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Public-key cryptography

Invented by Diffie and Hellman in 1976. Revolutionized the
field.

Each user now has two keys
A public key
A private key
Should be hard to compute the private key from the public key.

Enables:
Asymmetric encryption
Digital signatures
Key exchange, identification, and many other protocols.
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Key distribution issue

Symmetric cryptography

Problem: how to initially distribute the key to establish a
secure channel ?

Jean-Sébastien Coron The RSA cryptosystem



Public-key encryption

Public-key encryption (or asymmetric encryption)

Solves the key distribution issue
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The RSA algorithm

The RSA algorithm is the most widely-used public-key
encryption algorithm

Invented in 1977 by Rivest, Shamir and Adleman.
Implements a trapdoor one-way permutation
Used for encryption and signature.
Widely used in electronic commerce protocols (SSL), secure
email, and many other applications.
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Trapdoor one-way permutation

Trapdoor one-way permutation

Computing f (x) from x is easy
Computing x from f (x) is hard without the trapdoor

Public-key encryption

Anybody can compute the encryption c = f (m) of the
message m
One can recover m from the ciphertext c only with the
trapdoor

Jean-Sébastien Coron The RSA cryptosystem



RSA

Key generation:

Generate two large distinct primes p and q of same bit-size
k/2, where k is a parameter.
Compute n = p · q and φ = (p − 1)(q − 1).
Select a random integer e, 1 < e < φ such that gcd(e, φ) = 1
Compute the unique integer d such that

e · d ≡ 1 (mod φ)

using the extended Euclidean algorithm.
The public key is (n, e).
The private key is d .
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RSA encryption

Encryption

Given a message m ∈ [0, n − 1] and the recipent’s public-key
(n, e), compute the ciphertext:

c = me mod n

Decryption

Given a ciphertext c , to recover m, compute:

m = cd mod n

Message encoding

The message m is viewed as an integer
between 0 and n − 1
One can always interpret a bit-string
of length less than blog2 nc as such
a number.
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Reminder: Fermat’s little theorem

Theorem

For any prime p and any integer a 6= 0 mod p, we have
ap−1 ≡ 1 mod p. Moreover, for any integer a, we have ap ≡ a
mod p.

Proof

Follows from Euler’s theorem and φ(p) = p − 1.
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Proof that decryption works

We must show that med = m mod n.

Since e · d ≡ 1 mod φ, there is an integer k such that
e · d = 1 + k · φ = 1 + k · (p − 1) · (q − 1). Therefore we must
show that:

m1+k·(p−1)·(q−1) ≡ m (mod n)

If m 6= 0 mod p, then by Fermat’s little theorem mp−1 ≡ 1
(mod p), which gives :

m1+k·(p−1)·(q−1) ≡ m (mod p)

This is also true if m ≡ 0 (mod p).
This gives med ≡ m (mod p) for all m.
Similarly, med ≡ m (mod q) for all m.
By the Chinese Remainder Theorem,
if p 6= q, then med ≡ m (mod n)
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Decrypting with CRT

Given the factors p and q of n = p · q, instead of computing
m = cd mod n, compute:

mp = cdp mod p, where dp = d mod (p − 1)
mq = cdq mod q, where dq = d mod (q − 1)
Using CRT, find m such that m ≡ mp (mod p) and m ≡ mq

(mod q):

m =
(
mp · (q−1 mod p) · q + mq · (p−1 mod q) · p

)
mod n

Since exponentiation is cubic, this is roughly 4 times faster.
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Implementation of RSA

Required: computing with large integers
more than 1024 bits.

In software
big integer library: GMP, NTL

In hardware
Cryptoprocessor for smart-card
Hardware accelerator for PC.
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Speed of RSA

RSA much slower than AES and other secret key algorithms.

To encrypt long messages

encrypt a symmetric key K with RSA
and encrypt the long message with K
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Security of RSA

The security of RSA is based on the hardness of factoring.

Given n = p · q, it should be difficult to recover p and q.
No efficient algorithm is known to do that. Best algorithms
have sub-exponential complexity.
Factoring record: a 768-bit RSA modulus n.
In practice, one uses at least 1024-bit RSA moduli.

However, there are many other lines of attacks.

Attacks against textbook RSA encryption
Low private / public exponent attacks
Implementation attacks: timing attacks,
power attacks and fault attacks
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Factoring attack

Factoring large integers

Best factoring algorithm: Number Field Sieve
Sub-exponential complexity

exp
(

(c + ◦(1)) n1/3 log2/3 n
)

for n-bit integer.
Current factoring record: 768-bit RSA modulus.

Use at least 1024-bit RSA moduli

2048-bit for long-term security.
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Factoring vs breaking RSA

Breaking RSA:

Given (N, e) and y , find x such that y = xe mod N

Open problem

Is breaking RSA equivalent to factoring ?

Knowing d is equivalent to factoring

Probabilistic algorithm (RSA, 1978)
Deterministic algorithm (A. May 2004, J.S. Coron and A. May
2007)
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Elementary attacks

Textbook RSA encryption: dictionary attack

If only two possible messages m0 and m1, then only
c0 = (m0)e mod N and c1 = (m1)e mod N.
⇒ encryption must be probabilistic.

PKCS#1 v1.5

µ(m) = 0002‖r‖00‖m
c = µ(m)e mod N
Still insufficient (Bleichenbacher’s attack, 1998)
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Chosen ciphertext attack against textbook RSA

Chosen-ciphertext attack:

Given ciphertext c to be decrypted
Generate a random r
Ask for the decryption of the random looking ciphertext
c ′ = c · r e (mod n)
One gets m′ = (c ′)d = cd · (r e)d = cd · r = m · r (mod n)
This enables to compute m = m′/r (mod n)

Conclusion: do not use textbook RSA encryption !
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Proofs for encryption schemes

Security notion for encryption.

From a ciphertext c , an attacker should not be able to derive
any information from the corresponding plaintext m.
Even if the attacker can obtain the decryption of any
ciphertext, c excepted.
This is called indistinguishability against a chosen ciphertext
attack (IND-CCA2).

Security proof for encryption

Prove that if an attacker can distinguish between the
encryption of two plaintexts,
then it can be used to break RSA.
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IND-CCA2 security

The attack scenario:

The adversary A receives the public key pk
A makes decryption queries for any ciphertexts y .
A chooses two messages M0 and M1 of identical length, and
receives the encryption c of Mb for a random b.
A continues to make decryption queries. The only restriction
is that the adversary can not obtain the decryption of c .
A outputs a bit b′, representing its “guess” of b.

IND-CCA2 security:

An encryption scheme is said to be IND-CCA2 secure if for any
polynomial-time bounded A, the advantage
Adv(A) = |2 · Pr[b′ = b]− 1| is a
negligible function of the security
parameter.
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OAEP

OAEP (Bellare and Rogaway, E’94)

IND-CCA2, assuming that RSA is hard to invert.
PKCS #1 v2.1

c = (s‖t)e mod N
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Digital signatures

A digital signature σ is a bit string that depends on the
message m and the user’s public-key pk

Only Alice can sign a message m using her private-key sk

Anybody can verify Alice’s signature of the message m given
her public-key pk
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The RSA signature scheme

Key generation :

Public modulus: N = p · q where p and q are large primes.
Public exponent : e
Private exponent: d , such that d · e = 1 mod φ(N)

To sign a message m, the signer computes :

s = md mod N
Only the signer can sign the message.

To verify the signature, one checks that:

m = se mod N
Anybody can verify the signature
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Hash-and-sign paradigm

There are many attacks on basic RSA signatures:

Existential forgery: r e = m mod N
Chosen-message attack: (m1 ·m2)d = md

1 ·md
2 mod N

To prevent from these attacks, one usually uses a hash
function. The message is first hashed, then padded.

m −→ H(m) −→ 1001 . . . 0101‖H(m)
Example: PKCS#1 v1.5:
µ(m) = 0001 FF....FF00||cSHA||SHA(m)
The signature is then σ = µ(m)d mod N
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Conclusion

The RSA cryptosystem

RSA encryption. Elementary attacks. IND-CCA2 security.
OAEP
RSA signatures. Elementary attacks.

Next lectures

More complex attacks. Coppersmith’s theorem.
Security proofs for RSA signature schemes
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Appendix
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Probabilistic equivalence between knowing d and factoring

We consider the particular case N = pq with p ≡ 3 (mod 4)
and q ≡ 3 (mod 4).

Algorithm:

Write u = e · d − 1. Therefore u is a multiple of
φ(N) = (p − 1) · (q − 1).
Write u = 2r · t for odd t.
Generate a random a ∈ Z∗N
Compute b ≡ at (mod N)
Return gcd(b + 1,N)
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Analysis

We have t = s · p−1
2 ·

q−1
2 for some odd s.

Let Qp = {x ∈ Z∗
p | x (p−1)/2 ≡ 1 (mod p)}

Qp is a subgroup of Zp of order (p − 1)/2
therefore (a mod p) ∈ Qp with probability 1/2
Moreover:

a ∈ Qp ⇒ b ≡ 1 (mod p)

a /∈ Qp ⇒ b ≡ −1 (mod p)

We obtain the factorization of N
if (a ∈ Qp ∧ b /∈ Qq) or (a /∈ Qp ∧ b ∈ Qq)

This happens with probability 1/2
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