Algorithmic Number Theory and Public-key Cryptography

Discrete-log based cryptography

Jean-Sébastien Coron

University of Luxembourg

April 20, 2025

Summary

- Algorithmic number theory.
 - Generators of \mathbb{Z}_p
 - The discrete-log problem
- Discrete-log based cryptosystems
 - Diffie-Hellmann key exchange
 - ElGamal encryption: security proof
 - Schnorr signature scheme

Groups

Definitions

- A group G is *finite* if |G| is finite. The number of elements in a finite group is called its *order*.
- A group G is cyclic if there is an element $g \in G$ such that for each $h \in G$ there is an integer i such that $h = g^i$. Such an element g is called a generator of G.
- Let G be a finite group and $a \in G$. The *order* of a is definded to be the least positive integer t such that $a^t = 1$.

Facts

- Let G be finite group and $a \in G$. The order of a divides the order of G.
- Let G be a cyclic group of order n and d|n, then G has exactly $\phi(d)$ elements of order d. In particular, G has $\phi(n)$ generators.

The multiplicative group \mathbb{Z}_p^*

- Let p be a prime integer.
 - The set \mathbb{Z}_p^* is the set of integers modulo p which are invertible modulo p.
 - The set \mathbb{Z}_p^* is a cyclic group of order p-1 for the operation of multiplication modulo p.
- Generators of \mathbb{Z}_p^* :
 - There exists $g \in \mathbb{Z}_p^*$ such that any $h \in \mathbb{Z}_p^*$ can be uniquely written as $h = g^x \mod p$ with $0 \le x .$
 - The integer x is called the discrete logarithm of h to the base g, and denoted log_g h.

Finding a generator of \mathbb{Z}_p^*

- Finding a generator of \mathbb{Z}_p^* for prime p.
 - ullet The factorization of p-1 is needed. Otherwise, no efficient algorithm is known.
 - Factoring is hard, but it is possible to generate p such that the factorization of p-1 is known.
- Generator of \mathbb{Z}_p^*
 - $g \in \mathbb{Z}_p^*$ is a generator of \mathbb{Z}_p^* if and only if $g^{(p-1)/q} \neq 1 \mod p$ for each prime factor q of p-1.
 - ullet There are $\phi(p-1)$ generators of \mathbb{Z}_p^*

Finding a generator

- Let $q_1, \ldots q_r$ be the prime factors of p-1
 - 1) Generate a random $g \in \mathbb{Z}_p^*$
 - 2) For i = 1 to r do
 - Compute $\alpha_i = g^{(p-1)/q_i} \mod p$
 - If $\alpha_i = 1 \mod p$, go back to step 1.
 - ullet 3) Output g as a generator of \mathbb{Z}_p^*
- Complexity:
 - There are $\phi(p-1)$ generators of \mathbb{Z}_p^* .
 - A random $g \in \mathbb{Z}_p^*$ is a generator with probability $\phi(p-1)/(p-1)$.
 - If $p-1=2\cdot q$ for prime q, then $\phi(p-1)=q-1$ and this probability is $\simeq 1/2$.

Safe prime p

- Safe prime p: both p and q = (p-1)/2 are primes.
 - Generate a random prime p.
 - Test if q = (p-1)/2 is prime. Otherwise, generate another p.
- Finding a generator g for \mathbb{Z}_p^*
 - ullet Generate a random $g\in\mathbb{Z}_p^*$ with $g
 eq\pm 1$
 - Check that $g^q \neq 1 \mod p$. Otherwise, generate another g.
 - Complexity: there are $\phi(p-1)=q-1$ generators, therefore g is a generator with probability $\simeq 1/2$.
- Finding a generator g of the subgroup G of order q.
 - Generate a random $h \in \mathbb{Z}_p^*$. Let $g = h^2$. Then g must be of order q. If $g \neq 1$, then g is a generator of G.

Subgroup of \mathbb{Z}_p^*

- We want to work in a prime-order subgroup of \mathbb{Z}_p^*
 - Generate p, q such that $p 1 = 2 \cdot q$ and p, q are prime
 - ullet Find a generator g of \mathbb{Z}_p^*
 - Then $g' = g^2 \mod p$ is a generator of a subgroup G of \mathbb{Z}_p^* of prime order q.

Discrete logarithm

- ullet Let g be a generator of \mathbb{Z}_p^*
 - For all $a \in \mathbb{Z}_p^*$, a can be written uniquely as $a = g^x \mod p$ for $0 \le x .$
 - The integer x is called the discrete logarithm of a to the base g, and denoted log_g a.
- Computing discrete logarithms in \mathbb{Z}_p^*
 - Hard problem: no efficient algorithm is known for large p.
 - Brute force: enumerate all possible x. Complexity $\mathcal{O}(p)$.
 - Baby step/giant step method: complexity $\mathcal{O}(\sqrt{p})$.

Baby step/giant step method

- Given $a = g^x \mod p$ where $0 \le x , we wish to compute <math>x$.
- Let $m = \lfloor \sqrt{p} \rfloor$. Build a table:

$$L = \left\{ \left. \left(g^i \bmod p, i \right) \right| 0 \leq i < m \right\}$$

and sort L according to the first component $g^i \mod p$.

- Size: $\mathcal{O}(\sqrt{p}\log p)$. Time: $\mathcal{O}(\sqrt{p}\log^2 p)$.
- Compute the sequence of values $a \cdot g^{-j \cdot m} \mod p$, until a collision with g^i is found in the table L, which gives:

$$a \cdot g^{-j \cdot m} = g^i \mod p \Rightarrow a = g^{j \cdot m + i} \mod p \Rightarrow x = j \cdot m + i$$

• Time: $\mathcal{O}(\sqrt{p}\log^2 p)$. Memory: $\mathcal{O}(\sqrt{p}\log p)$

Discrete Logarithms in groups of order q^e

- Let p be a prime and g a generator of a subgroup of \mathbb{Z}_p^* of order q^e for some q, where e > 1.
- Given $a = g^x \mod p$ for $0 \le x < q^e$, we wish to compute x.
- We write $x = u \cdot q + v$ where $0 \le v < q$ and $0 \le u < q^{e-1}$
 - $a^{q^{e-1}} = (g^{q^{e-1}})^x = (g^{q^{e-1}})^v \mod p$
 - We compute v by using the previous method in the subgroup of order q generated by $g^{q^{e-1}}$
- $a \cdot g^{-v} = (g^q)^u$ so we compute u recursively, in the subgroup of order q^{e-1} generated by g^q .
- Time complexity $\mathcal{O}(e \cdot \sqrt{q} \cdot \log^2 p)$

Discrete Logarithms in \mathbb{Z}_p^*

• Let *p* be a prime and we know the factorization

$$p-1=\prod_{i=1}^r q_i^{e_i}$$

- Given $a = g^x \mod p$ for $0 \le x where <math>g$ is a generator of \mathbb{Z}_p^* , we wish to compute x.
- For $1 \le i \le r$ we have:

$$a^{(p-1)/q_i^{e_i}} = \left(g^{(p-1)/q_i^{e_i}}\right)^x = \left(g^{(p-1)/q_i^{e_i}}\right)^x \mod q_i^{e_i} \mod p$$

- We compute $x_i = x \mod q_i^{e_i}$ for all $1 \le i \le r$ by using the previous method in the subgroup generated by $g^{(p-1)/q_i^{e_i}}$
- Using CRT we find x from the x_i 's.
- Complexity $\mathcal{O}(\sqrt{q} \cdot \log^k p)$, where $q = \max q_i$
- The hardness of computing discrete logarithms in \mathbb{Z}_p^* is determined by the size of the largest prime factor of p-1.
 - In general we work in a subgroup of \mathbb{Z}_p^* of prime order.

Diffie-Hellman protocol

- Enables Alice and Bob to establish a shared secret key that nobody else can compute, without having talked to each other before.
- Key generation
 - Let p a prime integer, and let g be a generator of \mathbb{Z}_p^* . p and g are public.
 - Alice generates a random x and publishes $X = g^x \mod p$. She keeps x secret.
 - Bob generates a random y and publishes $Y = g^y \mod p$. He keeps y secret.

Diffie-Hellman protocol

- Key establishment
 - Alice sends X to Bob. Bob sends Y to Alice.
 - Alice computes $K_a = Y^x \mod p$
 - Bob computes $K_b = X^y \mod p$

$$K_a = Y^x = (g^y)^x = g^{xy} = (g^x)^y = X^y = K_b$$

- Alice and Bob now share the same key $K = K_a = K_b$
 - Without knowing x or y, the adversary is unable to compute K.
 - Computing g^{xy} from g^x and g^y is called the *Diffie-Hellman* problem, for which no efficient algorithm is known.
 - The best known algorithm for solving the Diffie-Hellman problem is to compute the discrete logarithm of g^x or g^y .

El-Gamal encryption

- Key generation
 - Let G be a subgroup of \mathbb{Z}_p^* of prime order q and g a generator of G.
 - Let $x \stackrel{R}{\leftarrow} \mathbb{Z}_q$. Let $h = g^x \mod p$.
 - Public-key: (g, h). Private-key: x
- Encryption of $m \in G$:
 - Let $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$
 - Output $c = (g^r, h^r \cdot m)$
- Decryption of $c = (c_1, c_2)$
 - Output $m = c_2/(c_1^x) \mod p$

Security of El-Gamal

- To recover m from $(g^r, h^r \cdot m)$
 - One must find h^r from $(g, g^r, h = g^x)$
- Computational Diffie-Hellman problem (CDH) :
 - Given (g, g^a, g^b) , find g^{ab}
 - No efficient algorithm is known.
 - Best algorithm is finding the discrete-log
- However, attacker may already have some information about the plaintext!

Semantic security

- Indistinguishability of encryption (IND-CPA)
 - The attacker receives *pk*
 - The attacker outputs two messages m_0, m_1
 - The attacker receives encryption of m_{β} for random bit β .
 - ullet The attacker outputs a "guess" eta' of eta
- Adversary's advantage :
 - Adv = $|\Pr[\beta' = \beta] \frac{1}{2}|$
 - A scheme is IND-CPA secure if the advantage of any computationally bounded adversary is a negligible function of the security parameter.
 - This means that the adversary's success probability is not better than flipping a coin.

Proof of security

- Reductionist proof :
 - If there is an attacker who can break IND-CPA with non-negligible probability,
 - then we can use this attacker to solve DDH with non-negligible probability
- The Decision Diffie-Hellmann problem (DDH) :
 - Given (g, g^a, g^b, z) where $z = g^{ab}$ if $\gamma = 1$ and $z \stackrel{R}{\leftarrow} G$ if $\gamma = 0$, where γ is random bit, find γ .
 - Adv_{DDH} = $|\Pr[\gamma' = \gamma] \frac{1}{2}|$
 - No efficient algorithm known when G is a prime-order subgroup of \mathbb{Z}_p^* .

Proof of security

- We get (g, g^a, g^b, z) and must determine if $z = g^{ab}$
 - We give $pk = (g, h = g^a = g^x)$ to the adversary
 - sk = a = x is unknown.
 - Adversary sends m_0, m_1
 - We send $c = (g^b = g^r, z \cdot m_\beta)$ for random bit β
 - Adversary outputs β' and we output $\gamma'=1$ (corresponding to $z=g^{ab}$) if $\beta'=\beta$ and 0 otherwise.

Analysis

- If $\gamma = 0$, then z is random in G
 - Adversary gets no information about β , because m_{β} is perfectly masked by a random.
 - Therefore $\Pr[\beta' = \beta | \gamma = 0] = 1/2$
 - $\Pr[\gamma' = \gamma | \gamma = 0] = 1/2$
- If $\gamma = 1$, then $z = g^{ab} = g^{rx} = h^r$ where $h = g^x$.
 - c is a legitimate El-Gamal ciphertext.
 - Therefore the attacker wins $(\beta' = \beta)$ with probability $1/2 \pm \mathsf{Adv}_A$
 - We can take wlog $\Pr[\beta' = \beta | \gamma = 1] = 1/2 + \mathsf{Adv}_{\mathcal{A}}$
 - \bullet Therefore $\Pr[\gamma'=\gamma|\gamma=1]=1/2+\mathsf{Adv}_{\mathcal{A}}$

We have:

•
$$Pr[\gamma' = \gamma | \gamma = 0] = 1/2$$

•
$$\Pr[\gamma' = \gamma | \gamma = 1] = 1/2 + Adv_A$$

$$\begin{split} \Pr[\gamma' = \gamma] &= \Pr[\gamma' = \gamma | \gamma = 0] \cdot \Pr[\gamma = 0] + \\ & \Pr[\gamma' = \gamma | \gamma = 1] \cdot \Pr[\gamma = 1] \\ \Pr[\gamma' = \gamma] &= \frac{1}{2} \cdot \frac{1}{2} + \left(\frac{1}{2} + \mathsf{Adv}_A\right) \cdot \frac{1}{2} \\ \Pr[\gamma' = \gamma] &= \frac{1}{2} + \frac{\mathsf{Adv}_A}{2} \end{split}$$

Therefore:

$$\mathsf{Adv}_{\mathit{DDH}} = \left| \mathsf{Pr}[\gamma' = \gamma] - \frac{1}{2} \right| = \frac{\mathsf{Adv}_{\mathit{A}}}{2}$$

Security of El-Gamal

- $Adv_{DDH} = \frac{Adv_A}{2}$
 - From an adversary running in time t_A with advantage Adv_A , we can construct a DDH solver running in time $t_A + \mathcal{O}(k^2)$ with advantage $\frac{Adv_A}{2}$.
 - where k is the security parameter.
- El-Gamal is IND-CPA under the DDH assumption
 - Conversely, if no algorithm can solve DDH in time t with advantage $> \varepsilon$, no adversary can break El-Gamal in time $t \mathcal{O}(k)$ with advantage $> 2 \cdot \varepsilon$

Chosen-ciphertext attack

- El-Gamal is not chosen-ciphertext secure
 - Given $c = (g^r, h^r \cdot m)$ where pk = (g, h)
 - Ask for the decryption of $c' = (g^{r+1}, h^{r+1} \cdot m)$ and recover m.
- The Cramer-Shoup encryption scheme (1998)
 - Can be seen as extension of El-Gamal.
 - Chosen-ciphertext secure (IND-CCA) without random oracle.

The Cramer-Shoup cryptosystem

- Key generation
 - Let G a group of prime order q
 - Generate random $g_1, g_2 \in G$ and randoms $x_1, x_2, y_1, y_2, z \in \mathbb{Z}_q$
 - Let $c = g_1^{x_1} g_2^{x_2}, d = g_1^{y_1} g_2^{y_2}, h = g_1^{z}$
 - Let H be a hash function
 - $pk = (g_1, g_2, c, d, h, H)$ and $sk = (x_1, x_2, y_1, y_2, z)$
- Encryption of $m \in G$
 - Generate a random $r \in \mathbb{Z}_q$
 - $C = (g_1^r, g_2^r, h^r m, c^r d^{r\alpha})$
 - where $\alpha = H(g_1^r, g_2^r, h^r m)$

The Cramer-Shoup cryptosystem

- Decryption of $C = (u_1, u_2, e, v)$
 - Compute $\alpha = H(u_1, u_2, v)$ and test if :

$$u_1^{x_1+y_1\alpha}u_2^{x_2+y_2\alpha}=v$$

- Output "reject" if the condition does not hold.
- Otherwise, output :

$$m = e/(u_1)^z$$

- INC-CCA security
 - Cramer-Shoup is secure secure against adaptive chosen ciphertext attack
 - under the decisional Diffie-Hellman assumption,
 - without the random oracle model.
- Decision Diffie-Hellman problem:
 - Given (g, g^x, g^y, z) where $z = g^{xy}$ if b = 0 and $z \leftarrow G$ if b = 1, where $b \leftarrow \{0, 1\}$, guess b.

The Schnorr signature scheme

- Key generation:
 - Let G be a group of order q and let g be a generator. Generate a private key $x \leftarrow \mathbb{Z}_q$
 - The public key is $y = g^x \mod p$
- Signature generation of m
 - Generate a random k in \mathbb{Z}_q
 - Let $r = g^k$, e = H(m||r) and $s = (k xe) \mod q$
 - Signature is (s, e).
- Signature verification of (s, e)
 - Let $r_v = g^s y^e \mod p$ and $e_v = H(M||r_v)$
 - Check that $e_v = e$.

Security of Schnorr signatures

- Security of Schnorr signatures
 - Provably secure against existential forgery in a chosen message attack
 - in the random oracle model under the discrete-log assumption
 - using the "Forking lemma" (Pointcheval and Stern, 1996)