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@ Algorithmic number theory.

o Generators of Z,
o The discrete-log problem

@ Discrete-log based cryptosystems

o Diffie-Hellmann key exchange
e ElGamal encryption: security proof
e Schnorr signature scheme
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@ Definitions

o A group G is finite if |G| is finite. The number of elements in
a finite group is called its order.

e A group G is cyclic if there is an element g € G such that for
each h € G there is an integer i such that h = g’. Such an
element g is called a generator of G.

o Let G be a finite group and a € G. The order of a is definded
to be the least positive integer t such that at = 1.

o Facts

o Let G be finite group and a € G. The order of a divides the
order of G.

o Let G be a cyclic group of order n and d|n, then G has exactly
¢(d) elements of order d. In particular, G has ¢(n) generators.
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The multiplicative group Z

@ Let p be a prime integer.
o The set Zj, is the set of integers modulo p which are invertible
modulo p.
o The set Zj is a cyclic group of order p — 1 for the operation of
multiplication modulo p.

@ Generators of Z;’; :

o There exists g € Zj such that any h € Zj can be uniquely
written as h = g* mod pwith 0 < x < p—1.

e The integer x is called the discrete logarithm of h to the base
g, and denoted log, h.
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Finding a generator of Z

e Finding a generator of Zj, for prime p.
e The factorization of p — 1 is needed. Otherwise, no efficient
algorithm is known.
e Factoring is hard, but it is possible to generate p such that the
factorization of p — 1 is known.
e Generator of Zj,
° g € Zj is a generator of Zy if and only if gP~1/9 41 mod p
for each prime factor g of p — 1.
o There are ¢(p — 1) generators of Zj
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Finding a generator

@ Let gi1,...q, be the prime factors of p — 1

o 1) Generate a random g € Z7
e 2)Fori=1tordo
o Compute a; = g(pfl)/‘” mod p
o If ;i =1 mod p, go back to step 1.
o 3) Output g as a generator of Z7
o Complexity:
o There are ¢(p — 1) generators of Zj.
o Arandom g € Zj is a generator with probability
é(p—1)/(p—1).
o If p—1=2-gq for prime g, then ¢(p — 1) = g — 1 and this
probability is ~ 1/2.
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Safe prime p

e Safe prime p: both p and g = (p — 1)/2 are primes.
e Generate a random prime p.
o Testif g = (p—1)/2is prime. Otherwise, generate another p.
e Finding a generator g for Z
o Generate a random g € Z; with g # +1
o Check that g7 #1 mod p. Otherwise, generate another g.
o Complexity: there are ¢(p — 1) = g — 1 generators, therefore g
is a generator with probability ~ 1/2.
e Finding a generator g of the subgroup G of order q.
o Generate a random h € Zj. Let g = h?. Then g must be of
order q. If g # 1, then g is a generator of G.
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Subgroup of Z;,

e We want to work in a prime-order subgroup of Zj,
o Generate p, g such that p—1=2-q and p, g are prime
o Find a generator g of Zj
e Then g’ = g2 mod p is a generator of a subgroup G of Zy, of
prime order q.
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Discrete logarithm

o Let g be a generator of Zj,

o Forall ac Z;‘;,
0<x<p—-1.
e The integer x is called the discrete logarithm of a to the base

g, and denoted log, a.

a can be written uniquely as a = g* mod p for

e Computing discrete logarithms in Z,

e Hard problem: no efficient algorithm is known for large p.
o Brute force: enumerate all possible x. Complexity O(p).
o Baby step/giant step method: complexity O(,/p).
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Baby step/giant step method

o Given a = g* mod p where 0 < x < p— 1, we wish to
compute x.

o Let m= |,/p]. Build a table:
L={(g" mod p,i)|0<i<m}

and sort L according to the first component g’ mod p.
o Size: O(,/plogp). Time: O(\/plog” p).
e Compute the sequence of values a- g™ mod p, until a
collision with g’ is found in the table L, which gives:

=g modp=a=g/m

a-gJm modp=x=j-m+i

e Time: (9(\/,5|0g2 p). Memory: O(,/plog p)
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Discrete Logarithms in groups of order g°¢

@ Let p be a prime and g a generator of a subgroup of Zj of
order g€ for some g, where e > 1.
@ Given a = g* mod p for 0 < x < g€, we wish to compute x.
© Wewrite x=u-g+vwhere0<v<gand0<u<qg¢!
° aq871 _ (gqefl _ (gqe—l) mod p
e We compute v by using the Previous method in the subgroup
of order g generated by g9°
@ a-g v =(g9)" so we compute u recursively, in the subgroup
of order g1 generated by g¥9.
o Time complexity O(e - /q - log? p)
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Discrete Logarithms in Z;

@ Let p be a prime and we know the factorization

r
p—1=]]q
i=1

@ Given a = g* mod p for 0 < x < p — 1 where g is a generator
of Zj,, we wish to compute x.
@ For 1 < i< r we have:

e = (gl /e = (glo-n/al)” " od p

e We compute x; = x mod q;" for all 1 < i < r by using the
previous method in the subgroup generated by g(Pfl)/q,-e"
@ Using CRT we find x from the x;'s.
o Complexity O(,/q - logk p), where g = maxg;
@ The hardness of computing discrete logarithms in Z* is
determined by the size of the largest prime factor of p — 1.
o In general we work in a subgroup of Zj, of prime order.
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Diffie-Hellman protocol

@ Enables Alice and Bob to establish a shared secret key that
nobody else can compute, without having talked to each other
before.

o Key generation

o Let p a prime integer, and let g be a generator of Z;,. p and g
are public.

o Alice generates a random x and publishes X = g* mod p. She
keeps x secret.

o Bob generates a random y and publishes Y = g¥ mod p. He
keeps y secret.
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Diffie-Hellman protocol

@ Key establishment
e Alice sends X to Bob. Bob sends Y to Alice.
o Alice computes K; = Y* mod p
e Bob computes K, = XY mod p

=Y =(g")=gY=(g") =X =K

@ Alice and Bob now share the same key K = K; = K},
e Without knowing x or y, the adversary is unable to compute
K.
o Computing g™ from g* and g” is called the Diffie-Hellman
problem, for which no efficient algorithm is known.
o The best known algorithm for solving the Diffie-Hellman
problem is to compute the discrete logarithm of g* or g”.
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El-Gamal encryption

@ Key generation
o Let G be a subgroup of Zj, of prime order q and g a generator
of G. R
o Let x < Zg. Let h=g* mod p.
o Public-key : (g, h). Private-key : x
@ Encryption of me G :
o Let r & 7,
o Output c = (g",h" - m)
@ Decryption of ¢ = (c1, &)
o Output m = c/(cf) mod p
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Security of El-Gamal

e To recover m from (g", h" - m)
o One must find h" from (g,g", h = g*)
e Computational Diffie-Hellman problem (CDH) :

o Given (g, g%, g"), find g?°
e No efficient algorithm is known.
e Best algorithm is finding the discrete-log

@ However, attacker may already have some information about
the plaintext !
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Semantic security

e Indistinguishability of encryption (IND-CPA)

The attacker receives pk

The attacker outputs two messages mg, m;

The attacker receives encryption of mg for random bit j.
The attacker outputs a “guess” 3’ of 3

o Adversary's advantage :

° Adv:|Pr[6’:6]—%

e A scheme is IND-CPA secure if the advantage of any
computationally bounded adversary is a negligible function of
the security parameter.

e This means that the adversary's success probability is not
better than flipping a coin.
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Proof of security

@ Reductionist proof :
o If there is an attacker who can break IND-CPA with
non-negligible probability,
e then we can use this attacker to solve DDH with non-negligible
probability
@ The Decision Diffie-Hellmann problem (DDH) :

o Given (g,g% gb z) where z=g® ify=1and z EGif
v = 0, where v is random bit, find ~.

o Advppy = |Pr[y’ =7] — 3|

e No efficient algorithm known when G is a prime-order
subgroup of Z.
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Proof of security

o We get (g,g7, g%, z) and must determine if z = g2

o We give pk = (g, h = g? = g*) to the adversary

sk = a = x is unknown.

Adversary sends myg,

We send ¢ = (g? = g", z- mg) for random bit j3

Adversary outputs 5’ and we output 7/ = 1 (corresponding to
z=g?) if B/ = B and 0 otherwise.
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o If v =0, then z is random in G
e Adversary gets no information about /3, because mg is
perfectly masked by a random.
o Therefore Pr[3’ = By =0] =1/2
o Prly’ =qly=0]=1/2
o If y =1, then z = g2 = g™ = h" where h = g*.
e c is a legitimate EI-Gamal ciphertext.
o Therefore the attacker wins (3’ = ) with probability
1/2 + Adva
o We can take wlog Pr[8’ = By = 1] =1/2 + Adva
o Therefore Pr[y/ = v|y =1] =1/2 4 Advga
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@ We have:

o Prly’ =9ly=0]=1/2
o Prly/ =~y =1 =1/2+ Adva

Prly =7 = Prly/ =4y =0]-Prly=0] +
Prly’ =1y =1] - Pr[y =1]

1 1 1 1
Pr[+ = = .z LA .z
rly' =] > 2+<2+ dVA> >
1 AdVA
P /: fr— —
rly' =11 >t

@ Therefore:

1 Adv
Advppy = ‘Pr[’y' =] - 2’ = A
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Security of El-Gamal

o Advppy = 294

e From an adversary running in time t4 with advantage Advga,
we can construct a DDH solver running in time t4 + O(k?)
with advantage Adz"“.

e where k is the security parameter.
o El-Gamal is IND-CPA under the DDH assumption
e Conversely, if no algorithm can solve DDH in time t with
advantage > ¢, no adversary can break El-Gamal in time
t — O(k) with advantage > 2-¢
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Chosen-ciphertext attack

@ El-Gamal is not chosen-ciphertext secure

o Given ¢ = (g", h" - m) where pk = (g, h)

o Ask for the decryption of ¢’ = (g"*1, h"*1 - m) and recover m.
@ The Cramer-Shoup encryption scheme (1998)

o Can be seen as extension of El-Gamal.
o Chosen-ciphertext secure (IND-CCA) without random oracle.
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The Cramer-Shoup cryptosystem

o Key generation
e Let G a group of prime order g
Generate random g1, 8> € G and randoms xi, X2, y1, 2,2 € Zgq
Let c = gi'gy*, d = gi'g3", h=gf
Let H be a hash function
pk = (g1, 8, ¢,d, h,H) and sk = (x1, x2, y1, ¥2, 2)
@ Encryption of me G
o Generate a random r € Zg
o C=(gf, g5, h"'m, c"d"™)
o where o = H(g{, g5, h"m)
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The Cramer-Shoup cryptosystem

@ Decryption of C = (u1, up, e, v)
o Compute a = H(uy, up, v) and test if :

=V

uiq +yia u;z +y2c¢

e Output “reject” if the condition does not hold.
o Otherwise, output :

m=-e/(u)?
o INC-CCA security
e Cramer-Shoup is secure secure against adaptive chosen
ciphertext attack
o under the decisional Diffie-Hellman assumption,
e without the random oracle model.
@ Decision Diffie-Hellman problem:
o Given (g,g%,8",z) where z=g¥ if b=0and z + G if
b =1, where b+ {0,1}, guess b.
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The Schnorr signature scheme

o Key generation:
o Let G be a group of order g and let g be a generator.
Generate a private key x < Zq
o The public key is y = g¥ mod p
@ Signature generation of m
o Generate a random k in Z,
o Let r =g¥ e= H(m||r) and s = (k — xe) mod q
o Signature is (s, €).
e Signature verification of (s, e)
o Let r, = g°¥° mod p and e, = H(M||r,)
o Check that e, = e.
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Security of Schnorr signatures

@ Security of Schnorr signatures

e Provably secure against existential forgery in a chosen message
attack

e in the random oracle model under the discrete-log assumption

e using the “Forking lemma" (Pointcheval and Stern, 1996)
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