくほとくほど

SPEKE

- Simple Password Exponential Key Exchange (Jablon, 1996)
 - Let pw be a password shared by Alice and Bob
 - Let *E* be the subgroup of an elliptic curve of order *q*.
- Protocol
 - Alice sends A = a.H(pw) to Bob, where $a \leftarrow \mathbb{Z}_q$
 - Bob sends B = b.H(pw) to Alice, where $b \leftarrow \mathbb{Z}_q$
 - Alice computes K = a.B = ab.H(pw)
 - Bob computes K = b.A = ab.H(pw)

イロト イ理ト イヨト イヨト

Try and Increment

Elliptic curve:

$$E: y^2 = x^3 + ax + b \pmod{p}$$

 Try and Increment: Input: *u* an integer. We can take *u* = *H*(*m*). Output: *Q*, a point of *E*_{*a*,*b*}(F_{*p*}).

$$I Set x = u + i$$

- If $x^3 + ax + b$ is a quadratic residue in \mathbb{F}_p , then return $Q = (x, (x^3 + ax + b)^{1/2})$
- end For
- 3 Return ⊥
- Timing attack
 - The number of trials varies with the input, timing side-channel leaks information about the input

・聞き ・ヨト ・ヨト

• Supersingular curve:

$$E: y^2 = x^3 + 1 \pmod{p}$$

- with *p* = 2 (mod 3)
- It has p + 1 points.
- Hashing into E:

• Let
$$y = H(\underline{m})$$

• Let
$$x = (y^2 - 1)^{1/3}$$

- Return P = (x, y)
- *p* must be large because of MOV attack (at least 512 bits)

Hashing into Ordinary Curves

Elliptic curve:

$$E: y^2 = x^3 + ax + b \pmod{p}$$

Icart's function

- Published by Thomas Icart at CRYPTO 2009
- Deterministic function into E
- Requires *p* = 2 (mod 3)
- Essentially one exponentiation in 𝔽_p
- Shallue-Woestijne-Ulas algorithm
 - Deterministic algorithm into E (but requires a test)
 - Does not require $p = 2 \pmod{3}$
 - Essentially one exponentiation in 𝔽_p

イロト イポト イヨト イヨト

Hashing into Ordinary Curves

Elliptic curve:

$$E: y^2 = x^3 + ax + b \pmod{p}$$

- Icart's function
 - Published by Thomas Icart at CRYPTO 2009
 - Deterministic function into E
 - Requires *p* = 2 (mod 3)
 - Essentially one exponentiation in 𝔽_p
- Shallue-Woestijne-Ulas algorithm
 - Deterministic algorithm into E (but requires a test)
 - Does not require $p = 2 \pmod{3}$
 - Essentially one exponentiation in 𝔽_ρ

・ 同 ト ・ ヨ ト ・ ヨ ト

Icart's Function

• Elliptic curve with $p = 2 \pmod{3}$:

$$E_{a,b}: y^2 = x^3 + ax + b \pmod{p}$$

• Icart's function: (we can have u = H(m))

$$f_{a,b}: \mathbb{F}_p \quad \mapsto \quad E_{a,b}$$
$$U \quad \mapsto \quad (X, Y)$$

$$x = \left(v^{2} - b - \frac{u^{6}}{27}\right)^{(2p-1)/3} + \frac{u^{2}}{3}$$

$$y = ux + v$$

$$v = \frac{3a - u^{4}}{2}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Icart's Function

• Elliptic curve with $p = 2 \pmod{3}$:

$$E_{a,b}: y^2 = x^3 + ax + b \pmod{p}$$

• Icart's function: (we can have u = H(m))

$$f_{a,b}: \mathbb{F}_p \mapsto E_{a,b}$$

 $u \mapsto (x, y)$

$$x = \left(v^{2} - b - \frac{u^{6}}{27}\right)^{(2p-1)/3} + \frac{u^{2}}{3}$$

$$y = ux + v$$

$$v = \frac{3a - u^{4}}{6u}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

•
$$E_{a,b}: y^2 = x^3 + ax + b \pmod{p}$$

• Let $y = ux + v$ with u, v two parameters
• $u^2x^2 + 2uvx + v^2 = x^3 + ax + b$
• $x^3 - u^2x^2 + (a - 2uv)x + b - v^2 = 0$
• $(x - u^2/3)^3 + x(a - 2uv - u^4/3) = v^2 - b - u^6/27$
• We want: $a - 2uv - u^4/3 = 0$
• We take $v = (3a - u^4)/(6u)$
• We get: $(x - u^2/3)^3 = v^2 - b - u^6/27$

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{1/3} + \frac{u^2}{3}$$
$$y = ux + v$$

イロン イロン イヨン イヨン

■ のへで

•
$$E_{a,b}: y^2 = x^3 + ax + b \pmod{p}$$

• Let y = ux + v with u, v two parameters

•
$$u^2x^2 + 2uvx + v^2 = x^3 + ax + b$$

•
$$x^3 - u^2 x^2 + (a - 2uv)x + b - v^2 = 0$$

•
$$(x - u^2/3)^3 + x(a - 2uv - u^4/3) = v^2 - b - u^6/27$$

• We want:
$$a - 2uv - u^4/3 = 0$$

• We take
$$v = (3a - u^4)/(6u)$$

• We get:
$$(x - u^2/3)^3 = v^2 - b - u^6/27$$

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{1/3} + \frac{u^2}{3}$$
$$y = ux + v$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

•
$$E_{a,b}: y^2 = x^3 + ax + b \pmod{p}$$

• Let $y = ux + v$ with u, v two parameters
• $u^2x^2 + 2uvx + v^2 = x^3 + ax + b$
• $x^3 - u^2x^2 + (a - 2uv)x + b - v^2 = 0$
• $(x - u^2/3)^3 + x(a - 2uv - u^4/3) = v^2 - b - u^6/27$
• We want: $a - 2uv - u^4/3 = 0$
• We take $v = (3a - u^4)/(6u)$
• We get: $(x - u^2/3)^3 = v^2 - b - u^6/27$

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{1/3} + \frac{u^2}{3}$$
$$y = ux + v$$

イロン イロン イヨン イヨン

■ のへで

•
$$E_{a,b}: y^2 = x^3 + ax + b \pmod{p}$$

• Let $y = ux + v$ with u, v two parameters
• $u^2x^2 + 2uvx + v^2 = x^3 + ax + b$
• $x^3 - u^2x^2 + (a - 2uv)x + b - v^2 = 0$
• $(x - u^2/3)^3 + x(a - 2uv - u^4/3) = v^2 - b - u^6/27$
• We want: $a - 2uv - u^4/3 = 0$
• We take $v = (3a - u^4)/(6u)$
• We get: $(x - u^2/3)^3 = v^2 - b - u^6/27$

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{1/3} + \frac{u^2}{3}$$
$$y = ux + v$$

•
$$E_{a,b}: y^2 = x^3 + ax + b \pmod{p}$$

• Let $y = ux + v$ with u, v two parameters
• $u^2x^2 + 2uvx + v^2 = x^3 + ax + b$
• $x^3 - u^2x^2 + (a - 2uv)x + b - v^2 = 0$
• $(x - u^2/3)^3 + x(a - 2uv - u^4/3) = v^2 - b - u^6/27$
• We want: $a - 2uv - u^4/3 = 0$
• We take $v = (3a - u^4)/(6u)$
• We get: $(x - u^2/3)^3 = v^2 - b - u^6/27$

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{1/3} + \frac{u^2}{3}$$
$$y = ux + v$$

•
$$E_{a,b}: y^2 = x^3 + ax + b \pmod{p}$$

• Let $y = ux + v$ with u, v two parameters
• $u^2x^2 + 2uvx + v^2 = x^3 + ax + b$
• $x^3 - u^2x^2 + (a - 2uv)x + b - v^2 = 0$
• $(x - u^2/3)^3 + x(a - 2uv - u^4/3) = v^2 - b - u^6/27$
• We want: $a - 2uv - u^4/3 = 0$
• We take $v = (3a - u^4)/(6u)$
• We get: $(x - u^2/3)^3 = v^2 - b - u^6/27$

$$x = \left(v^2 - b - \frac{u^6}{27} \right)^{1/3} + \frac{u^2}{3} y = ux + v$$

•
$$E_{a,b}: y^2 = x^3 + ax + b \pmod{p}$$

• Let $y = ux + v$ with u, v two parameters
• $u^2x^2 + 2uvx + v^2 = x^3 + ax + b$
• $x^3 - u^2x^2 + (a - 2uv)x + b - v^2 = 0$
• $(x - u^2/3)^3 + x(a - 2uv - u^4/3) = v^2 - b - u^6/27$
• We want: $a - 2uv - u^4/3 = 0$
• We take $v = (3a - u^4)/(6u)$
• We get: $(x - u^2/3)^3 = v^2 - b - u^6/27$

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{1/3} + \frac{u^2}{3}$$
$$y = ux + v$$

イロン イロン イヨン イヨン

■ のへで

•
$$E_{a,b}: y^2 = x^3 + ax + b \pmod{p}$$

• Let $y = ux + v$ with u, v two parameters
• $u^2x^2 + 2uvx + v^2 = x^3 + ax + b$
• $x^3 - u^2x^2 + (a - 2uv)x + b - v^2 = 0$
• $(x - u^2/3)^3 + x(a - 2uv - u^4/3) = v^2 - b - u^6/27$
• We want: $a - 2uv - u^4/3 = 0$
• We take $v = (3a - u^4)/(6u)$
• We get: $(x - u^2/3)^3 = v^2 - b - u^6/27$

$$x = \left(v^2 - b - \frac{u^6}{27} \right)^{1/3} + \frac{u^2}{3} y = ux + v$$

イロン イロン イヨン イヨン

■ のへで

•
$$E_{a,b}: y^2 = x^3 + ax + b \pmod{p}$$

• Let $y = ux + v$ with u, v two parameters
• $u^2x^2 + 2uvx + v^2 = x^3 + ax + b$
• $x^3 - u^2x^2 + (a - 2uv)x + b - v^2 = 0$
• $(x - u^2/3)^3 + x(a - 2uv - u^4/3) = v^2 - b - u^6/27$
• We want: $a - 2uv - u^4/3 = 0$
• We take $v = (3a - u^4)/(6u)$
• We get: $(x - u^2/3)^3 = v^2 - b - u^6/27$

$$x = \left(v^2 - b - \frac{u}{27}\right) + \frac{u}{3}$$
$$y = ux + v$$

Conclusion

- Discrete-logarithm based cryptography
 - Foundation of many classical protocols (ElGamal, Diffie-Hellman, Schnorr).
- Elliptic-curve cryptography
 - Provides similar security with much shorter keys, based on the ECDLP assumption.
- Pairing-based cryptography
 - Enables new applications such as Identity-Based Encryption (IBE).
- Hashing into elliptic curves

イロト イ押ト イヨト イヨトー