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Textbook RSA signature scheme

o Key generation
e Public modulus: N = p- g where p and g are large primes.
e Public exponent: e
o Private exponent: d, such that d-e =1 (mod ¢(N))
@ To sign a message m, the signer computes :
o s=m (mod N)
o Only the signer can sign the message.
@ To verify the signature, one checks that:
o m=s° (mod N)
e Anybody can verify the signature
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Attacks against textbook RSA signature

o Existential forgery
o r¢=m (mod N)
e ris a valid signature of m, so we can construct a valid
message/signature pair without knowing the private key.

@ Chosen message attack
o (my-mp)9=mf mg (mod N)
e Given two signatures, we can construct a 3rd signature without
knowing the private key.

e Countermeasure
o First encapsulate m using an encoding function u(m)

o=p(m? (mod N)
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Encoding functions

e Two kinds of encoding functions p(m)
e Ad-hoc encodings

o PKCS#1 v1.5, ISO 9796-1, ISO 9796-2.
o Designed to prevent specific attacks, but can exhibit some
weaknesses

e Provably secure encodings

o RSA-FDH, RSA-PSS
@ Proven to be secure under well-defined assumptions.
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Ad-hoc encoding functions

@ Examples of ad-hoc encoding functions, with signature
o = u(m)? (mod N)
e ISO 9796-1:

w(m) = 5(m;)s(my_1)mym,_1 ...s(my)s(mgy)moeb
e SO 9796-2:

o PKCS#1 v1.5:
y(m) = 0001 FF....FFOO||cgyal/SHA(m)

p(m) = 6A[|m[1]||H(m)]|BC
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The Desmedt-Odlyzko attack [DO85]

Suppose the encoded messages p(m) are relatively short.
Q Let py,...,pe be the primes smaller than some bound B.
@ Find ¢ + 1 messages m; such that the p(m;) are B-smooth:
p(mj) = p{"* - p
© Obtain aﬂlinear dependence relation between the exponent
vectors V; = (v;1 mod e, ..., v;y mod e) and deduce

u(m:) = TTn(m;)

@ Ask for the signatures of the m;'s and
forge the signature of m,.

u(m=)? =T p(mi)? (mod N)
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The Desmedt-Odlyzko attack (1)

@ Assume that p(m;) is B-smooth for all 1 < j < 7:
V4
p(mi) = H PJYi’j
j=1

e To each p(m;) associate the vector exponents modulo e:
V.= (vizmode,...,vi,mode) e 7t

@ Assuming that e is prime, the set of all /-dimensional vectors
modulo e forms a linear space of dimension /¢

e If 7 > £+ 1, one can express one vector, say V,, as a linear
combination of the others modulo e,
using Gaussian elimination:

- - T—1 —
V., =T -e+ Z BiV;
i=1

1
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The Desmedt-Odlyzko attack (2)

@ We write the linear relation on the exponents:

7—1

Ve = e+ Y Bievig
i=1

e Multiplicative relation on the p(m;):
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The Desmedt-Odlyzko attack (3)

e Multiplicative relation on the p(m;)

T—1 l
u(my) = 3¢ T u(mi)”, where 6 =[] o7
i=1 j=1

@ Signature forgery

o The attacker asks the signatures o; of my,..., m,_; and
forges the signature o, of m,:

or = p(m;) =4 71;[11 (u(m;)d)ﬂi (mod N)
or=20"- le[la.ﬁ" (mod N)

i
i=1
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Smoothness probability

Theorem (CEP83)

Let x be an integer and let L[] = exp (8- /log xloglog x). Let t
be an integer randomly distributed between zero and x. Then for

large x, the probability that all the prime factors of t are less than
Lu[B] is given by Ly [-1/(28) + o(1)].

@ Smoothness probability

o Let x be a bound on u(m) and let £ = L,[5] be the number of
primes, for some parameter .
e The smoothness probability is

L [-1/(28) + o(1)]
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Asymptotic complexity of Desmedt-Odlyzko attack

@ Asymptotic complexity analysis
o The smoothness probability is L, [-1/(28) + o(1)].
o = it takes L, [1/(25) + o(1)] time to find a smooth p(m;)
o We need ¢+ 1 smooth p(m;), therefore:

T =L [1/(28) + o(D)] - L[] = L [1/(28) + 5 + o(1)]

o The complexity is minimal for 8 = v/2/2.
o Asymptotic complexity: L, [ﬂ+ 0(1)]
@ The complexity is sub-exponential in the size of p(m)

e The attack is only practical for relatively
small p(m) (less than 160 bits).
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Application of Desmedt-Odlyzko attack

@ Cryptanalysis of ISO 9796-1 and ISO 9796-2 signatures
[CNS99]
o Extension of Desmedt-Odlyko attack
e Following this attack ISO 9796-1 was withdrawn
e ISO 9796-2 was amended by increasing the message digest to
at least 160 bits.
e Cryptanalysis of ISO 9796-2 [CNTWO09]
o Improved detection of smooth numbers using Bernstein's
algorithm.
e Works against the amended 1SO 9796-2.
e Following this attack 1ISO 9796-2 was
amended again in late 2010.
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Security proofs in cryptography

@ Since the invention of public-key cryptography
e Many schemes have been proposed...
e And many of them have been broken.

@ How can we justify security rigorously 7

e Prove that if an adversary can break the scheme, he can solve
a hard problem such as:

o Factoring large integers.
o RSA problem: given y, compute y¢ mod N.

o This shows that the scheme is secure, assuming that the
underlying problem is hard to solve.
@ To be rigorous, one must first specify
what it means to break a scheme.
e Security definition
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Provable security for signatures

@ Strongest security notion for signatures (Goldwasser, Micali
and Rivest, 1988):

o It must be infeasible for an adversary to forge the signature of
a message, even if he can obtain the signature of messages of
his choice.
@ Security proof:
e Show that from an adversary who is able to forge signature,
you can solve a difficult problem, such as inverting RSA.
@ Examples of provably secure signature schemes for RSA:

o Full Domain Hash (FDH)
o Probabilistic Signature Scheme (PSS)
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Security model

(N,e,y)

l

pk = (N,e)

Forger | o; Reduction

m,o

l

y9 mod N
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The FDH scheme

@ The FDH signature scheme:
e was designed in 1993 by Bellare and Rogaway.

m — H(m) — s = H(m)? mod N

o The hash function H(m) has the same output size as the
modulus.

@ Security of FDH
o FDH is provably secure in the random oracle model, assuming
that inverting RSA is hard.
@ In the random oracle model, the hash function is replaced by
an oracle which outputs a random value
for each new query.
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Security proof for FDH

@ Proof in the random oracle model

e The adversary cannot compute the hash-function by himself.
e He must make a request to the random oracle, which answers a
random, independantly distributed answer for each new query.

@ Randomly distributed in Zy.
@ Idealized model of computation
e A proof in the random oracle model does not imply that the
scheme is secure when a concrete hash-function like SHA-1 is
used.
e Still a good guarantee.
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Security model with hash queries

(N,e,y)

l

pk = (N, e)

mj

H(m;)

Forger mj Reduction

l

y9 mod N
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Proof of security

@ We assume that there exists a successful adversary.

e This adversary is a forger algorithm that given the public-key
(N, e), after at most ghasy hash queries and gsjg signature
queries, outputs a forgery (m’,s’).

@ We will use this adversary to solve a RSA challenge: given
(N, e,y), output y¥ mod N.

o The adversary's forgery will be used to compute y¢ mod N,
without knowing d.

e If solving such RSA challenge is assumed to be hard, then
producing a forgery must be hard.
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Security proof for FDH

(N,e,y)
» pk = (N’ e) J — [17 Qhash + qsig + 1]
mi . i#j: H(mj) = rf mod N
« H(ml) i=j: H(mj) =y mod N
Forger m; Reduction
> i#j: oj=rimod N
gj
B i=j: L
ml’ J/ / / d
> m =mj;: o' =y? mod N
y9 mod N
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Security proof for FDH

@ Let gpash be the number of hash queries and g;; be the
number of signature queries.
o Select a random j € [, Ghash + Gsig + 1].
@ Answering a hash query for the i-th message m;:
o If i # j, answer H(m;) = rf mod N for random r;.
o If i =j, answer H(mj;) = y where y is the challenge.
@ Answering a signature query for m;:
o If i # j, answer o; = H(m;)? = r; mod N, otherwise (if i = j)
abort.
o We can answer all signature queries,
except for message mj
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Using the forgery

e Let (m',o’) be the forgery

e We assume that the adversary has already made a hash query

for m’, i.e. , m" = m; for some i.
o Otherwise we can simulate this query.

o Then if i = j, then o/ = H(m;)¥ = y¥ mod N.

o We return ¢’ as the solution to the RSA challenge (N, e, y).
@ Our reduction succeeds if i = j:

e Since j was selected at random in [1, ghash + Gsig + 1]

o this happens with probability 1/(qhash + gsig + 1)
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Success probability

@ From a forger that breaks FDH with probability ¢ in time t,
we can invert RSA with probability €’ = €/(qhash + gsig + 1) in
time t’ close to t.

@ Conversely, if we assume that it is impossible to invert RSA
with probability greater than &’ in time t/, it is impossible to
break FDH with probability greater than

£ = (qhash + Asig + 1) -
in time t close to t'.
@ This gives us a security guarantee

the FDH signature scheme is secure
if inverting RSA is hard.
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Improving the security bound [COQ]

o Instead of letting H(m;) = rf mod N for all i # j and
H(m;) =y, one lets
o H(m;) = rf mod N with probability a
o H(m;) = rf -y mod N with probabiliy 1 — «
@ 2 kinds of messages m;:

o When H(m;) = rf mod N one can answer the signature query
but not use a forgery for m;.
@ U = H(m,-)d =" mod N.
o When H(m;) = rf -y mod N one cannot answer the signature
query but we can use a forgery to compute y? mod N.
o If Him;) =y - rf mod N, then o; = H(m,-)d =y?. rimod N
and return y? = ¢;/r; mod N.
e Optimize for a.
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Improving the security bound of FDH

@ Probability that all signature queries are answered:

o A signature query is answered with probability «
o At most gs;z signature queries = P > /%«

@ Probability that the forgery (m;, o’) is useful :

o Useful if H(m;) = rf -y mod N, so with probability 1 — «
@ Global success probability :

o f(a)=a%e - (1—a)

o f(a) is maximum for o, =1 — 1/(qsig + 1)

o f(am) =~ 1/(exp(1) - gsig) for large gsig
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Improved security bound for FDH

@ From a forger that breaks FDH with probability € in time t,
we can invert RSA with probability ¢ = /(4 - gsig) in time t/
close to t.

@ Conversely, if we assume that it is impossible to invert RSA
with probability greater than ¢’ in time t/, it is impossible to
break FDH with probability greater than ¢ =4 - gsjg - €’ in
time t close to t'.

@ Concrete values

o With ghasy = 2°0 and Gsig = 230 we obtain € = 232%¢’ instead
of £ = 250 . &/ = more secure for a given modulus size k.
o A smaller RSA modulus can be

used for the same level of security:
improved efficiency.
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The PSS signature scheme

e PSS (Bellare and Rogaway, Eurocrypt'96)
o IEEE P1363a and PKCS#1 v2.1.
o 2 variants: PSS and PSS-R (message recovery)
e Provably secure against chosen-message attacks, in the

random oracle model.
o PSS-R: u(M,r) = wls, o = (M, r)¥ mod N

Ml|r
H
G q
w S

o Tight security proof
e ¢’ ~ &, so no security loss.
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Implementation attacks

@ The implementation of a cryptographic algorithm can reveal
more information

@ Passive attacks :

e Timing attacks (Kocher, 1996): measure the execution time
o Power attacks (Kocher et al., 1999): measure the power
consumption

@ Active attacks :

o Fault attacks [BDL97]: induce a fault during computation
e Invasive attacks: probing.
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Fault attack against RSA-CRT

@ Induce a fault during computation
e By modifying the input voltage
@ RSA with CRT: to compute s = m? mod N, compute :
° Ssp= m (mod p) where d, = d (mod p — 1)
o s, = m% (mod q) where d; = d (mod q — 1)
o and recombine s, and s, using CRT to get s = m? (mod N)

e Fault attack against RSA with CRT [BDL97]

o If s, is incorrect, then s¢ # m (mod N) while s* = m (mod q)
o Therefore, gcd(N, s — m mod N) gives the prime factor g.
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