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Course summary

Algorithms for numbers
Describe the basic algorithms for dealing with numbers
Implement them on a computer

Public-key cryptography
Describe the basic public-key algorithms
and the main cryptanalytical attacks
Implement them on a computer
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Course organization

The course is based on lectures and homeworks.
Homework:

Implementation of the basic algorithms described in the
lectures.
100% of the final grade.
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Basic number theory for cryptography

Basic properties
Congruence, modular arithmetic, modular exponentiation.
GCD, Euclid’s algorithm, modular inverse, CRT
Euler function, Fermat’s little theorem

The set Z∗
p for prime p

Generators of Z∗
p

Quadratic residues, Legendre symbol, Jacobi symbol
Computing square roots

Recommended textbook
Victor Shoup, A Computational Introduction to Number
Theory and Algebra
https://www.shoup.net/ntb/
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Euclidean division and modulo operator

Theorem (Division with remainder)
For a,b ∈ Z with b > 0, there exist unique q, r ∈ Z such that
a = bq + r and 0 ≤ r < b.

Quotient
q = ⌊a/b⌋, where ⌊x⌋ denote the greatest integer ≤ x .

Modulo operator
We write r = a mod b
a mod b = a− b · ⌊a/b⌋
Examples:
7 mod 3 = 1
10 mod 4 = 2
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Basic properties of integers

Theorem (Fundamental theorem of arithmetic)
Every non-zero integer n can be expressed as

n = ±pe1
1 · · · p

er
r

where the pi ’s are distinct primes and the ei are positive
integers. Moreover the decomposition is unique, up to
reordering of the primes.

Proof: existence is easy by induction; unicity: see any
standard textbook.
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Congruence

Congruence.
Let n > 0 and a,b ∈ Z.

a ≡ b (mod n)⇔ n | (a− b)
n is called the modulus.
Should not be confused with the mod of Euclidean division.

Examples :
2 ≡ 8 (mod 3), since 3 | (8− 2).
12 ≡ 2 (mod 5), since 5 | (12− 2).

Jean-Sébastien Coron Basic number theory for cryptography



Properties

Basic properties :
a ≡ b (mod n)⇔ ∃k ∈ Z,a = b + k · n.
a ≡ a (mod n)
a ≡ b (mod n)⇒ b ≡ a (mod n)
a ≡ b (mod n) and b ≡ c (mod n) implies a ≡ c (mod n)

When working modulo n, we can always choose a
representative between 0 and n − 1:

Theorem: for any a ∈ Z, there exists a unique integer b ∈ Z
such that a ≡ b (mod n) and 0 ≤ b < n, namely
b := a mod n.

Examples:
23 ≡ 3 (mod 5)
25 ≡ 4 (mod 7)

Jean-Sébastien Coron Basic number theory for cryptography



Properties

Congruence is compatible with addition and multiplication
If a ≡ a′ (mod n) and b ≡ b′ (mod n), then
a + b ≡ a′ + b′ (mod n) and a · b ≡ a′ · b′ (mod n).

This means that we can work with congruence relations as
with ordinary equalities

When computing modulo n, one can substitute to x a value
x ′ ≡ x (mod n):

Compute a with 0 ≤ a < 7 such that a ≡ 83 · 72 (mod 7).
First approach: 83 · 72 = 5976
a = 5976 (mod 7) = 5.
Second approach: 83 ≡ 6 (mod 7),
72 ≡ 2 (mod 7),
83 · 72 ≡ 6 · 2 ≡ 12 ≡ 5 (mod 7).
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Modular exponentiation

We want to compute c = ab (mod n).
Example: RSA

c = me (mod n) where m is the message, e the public
exponent, and n the modulus.

Naive method:
Multiplying a in total b times by itself modulo n
Very slow: if b is 100 bits, roughly 2100 multiplications !

Example: compute b = a16 (mod n)
b = a · a · . . . · a · a (mod n) : 15 multiplications
b = (((a2)2)2)2 (mod n) : 4 multiplications
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Square and multiply algorithm

Let b = (bℓ−1 . . . b0)2 the binary representation of b

b =
ℓ−1∑
i=0

bi · 2i

Square and multiply algorithm :
Input : a, b and n
Output : ab (mod n)
c ← 1
for i = ℓ− 1 down to 0 do

c ← c2 (mod n)
if bi = 1 then c ← c · a (mod n)

Output c
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Analysis

Let Bi be the integer with binary representation
(bℓ−1 . . . bi)2, and let

ci = aBi (mod n)

Initialization {
Bℓ = 0
cℓ = 1

Recursive step{
Bi = 2 · Bi+1 + bi

ci = (ci+1)
2 · abi (mod n)

Final step {
B0 = b
c0 = ab (mod n)
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Greatest common divisor

Greatest common divisor:
A common divisor d ∈ Z of a,b ∈ Z is such that d |a and d |b
We say that d is a greatest common divisor of a and b if
d > 0 and all other common divisors of a and b divide d .
There exists a unique greatest common divisor, so we can
write d = gcd(a,b) and moreover

aZ+ bZ = dZ

Examples
gcd(9,6) = 3
gcd(7,5) = 1.
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Property of gcd

Let a,b > 0
gcd(a,b) = gcd(b,a mod b)

Proof. Let r = a mod b = a− q · b for some q ∈ Z.
If d |a and d |b, then d |r , and then d | gcd(b, r). Then
gcd(a,b)| gcd(b, r).
Similarly gcd(b, r)| gcd(a,b), therefore gcd(a,b) = gcd(b, r).

Example:
gcd(47,18) = gcd(18,11) = gcd(11,7) = gcd(7,4) =
gcd(4,3) = gcd(3,1) = gcd(1,0) = 1
This is Euclid’s algorithm
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Euclid’s algorithm

Euclid’s algorithm with input a,b > 0.
Let r0 = a and r1 = b.
For i ≥ 0, one defines the sequence (ri) and (qi) such that :

ri = qi · ri+1 + ri+2

where qi and ri+2 are the quotient and remainder of the
division of ri by ri+1
The sequence is decreasing, so rk = 0 for some k > 0
Then gcd(a,b) = rk−1.

Proof
gcd(a,b) = gcd(ri , ri+1) for all i < k
gcd(a,b) = gcd(rk−1, rk )

= gcd(rk−1,0) = rk−1
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Example of gcd computation

Example of gcd(a,b) with a = 47, b = 18
r0 = a = 47
r1 = b = 18
ri = qi · ri+1 + ri+2

i 0 1 2 3 4 5 6 7
ri 47 18 11 7 4 3 1 0

gcd(47,18) = gcd(18,11) = gcd(11,7) = gcd(7,4)
= gcd(4,3) = gcd(3,1) = gcd(1,0) = 1
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Modular arithmetic

Let an integer n > 1 called the modulus.
Modular reduction

r := a mod n, remainder of the division of a by n.
0 ≤ r < n
Ex: 11 mod 8 = 3, 15 mod 5 = 0.

Congruence:
a ≡ b (mod n) if n | (a− b).
a ≡ b (mod n) iif a and b have same remainder modulo n.
Ex: 11 ≡ 19 (mod 8).
If r := a mod n, then r ≡ a (mod n).
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Modular arithmetic

If a0 ≡ b0 (mod n) and a1 ≡ b1 (mod n)
a0 + a1 ≡ b0 + b1 (mod n)
a0 − a1 ≡ b0 − b1 (mod n)
a0 · a1 ≡ b0 · b1 (mod n)

Integers modulo n
Integers modulo n are Zn = {0,1, . . . ,n − 1}
Addition, subtraction or multiplication in Zn is done by first
doing it in Z and then reducing the result modulo n.
For example in Z7:

6 + 4 = 3, 3 − 4 = 6, 3 · 6 = 4.
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Multiplicative inverse

Multiplicative inverse :
Let n > 0 and a ∈ Z. An integer a′ is a multiplicative inverse
of a modulo n if a · a′ ≡ 1 (mod n).

Theorem :
Let n,a ∈ Z with n > 0. Then a has a multiplicatif inverse
modulo n iff gcd(a,n) = 1. Moreover such multiplicative
inverse is unique modulo n.
Proof

If a · a′ ≡ 1 (mod n), then a · a′ = 1 + k · n for some k ∈ Z.
Therefore if d |a and d |n, then d |1. Therefore gcd(a, n) = 1.
If gcd(a, n) = 1, then aZ+ nZ = Z,
so a · s + n · t = 1 for some s, t ∈ Z.
Therefore a · s ≡ 1 (mod n).
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Example

The multiplicative inverse of 5 modulo 7 is 3 because

3 · 5 ≡ 15 ≡ 1 (mod 7)

2 has no multiplicative inverse modulo 6 :
2 · 1 ≡ 2 (mod 6)
2 · 2 ≡ 4 (mod 6)
2 · 3 ≡ 0 (mod 6)
2 · 4 ≡ 2 (mod 6)
2 · 5 ≡ 4 (mod 6)
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Euclid’s extended algorithm

Euclid’s extended algorithm
Let a,b ∈ Z and d = gcd(a,b).
Computes u, v ∈ Z such that a · u + b · v = d .
Based on computing two sequences ui , vi such that
a · ui + b · vi = ri , where eventually rk−1 = d .

Application to computing multiplicative inverse
Let a,n with n > 0 and gcd(a,n) = 1.
With Euclid’s extended algorithm, one computes u, v such
that

a · u + n · v = 1

Then a · u ≡ 1 (mod n)
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Euclid’s extended algorithm

Euclid’s extended algorithm, for a > 0 and b ≥ 0.
r0 = a and r1 = b.
For i ≥ 0, let ri = qi · ri+1 + ri+2
Two additional sequences ui and vi .
u0 := 1, v0 := 0, u1 := 0, v1 := 1 and for i ≥ 2, one defines{

ui = ui−2 − qi−2 · ui−1

vi = vi−2 − qi−2 · vi−1

There exists k > 0 such that rk = 0.
gcd(a,b) = rk−1 = uk−1 · a + vk−1 · b
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Proof

We always have
ri = ui · a + vi · b

Initialization
r0 = a = 1 · a + 0 · b.
r1 = b = 0 · a + 1 · b.

Recursive step:
Assume ui−2 · a + vi−2 · b = ri−2

ui−1 · a + vi−1 · b = ri−1

ui · a + vi · b = (ui−2 − qi−2 · ui−1) · a+
(vi−2 − qi−2 · vi−1) · b

= ri−2 − qi−2 · ri−1

= ri
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Example of extended gcd computation

Compute u, v such that 47 · u + 18 · v = 1
(r0, r1) = (47,18)
(u0,u1) = (1,0)
(v0, v1) = (0,1)

ri−2 = qi−2 · ri−1 + ri
ui = ui−2 − qi−2 · ui−1
vi = vi−2 − qi−2 · vi−1

i 0 1 2 3 4 5 6 7
ri 47 18
qi
ui 1 0
vi 0 1
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Example of extended gcd computation

Compute u, v such that 47 · u + 18 · v = 1
(r0, r1) = (47,18)
(u0,u1) = (1,0)
(v0, v1) = (0,1)

ri−2 = qi−2 · ri−1 + ri
ui = ui−2 − qi−2 · ui−1
vi = vi−2 − qi−2 · vi−1

i 0 1 2 3 4 5 6 7
ri 47 18 11
qi 2
ui 1 0 1
vi 0 1 -2
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Example of extended gcd computation

Compute u, v such that 47 · u + 18 · v = 1
(r0, r1) = (47,18)
(u0,u1) = (1,0)
(v0, v1) = (0,1)

ri−2 = qi−2 · ri−1 + ri
ui = ui−2 − qi−2 · ui−1
vi = vi−2 − qi−2 · vi−1

i 0 1 2 3 4 5 6 7
ri 47 18 11 7
qi 2 1
ui 1 0 1 -1
vi 0 1 -2 3
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Example of extended gcd computation

Compute u, v such that 47 · u + 18 · v = 1
(r0, r1) = (47,18)
(u0,u1) = (1,0)
(v0, v1) = (0,1)

ri−2 = qi−2 · ri−1 + ri
ui = ui−2 − qi−2 · ui−1
vi = vi−2 − qi−2 · vi−1

i 0 1 2 3 4 5 6 7
ri 47 18 11 7 4
qi 2 1 1
ui 1 0 1 -1 2
vi 0 1 -2 3 -5
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Example of extended gcd computation

Compute u, v such that 47 · u + 18 · v = 1
(r0, r1) = (47,18)
(u0,u1) = (1,0)
(v0, v1) = (0,1)

ri−2 = qi−2 · ri−1 + ri
ui = ui−2 − qi−2 · ui−1
vi = vi−2 − qi−2 · vi−1

i 0 1 2 3 4 5 6 7
ri 47 18 11 7 4 3
qi 2 1 1 1
ui 1 0 1 -1 2 -3
vi 0 1 -2 3 -5 8
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Example of extended gcd computation

Compute u, v such that 47 · u + 18 · v = 1
(r0, r1) = (47,18)
(u0,u1) = (1,0)
(v0, v1) = (0,1)

ri−2 = qi−2 · ri−1 + ri
ui = ui−2 − qi−2 · ui−1
vi = vi−2 − qi−2 · vi−1

i 0 1 2 3 4 5 6 7
ri 47 18 11 7 4 3 1
qi 2 1 1 1 1
ui 1 0 1 -1 2 -3 5
vi 0 1 -2 3 -5 8 -13
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Example of extended gcd computation

Compute u, v such that 47 · u + 18 · v = 1
(r0, r1) = (47,18)
(u0,u1) = (1,0)
(v0, v1) = (0,1)

ri−2 = qi−2 · ri−1 + ri
ui = ui−2 − qi−2 · ui−1
vi = vi−2 − qi−2 · vi−1

i 0 1 2 3 4 5 6 7
ri 47 18 11 7 4 3 1 0
qi 2 1 1 1 1
ui 1 0 1 -1 2 -3 5
vi 0 1 -2 3 -5 8 -13
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Example of extended gcd computation

Compute u, v such that 47 · u + 18 · v = 1
(r0, r1) = (47,18)
(u0,u1) = (1,0)
(v0, v1) = (0,1)

ri−2 = qi−2 · ri−1 + ri
ui = ui−2 − qi−2 · ui−1
vi = vi−2 − qi−2 · vi−1

i 0 1 2 3 4 5 6 7
ri 47 18 11 7 4 3 1 0
qi 2 1 1 1 1
ui 1 0 1 -1 2 -3 5
vi 0 1 -2 3 -5 8 -13

47 · 5 + 18 · (−13) = 1
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Solving linear congruence

Let a,n ∈ Z with n > 0 such that gcd(a,n) = 1. Let b ∈ Z.
The equation a · x ≡ b (mod n) has a unique solution x
modulo n.

Let a−1 by the multiplicative inverse of a modulo n.

a · a−1 · x ≡ x ≡ a−1 · b (mod n)

Example :
Find x such that 5 · x ≡ 6 (mod 7)
3 is the inverse of 5 modulo 7 because 5 · 3 ≡ 1 (mod 7).
3 · 5 · x ≡ 15 · x ≡ 1 · x ≡ 3 · 6 ≡ 4 (mod 7)
x ≡ 4 (mod 7)
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Chinese remainder theorem

Chinese remainder theorem
Let two integers n1 > 1 and n2 > 0 with gcd(n1,n2) = 1.
For all a1,a2 ∈ Z, there exists an integer z such that{

z ≡ a1 (mod n1)
z ≡ a2 (mod n2)

z is unique modulo n1 · n2.
Existence :

Let m1 = (n2)
−1 mod n1 and m2 = (n1)

−1 mod n2

z := n2 ·m1 · a1 + n1 ·m2 · a2

z ≡ (n2 ·m1) · a1 ≡ a1 (mod n1)
z ≡ (n1 ·m2) · a2 ≡ a2 (mod n2)
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Euler function

Definition:
ϕ(n) for n > 0 is defined as the number of integers a
comprised between 0 and n − 1 such that gcd(a,n) = 1.
ϕ(1) = 1, ϕ(2) = 1, ϕ(3) = 2, ϕ(4) = 2.

Equivalently:
Let Z∗

n be the set of integers a comprised between 0 and
n − 1 such that gcd(a,n) = 1.
Then ϕ(n) = |Z∗

n|.
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Properties

If p ≥ 2 is prime, then

ϕ(p) = p − 1

More generally, for any e ≥ 1,

ϕ(pe) = pe−1 · (p − 1)

For n,m > 0 such that gcd(n,m) = 1, we have:

ϕ(n ·m) = ϕ(n) · ϕ(m)
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ϕ(pe) = pe−1 · (p − 1)

If p is prime
Then for any integer 1 ≤ a < p, gcd(a,p) = 1
Therefore ϕ(p) = p − 1

For n = pe, the integers between 0 and n not co-prime with
n are

0,p,2 · p, . . . , (pe−1 − 1) · p
There are pe−1 of them.
Therefore, ϕ(pe) = pe − pe−1 = pe−1 · (p − 1)
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ϕ(n ·m) = ϕ(n) · ϕ(m)

Consider the map:

f : Znm → Zn × Zm

a → (a mod n,a mod m)

From the CRT, the map is a bijection.
Moreover, gcd(a,n ·m) = 1 if and only if gcd(a,n) = 1 and
gcd(a,m) = 1.
Therefore, |Z∗

nm| = |Z∗
n| · |Z∗

m|
This implies ϕ(n ·m) = ϕ(n) · ϕ(m).
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Theorem

If n = pe1
1 . . . per

r is the factorization of n into primes, then :

ϕ(n) =
r∏

i=1

pei−1
i · (pi − 1) = n

r∏
i=1

(1− 1/pi)

Proof: immediate consequence of the previous properties.
Example

ϕ(45) = ϕ(32) · ϕ(5) = 3 · 2 · 4 = 24
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Euler’s theorem

Theorem
For any integer n > 1 and any integer a such that
gcd(a,n) = 1, we have aϕ(n) ≡ 1 mod n.

Proof
Consider the map f : Z∗

n → Z∗
n, with f (b) = a · b

f is a permutation, therefore :

∏
b∈Z∗

n

b =
∏

b∈Z∗
n

f (b) =
∏

b∈Z∗
n

(a · b) = aϕ(n) ·

 ∏
b∈Z∗

n

b


Therefore aϕ(n) ≡ 1 (mod n).
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Fermat’s little theorem

Theorem
For any prime p and any integer a ̸= 0 (mod p), we have
ap−1 ≡ 1 (mod p). Moreover, for any integer a, we have
ap ≡ a (mod p).

Proof: follows from Euler’s theorem and ϕ(p) = p − 1.
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Multiplicative order

The multiplicative order of an integer a modulo n is defined
as the smallest integer k > 0 such that

ak ≡ 1 (mod n)

Lagrange theorem: we must have k |ϕ(n)
a ∈ Z a primitive root modulo n if k = ϕ(n)

Example
i 1 2 3 4

1i mod 5 1 1 1 1
2i mod 5 2 4 3 1
3i mod 5 3 4 2 1
4i mod 5 4 1 4 1

1 has order 1, 4 has order 2.
2 and 3 have order 4 (primitive roots)
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The set Z∗p for prime p

Z∗
p is a cyclic group

There exists g ∈ Z∗
p such that

Z∗
p = {1,g,g2, . . . ,gp−2}

Such a g is called a generator of Z∗
p (primitive root).

Example
In Z∗

5, ⟨2⟩ = {1,2,22,23} = {1,2,4,3} = Z∗
5

But in Z∗
5, ⟨4⟩ = {1,4} ≠ Z∗

5 so 4 is not a generator of Z∗
5.
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Quadratic residues

A quadratic residue modulo n is the square of an integer
modulo n

QRn = { y : gcd(y ,n) = 1 ∧ ∃x , y = x2 (mod n) }
NQRn = { y : gcd(y ,n) = 1 ∧ ∀x , y ̸= x2 (mod n) }

Example
QR13 = {1,3,4,9,10,12}

NQR13 = {2,5,6,7,8,11}

because {12,22,32,42,52,62,72,82,92,102,112,122} ≡
{1,3,4,9,10,12} (mod 13)

Theorem: let p be a prime number,
then #QRp = #NQRp = (p − 1)/2
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Legendre symbol

For a prime number p, we define the Legendre symbol as

(
a
p

)
=


1 if a ∈ QRp
−1 if a ∈ NQRp
0 if p|a

For a prime p number

a(p−1)/2 ≡
(

a
p

)
(mod p)

The Legendre symbol can be efficiently computed

Let g ∈ Z∗
p be a generator of Z∗

p. Let x = gr for some r ∈ Z.

x ∈ QRp ⇔ r is even

The Legendre symbol reveals
the parity of r .
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The Jacobi symbol
For any integer n = p1 · p2 · · · pk , we define the Jacobi
symbol as (a

n

)
=

(
a
p1

)
·
(

a
p2

)
· · ·

(
a
pk

)
For m,n odd, positive integers, and for a,b ∈ Z. From the
definition(

ab
n

)
=

(a
n

)(
b
n

) ( a
mn

)
=

( a
m

)(a
n

)
(a

n

)
=

(
a mod n

n

)
Other properties(

−1
n

)
= (−1)(n−1)/2

(
2
n

)
= (−1)(n

2−1)/8

(m
n

)( n
m

)
= (−1)(m−1)(n−1)/4
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Computing the Jacobi symbol

Algorithm 1 Jacobi(a,n)
1: If a ≤ 1 then return a
2: if a is odd then ▷

( a
n

) ( n
a

)
= (−1)(a−1)(n−1)/4

3: If a ≡ n ≡ 3 (mod 4)
4: then return −Jacobi(n mod a,a)
5: else return Jacobi(n mod a,a)
6: end if
7: if a is even then ▷

( 2
n

)
= (−1)(n

2−1)/8

8: If n = ±1 (mod 8)
9: then return Jacobi(a/2,n)

10: else return −Jacobi(a/2,n)
11: end if

Example(
37
47

)
=

(
10
37

)
= −

(
5

37

)
= −

(
2
5

)
=

(
1
5

)
= 1
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Computing modular square roots

For a prime number p ≡ 3 (mod 4) and α ∈ QRp, we have
that a square-root of α can be computed as:

β = α(p+1)/4 (mod p)

If β is the square root of α then −β is also a square root of
α modulo p.

Proof: since α ∈ QRp, there exists β̃ such that β̃2 = α

β2 = α(p+1)/2 = β̃p+1 = β̃p−1 · β̃2 = β̃2 = α
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Solving quadratic equations in Zp

a · x2 + b · x + c = 0 (mod p)

If a solution exists it must be given by

x1,2 =
−b ±

√
b2 − 4ac

2a

Equation has a solution in Zp iff ∆ ∈ QRp where
∆ = b2 − 4 · a · c

Compute
√
∆ in Zp and recover

the roots x1, x2
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Computing square roots modulo n = pq

Given n = p · q for known primes p,q, and given α ∈ QRn,
we want to find β such that β2 = α (mod n)
First solve modulo p and q separately{

(βp)
2 = α (mod p)

(βq)
2 = α (mod q)

Solve the simultaneous congruence{
β = βp (mod p)

β = βq (mod q)

using the Chinese Reminder Theorem.

Jean-Sébastien Coron Basic number theory for cryptography


