
Algorithmic Number Theory and Public-key
Cryptography

Discrete-log based cryptography

Jean-Sébastien Coron

University of Luxembourg

April 20, 2025

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Summary

Algorithmic number theory.

Generators of Zp

The discrete-log problem

Discrete-log based cryptosystems

Diffie-Hellmann key exchange
ElGamal encryption: security proof
Schnorr signature scheme

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Groups

Definitions

A group G is finite if |G | is finite. The number of elements in
a finite group is called its order.
A group G is cyclic if there is an element g ∈ G such that for
each h ∈ G there is an integer i such that h = g i . Such an
element g is called a generator of G .
Let G be a finite group and a ∈ G . The order of a is definded
to be the least positive integer t such that at = 1.

Facts

Let G be finite group and a ∈ G . The order of a divides the
order of G .
Let G be a cyclic group of order n and d |n, then G has exactly
ϕ(d) elements of order d . In particular, G has ϕ(n) generators.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

The multiplicative group Z∗p

Let p be a prime integer.

The set Z∗
p is the set of integers modulo p which are invertible

modulo p.
The set Z∗

p is a cyclic group of order p − 1 for the operation of
multiplication modulo p.

Generators of Z∗
p :

There exists g ∈ Z∗
p such that any h ∈ Z∗

p can be uniquely
written as h = g x mod p with 0 ≤ x < p − 1.
The integer x is called the discrete logarithm of h to the base
g , and denoted logg h.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Finding a generator of Z∗p

Finding a generator of Z∗
p for prime p.

The factorization of p − 1 is needed. Otherwise, no efficient
algorithm is known.
Factoring is hard, but it is possible to generate p such that the
factorization of p − 1 is known.

Generator of Z∗
p

g ∈ Z∗
p is a generator of Z∗

p if and only if g (p−1)/q ̸= 1 mod p
for each prime factor q of p − 1.
There are ϕ(p − 1) generators of Z∗

p

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Finding a generator

Let q1, . . . qr be the prime factors of p − 1

1) Generate a random g ∈ Z∗
p

2) For i = 1 to r do

Compute αi = g (p−1)/qi mod p
If αi = 1 mod p, go back to step 1.

3) Output g as a generator of Z∗
p

Complexity:

There are ϕ(p − 1) generators of Z∗
p.

A random g ∈ Z∗
p is a generator with probability

ϕ(p − 1)/(p − 1).
If p − 1 = 2 · q for prime q, then ϕ(p − 1) = q − 1 and this
probability is ≃ 1/2.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Safe prime p

Safe prime p: both p and q = (p − 1)/2 are primes.

Generate a random prime p.
Test if q = (p − 1)/2 is prime. Otherwise, generate another p.

Finding a generator g for Z∗
p

Generate a random g ∈ Z∗
p with g ̸= ±1

Check that gq ̸= 1 mod p. Otherwise, generate another g .
Complexity: there are ϕ(p − 1) = q − 1 generators, therefore g
is a generator with probability ≃ 1/2.

Finding a generator g of the subgroup G of order q.

Generate a random h ∈ Z∗
p. Let g = h2. Then g must be of

order q. If g ̸= 1, then g is a generator of G .

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Subgroup of Z∗p

We want to work in a prime-order subgroup of Z∗
p

Generate p, q such that p − 1 = 2 · q and p, q are prime
Find a generator g of Z∗

p

Then g ′ = g2 mod p is a generator of a subgroup G of Z∗
p of

prime order q.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Discrete logarithm

Let g be a generator of Z∗
p

For all a ∈ Z∗
p, a can be written uniquely as a = g x mod p for

0 ≤ x < p − 1.
The integer x is called the discrete logarithm of a to the base
g , and denoted logg a.

Computing discrete logarithms in Z∗
p

Hard problem: no efficient algorithm is known for large p.
Brute force: enumerate all possible x . Complexity O(p).
Baby step/giant step method: complexity O(√p).

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Baby step/giant step method

Given a = g x mod p where 0 ≤ x < p − 1, we wish to
compute x .

Let m = ⌊√p⌋. Build a table:

L =
{
(g i mod p, i) | 0 ≤ i < m

}
and sort L according to the first component g i mod p.

Size: O(√p log p). Time: O(√p log2 p).
Compute the sequence of values a · g−j ·m mod p, until a
collision with g i is found in the table L, which gives:

a · g−j ·m = g i mod p ⇒ a = g j ·m+i mod p ⇒ x = j ·m + i

Time: O(√p log2 p). Memory: O(√p log p)

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Discrete Logarithms in groups of order qe

Let p be a prime and g a generator of a subgroup of Z∗
p of

order qe for some q, where e > 1.

Given a = g x mod p for 0 ≤ x < qe , we wish to compute x .

We write x = u · q + v where 0 ≤ v < q and 0 ≤ u < qe−1

aq
e−1

=
(
gqe−1

)x

=
(
gqe−1

)v

mod p

We compute v by using the previous method in the subgroup
of order q generated by gqe−1

a · g−v = (gq)u so we compute u recursively, in the subgroup
of order qe−1 generated by gq.

Time complexity O(e · √q · log2 p)

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Discrete Logarithms in Z∗p
Let p be a prime and we know the factorization

p − 1 =
r∏

i=1

qeii

Given a = g x mod p for 0 ≤ x < p − 1 where g is a generator
of Z∗

p, we wish to compute x .

For 1 ≤ i ≤ r we have:

a(p−1)/q
ei
i =

(
g (p−1)/q

ei
i

)x
=

(
g (p−1)/q

ei
i

)x mod q
ei
i
mod p

We compute xi = x mod qeii for all 1 ≤ i ≤ r by using the

previous method in the subgroup generated by g (p−1)/q
ei
i

Using CRT we find x from the xi ’s.

Complexity O(√q · logk p), where q = max qi
The hardness of computing discrete logarithms in Z∗

p is
determined by the size of the largest prime factor of p − 1.

In general we work in a subgroup of Z∗
p of prime order.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Diffie-Hellman protocol

Enables Alice and Bob to establish a shared secret key that
nobody else can compute, without having talked to each other
before.

Key generation

Let p a prime integer, and let g be a generator of Z∗
p. p and g

are public.
Alice generates a random x and publishes X = g x mod p. She
keeps x secret.
Bob generates a random y and publishes Y = g y mod p. He
keeps y secret.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Diffie-Hellman protocol

Key establishment

Alice sends X to Bob. Bob sends Y to Alice.
Alice computes Ka = Y x mod p
Bob computes Kb = X y mod p

Ka = Y x = (g y)x = g xy = (g x)y = X y = Kb

Alice and Bob now share the same key K = Ka = Kb

Without knowing x or y , the adversary is unable to compute
K .
Computing g xy from g x and g y is called the Diffie-Hellman
problem, for which no efficient algorithm is known.
The best known algorithm for solving the Diffie-Hellman
problem is to compute the discrete logarithm of g x or g y .

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

El-Gamal encryption

Key generation

Let G be a subgroup of Z∗
p of prime order q and g a generator

of G .
Let x

R← Zq. Let h = g x mod p.
Public-key : (g , h). Private-key : x

Encryption of m ∈ G :

Let r
R← Zq

Output c = (g r , hr ·m)

Decryption of c = (c1, c2)

Output m = c2/(c
x
1) mod p

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Security of El-Gamal

To recover m from (g r , hr ·m)

One must find hr from (g , g r , h = g x)

Computational Diffie-Hellman problem (CDH) :

Given (g , g a, gb), find g ab

No efficient algorithm is known.
Best algorithm is finding the discrete-log

However, attacker may already have some information about
the plaintext !

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Semantic security

Indistinguishability of encryption (IND-CPA)

The attacker receives pk
The attacker outputs two messages m0,m1

The attacker receives encryption of mβ for random bit β.
The attacker outputs a “guess” β′ of β

Adversary’s advantage :

Adv = |Pr[β′ = β]− 1
2 |

A scheme is IND-CPA secure if the advantage of any
computationally bounded adversary is a negligible function of
the security parameter.
This means that the adversary’s success probability is not
better than flipping a coin.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Proof of security

Reductionist proof :

If there is an attacker who can break IND-CPA with
non-negligible probability,
then we can use this attacker to solve DDH with non-negligible
probability

The Decision Diffie-Hellmann problem (DDH) :

Given (g , g a, gb, z) where z = g ab if γ = 1 and z
R← G if

γ = 0, where γ is random bit, find γ.
AdvDDH = |Pr[γ′ = γ]− 1

2 |
No efficient algorithm known when G is a prime-order
subgroup of Z∗

p.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Proof of security

We get (g , ga, gb, z) and must determine if z = gab

We give pk = (g , h = g a = g x) to the adversary
sk = a = x is unknown.
Adversary sends m0,m1

We send c = (gb = g r , z ·mβ) for random bit β
Adversary outputs β′ and we output γ′ = 1 (corresponding to
z = g ab) if β′ = β and 0 otherwise.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Analysis

If γ = 0, then z is random in G

Adversary gets no information about β, because mβ is
perfectly masked by a random.
Therefore Pr[β′ = β|γ = 0] = 1/2
Pr[γ′ = γ|γ = 0] = 1/2

If γ = 1, then z = gab = g rx = hr where h = g x .

c is a legitimate El-Gamal ciphertext.
Therefore the attacker wins (β′ = β) with probability
1/2± AdvA
We can take wlog Pr[β′ = β|γ = 1] = 1/2 + AdvA
Therefore Pr[γ′ = γ|γ = 1] = 1/2 + AdvA

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

We have:

Pr[γ′ = γ|γ = 0] = 1/2
Pr[γ′ = γ|γ = 1] = 1/2 + AdvA

Pr[γ′ = γ] = Pr[γ′ = γ|γ = 0] · Pr[γ = 0] +

Pr[γ′ = γ|γ = 1] · Pr[γ = 1]

Pr[γ′ = γ] =
1

2
· 1
2
+

(
1

2
+ AdvA

)
· 1
2

Pr[γ′ = γ] =
1

2
+

AdvA
2

Therefore:

AdvDDH =

∣∣∣∣Pr[γ′ = γ]− 1

2

∣∣∣∣ = AdvA
2

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Security of El-Gamal

AdvDDH = AdvA
2

From an adversary running in time tA with advantage AdvA,
we can construct a DDH solver running in time tA +O(k2)
with advantage AdvA

2 .
where k is the security parameter.

El-Gamal is IND-CPA under the DDH assumption

Conversely, if no algorithm can solve DDH in time t with
advantage > ε, no adversary can break El-Gamal in time
t −O(k) with advantage > 2 · ε

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Chosen-ciphertext attack

El-Gamal is not chosen-ciphertext secure

Given c = (g r , hr ·m) where pk = (g , h)
Ask for the decryption of c ′ = (g r+1, hr+1 ·m) and recover m.

The Cramer-Shoup encryption scheme (1998)

Can be seen as extension of El-Gamal.
Chosen-ciphertext secure (IND-CCA) without random oracle.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

The Cramer-Shoup cryptosystem

Key generation

Let G a group of prime order q
Generate random g1, g2 ∈ G and randoms x1, x2, y1, y2, z ∈ Zq

Let c = g x1
1 g x2

2 , d = g y1
1 g y2

2 , h = g z
1

Let H be a hash function
pk = (g1, g2, c , d , h,H) and sk = (x1, x2, y1, y2, z)

Encryption of m ∈ G

Generate a random r ∈ Zq

C = (g r
1 , g r

2 , hrm, c rd rα)
where α = H(g r

1 , g
r
2 , h

rm)

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

The Cramer-Shoup cryptosystem

Decryption of C = (u1, u2, e, v)

Compute α = H(u1, u2, v) and test if :

ux1+y1α
1 ux2+y2α

2 = v

Output “reject” if the condition does not hold.
Otherwise, output :

m = e/(u1)
z

INC-CCA security

Cramer-Shoup is secure secure against adaptive chosen
ciphertext attack
under the decisional Diffie-Hellman assumption,
without the random oracle model.

Decision Diffie-Hellman problem:

Given (g , g x , g y , z) where z = g xy if b = 0 and z ← G if
b = 1, where b ← {0, 1}, guess b.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

The Schnorr signature scheme

Key generation:

Let G be a group of order q and let g be a generator.
Generate a private key x ← Zq

The public key is y = g x mod p

Signature generation of m

Generate a random k in Zq

Let r = gk , e = H(m∥r) and s = (k − xe) mod q
Signature is (s, e).

Signature verification of (s, e)

Let rv = g sy e mod p and ev = H(M∥rv)
Check that ev = e.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Security of Schnorr signatures

Security of Schnorr signatures

Provably secure against existential forgery in a chosen message
attack
in the random oracle model under the discrete-log assumption
using the “Forking lemma” (Pointcheval and Stern, 1996)

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

