Algorithms for Numbers and Public-Key Cryptography

Jean-Sébastien Coron

University of Luxembourg

Jean-Sébastien Coron Algorithms for Numbers and Public-Key Cryptography

→ Ξ → < Ξ →</p>

< 🗇 🕨

Algorithms for numbers

- Describe the basic algorithms for dealing with numbers
- Implement them on a computer
- Public-key cryptography
 - Describe the basic public-key algorithms
 - and the main cryptanalytical attacks
 - Implement them on a computer

・ 同 ト ・ ヨ ト ・ ヨ ト

- The course is based on lectures and homeworks.
- Homework:
 - Implementation of the basic algorithms described in the lectures.
 - 100% of the final grade.

・ 回 ト ・ ヨ ト ・ ヨ ト

Basic number theory for cryptography

Jean-Sébastien Coron

University of Luxembourg

Jean-Sébastien Coron Basic number theory for cryptography

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Basic number theory for cryptography

- Basic properties
 - Congruence, modular arithmetic, modular exponentiation.
 - GCD, Euclid's algorithm, modular inverse, CRT
 - Euler function, Fermat's little theorem
- The set Z^{*}_p for prime p
 - Generators of \mathbb{Z}_p^*
 - Quadratic residues, Legendre symbol, Jacobi symbol
 - Computing square roots
- Recommended textbook
 - Victor Shoup, A Computational Introduction to Number Theory and Algebra
 - https://www.shoup.net/ntb/

く 同 と く ヨ と く ヨ と

Theorem (Division with remainder)

For $a, b \in \mathbb{Z}$ with b > 0, there exist unique $q, r \in \mathbb{Z}$ such that a = bq + r and $0 \le r < b$.

Quotient

• $q = \lfloor a/b \rfloor$, where $\lfloor x \rfloor$ denote the greatest integer $\leq x$.

- Modulo operator
 - We write $r = a \mod b$
 - $a \mod b = a b \cdot \lfloor a/b \rfloor$
 - Examples:
 - $7 \mod 3 = 1$
 - $10 \ \text{mod} \ 4 = 2$

(日本) (日本) (日本)

Theorem (Fundamental theorem of arithmetic)

Every non-zero integer n can be expressed as

$$n = \pm p_1^{e_1} \cdots p_r^{e_r}$$

where the p_i 's are distinct primes and the e_i are positive integers. Moreover the decomposition is unique, up to reordering of the primes.

 Proof: existence is easy by induction; unicity: see any standard textbook.

ヘロン 人間 とくほ とくほ とう

Congruence.

• Let
$$n > 0$$
 and $a, b \in \mathbb{Z}$.

$$a \equiv b \pmod{n} \Leftrightarrow n \mid (a - b)$$

- *n* is called the *modulus*.
- Should not be confused with the mod of Euclidean division.

• Examples :

- $2 \equiv 8 \pmod{3}$, since $3 \mid (8 2)$.
- 12 \equiv 2 (mod 5), since 5 | (12 2).

(日本) (日本) (日本)

3

Basic properties :

- $a \equiv b \pmod{n} \Leftrightarrow \exists k \in \mathbb{Z}, a = b + k \cdot n.$
- $a \equiv a \pmod{n}$
- $a \equiv b \pmod{n} \Rightarrow b \equiv a \pmod{n}$
- $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ implies $a \equiv c \pmod{n}$
- When working modulo n, we can always choose a representative between 0 and n – 1:
 - Theorem: for any *a* ∈ Z, there exists a unique integer *b* ∈ Z such that *a* ≡ *b* (mod *n*) and 0 ≤ *b* < *n*, namely *b* := *a* mod *n*.
 - Examples:
 - 23 ≡ 3 (mod 5)
 - $25 \equiv 4 \pmod{7}$

▲御♪ ▲臣♪ ▲臣♪ 二臣

Properties

- Congruence is compatible with addition and multiplication
 - If $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$, then
 - $a + b \equiv a' + b' \pmod{n}$ and $a \cdot b \equiv a' \cdot b' \pmod{n}$.
- This means that we can work with congruence relations as with ordinary equalities
- When computing modulo *n*, one can substitute to *x* a value $x' \equiv x \pmod{n}$:
 - Compute *a* with $0 \le a < 7$ such that $a \equiv 83 \cdot 72 \pmod{7}$.
 - First approach: 83 · 72 = 5976
 a = 5976 (mod 7) = 5.
 - Second approach: $83 \equiv 6 \pmod{7}$, $72 = 2 \pmod{7}$
 - $72 \equiv 2 \pmod{7},$
 - $83 \cdot 72 \equiv 6 \cdot 2 \equiv 12 \equiv 5 \pmod{7}.$

ヘロン 人間 とくほ とくほ とう

Modular exponentiation

- We want to compute $c = a^b \pmod{n}$.
 - Example: RSA
 - $c = m^e \pmod{n}$ where *m* is the message, *e* the public exponent, and *n* the modulus.
- Naive method:
 - Multiplying a in total b times by itself modulo n
 - Very slow: if *b* is 100 bits, roughly 2¹⁰⁰ multiplications !
- Example: compute $b = a^{16} \pmod{n}$
 - $b = a \cdot a \cdot \ldots \cdot a \cdot a \pmod{n}$: 15 multiplications
 - $b = (((a^2)^2)^2)^2 \pmod{n}$: 4 multiplications

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Square and multiply algorithm

• Let $b = (b_{\ell-1} \dots b_0)_2$ the binary representation of b

$$b = \sum_{i=0}^{\ell-1} b_i \cdot 2^i$$

• Square and multiply algorithm :

• Input :
$$a, b$$
 and n
• Output : $a^b \pmod{n}$
• $c \leftarrow 1$
for $i = \ell - 1$ down to 0 do
 $c \leftarrow c^2 \pmod{n}$
if $b_i = 1$ then $c \leftarrow c \cdot a \pmod{n}$
Output c

< 回 > < 回 > < 回 > … 回

Analysis

Let B_i be the integer with binary representation (b_{l-1}...b_i)₂, and let

$$c_i = a^{B_i} \pmod{n}$$

Initialization

$$\begin{cases} B_\ell = 0 \\ c_\ell = 1 \end{cases}$$

• Recursive step

$$\left\{ egin{array}{rcl} B_i &=& 2 \cdot B_{i+1} + b_i \ C_i &=& (C_{i+1})^2 \cdot a^{b_i} \pmod{n} \end{array}
ight.$$

Final step

$$\begin{cases} B_0 = b \\ c_0 = a^b \pmod{n} \end{cases}$$

(雪) (ヨ) (ヨ)

Greatest common divisor

- Greatest common divisor:
 - A common divisor $d \in \mathbb{Z}$ of $a, b \in \mathbb{Z}$ is such that d|a and d|b
 - We say that d is a greatest common divisor of a and b if d > 0 and all other common divisors of a and b divide d.
 - There exists a unique greatest common divisor, so we can write d = gcd(a, b) and moreover

$$a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$$

- Examples
 - gcd(9,6) = 3
 - gcd(7,5) = 1.

伺 とくき とくき とう

э.

Property of gcd

Let *a*, *b* > 0

$$\gcd(a,b) = \gcd(b,a moded{mod} b)$$

- Proof. Let $r = a \mod b = a q \cdot b$ for some $q \in \mathbb{Z}$.
 - If d|a and d|b, then d|r, and then $d|\operatorname{gcd}(b, r)$. Then $\operatorname{gcd}(a, b)|\operatorname{gcd}(b, r)$.
 - Similarly gcd(b, r)|gcd(a, b), therefore gcd(a, b) = gcd(b, r).
- Example:
 - gcd(47, 18) = gcd(18, 11) = gcd(11, 7) = gcd(7, 4) = gcd(4, 3) = gcd(3, 1) = gcd(1, 0) = 1
 - This is Euclid's algorithm

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Euclid's algorithm

- Euclid's algorithm with input *a*, *b* > 0.
 - Let $r_0 = a$ and $r_1 = b$.
 - For $i \ge 0$, one defines the sequence (r_i) and (q_i) such that :

$$r_i = q_i \cdot r_{i+1} + r_{i+2}$$

where q_i and r_{i+2} are the quotient and remainder of the division of r_i by r_{i+1}

- The sequence is decreasing, so $r_k = 0$ for some k > 0
- Then $gcd(a, b) = r_{k-1}$.
- Proof

•
$$gcd(a, b) = gcd(r_i, r_{i+1})$$
 for all $i < k$
• $gcd(a, b) = gcd(r_{k-1}, r_k)$
 $= gcd(r_{k-1}, 0) = r_{k-1}$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Example of gcd computation

• Example of gcd(a, b) with a = 47, b = 18

•
$$r_0 = a = 47$$

•
$$r_1 = b = 18$$

•
$$r_i = q_i \cdot r_{i+1} + r_{i+2}$$

	i	0	1	2	3	4	5	6	7
ĺ	r _i	47	18	11	7	4	3	1	0

$$gcd(47, 18) = gcd(18, 11) = gcd(11, 7) = gcd(7, 4)$$
$$= gcd(4, 3) = gcd(3, 1) = gcd(1, 0) = 1$$

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

Modular arithmetic

- Let an integer n > 1 called the modulus.
- Modular reduction
 - $r := a \mod n$, remainder of the division of a by n.
 - 0 ≤ r < n
 - Ex: 11 mod 8 = 3, 15 mod 5 = 0.
- Congruence:
 - $a \equiv b \pmod{n}$ if $n \mid (a b)$.
 - $a \equiv b \pmod{n}$ if a and b have same remainder modulo n.
 - Ex: $11 \equiv 19 \pmod{8}$.
 - If $r := a \mod n$, then $r \equiv a \pmod{n}$.

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

Modular arithmetic

• If $a_0 \equiv b_0 \pmod{n}$ and $a_1 \equiv b_1 \pmod{n}$

•
$$a_0+a_1\equiv b_0+b_1 \pmod{n}$$

•
$$a_0 - a_1 \equiv b_0 - b_1 \pmod{n}$$

•
$$a_0 \cdot a_1 \equiv b_0 \cdot b_1 \pmod{n}$$

- Integers modulo n
 - Integers modulo n are $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$
 - Addition, subtraction or multiplication in Z_n is done by first doing it in Z and then reducing the result modulo n.
 - For example in \mathbb{Z}_7 :

•
$$6+4=3, 3-4=6, 3\cdot 6=4.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Multiplicative inverse

- Multiplicative inverse :
 - Let n > 0 and a ∈ Z. An integer a' is a multiplicative inverse of a modulo n if a · a' ≡ 1 (mod n).
- Theorem :
 - Let n, a ∈ Z with n > 0. Then a has a multiplicatif inverse modulo n iff gcd(a, n) = 1. Moreover such multiplicative inverse is unique modulo n.
 - Proof
 - If $a \cdot a' \equiv 1 \pmod{n}$, then $a \cdot a' = 1 + k \cdot n$ for some $k \in \mathbb{Z}$. Therefore if d|a and d|n, then d|1. Therefore gcd(a, n) = 1.
 - If gcd(a, n) = 1, then $a\mathbb{Z} + n\mathbb{Z} = \mathbb{Z}$, so $a \cdot s + n \cdot t = 1$ for some $s, t \in \mathbb{Z}$. Therefore $a \cdot s \equiv 1 \pmod{n}$.

イロト イポト イヨト イヨト 三日

• The multiplicative inverse of 5 modulo 7 is 3 because

$$3 \cdot 5 \equiv 15 \equiv 1 \pmod{7}$$

• 2 has no multiplicative inverse modulo 6 :

•
$$2 \cdot 1 \equiv 2 \pmod{6}$$

• $2 \cdot 2 \equiv 4 \pmod{6}$
• $2 \cdot 3 \equiv 0 \pmod{6}$
• $2 \cdot 4 \equiv 2 \pmod{6}$
• $2 \cdot 4 \equiv 2 \pmod{6}$
• $2 \cdot 5 \equiv 4 \pmod{6}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Euclid's extended algorithm

- Euclid's extended algorithm
 - Let $a, b \in \mathbb{Z}$ and $d = \operatorname{gcd}(a, b)$.
 - Computes $u, v \in \mathbb{Z}$ such that $a \cdot u + b \cdot v = d$.
 - Based on computing two sequences u_i , v_i such that $a \cdot u_i + b \cdot v_i = r_i$, where eventually $r_{k-1} = d$.
- Application to computing multiplicative inverse
 - Let a, n with n > 0 and gcd(a, n) = 1.
 - With Euclid's extended algorithm, one computes *u*, *v* such that

$$a \cdot u + n \cdot v = 1$$

• Then $a \cdot u \equiv 1 \pmod{n}$

(日本) (日本) (日本)

Euclid's extended algorithm

- Euclid's extended algorithm, for a > 0 and $b \ge 0$.
 - $r_0 = a$ and $r_1 = b$.

• For
$$i \ge 0$$
, let $r_i = q_i \cdot r_{i+1} + r_{i+2}$

- Two additional sequences *u_i* and *v_i*.
- $u_0 := 1, v_0 := 0, u_1 := 0, v_1 := 1$ and for $i \ge 2$, one defines

$$\begin{cases} U_i = U_{i-2} - q_{i-2} \cdot U_{i-1} \\ V_i = V_{i-2} - q_{i-2} \cdot V_{i-1} \end{cases}$$

- There exists k > 0 such that $r_k = 0$.
 - $gcd(a,b) = r_{k-1} = u_{k-1} \cdot a + v_{k-1} \cdot b$

Proof

• We always have

$$r_i = u_i \cdot a + v_i \cdot b$$

Initialization

•
$$r_0 = a = 1 \cdot a + 0 \cdot b$$
.
• $r_1 = b = 0 \cdot a + 1 \cdot b$

Recursive step:

• Assume
$$u_{i-2} \cdot a + v_{i-2} \cdot b = r_{i-2}$$

 $u_{i-1} \cdot a + v_{i-1} \cdot b = r_{i-1}$

$$u_{i} \cdot a + v_{i} \cdot b = (u_{i-2} - q_{i-2} \cdot u_{i-1}) \cdot a + (v_{i-2} - q_{i-2} \cdot v_{i-1}) \cdot b$$
$$= r_{i-2} - q_{i-2} \cdot r_{i-1}$$
$$= r_{i}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

• Compute u, v such that $47 \cdot u + 18 \cdot v = 1$

•
$$(r_0, r_1) = (47, 18)$$

• $(u_0, u_1) = (1, 0)$
• $(v_0, v_1) = (0, 1)$

$$\begin{cases}
r_{i-2} = q_{i-2} \cdot r_{i-1} + r_i \\
u_i = u_{i-2} - q_{i-2} \cdot u_{i-1} \\
v_i = v_{i-2} - q_{i-2} \cdot v_{i-1}
\end{cases}$$

i	0	1	2	3	4	5	6	7
r _i	47	18						
q_i								
Ui	1	0						
Vi	0	1						

Jean-Sébastien Coron Basic number theory for cryptography

A E > A E >

A ►

• Compute u, v such that $47 \cdot u + 18 \cdot v = 1$

•
$$(r_0, r_1) = (47, 18)$$

• $(u_0, u_1) = (1, 0)$
• $(v_0, v_1) = (0, 1)$

$$\begin{cases}
r_{i-2} = q_{i-2} \cdot r_{i-1} + r_i \\
u_i = u_{i-2} - q_{i-2} \cdot u_{i-1} \\
v_i = v_{i-2} - q_{i-2} \cdot v_{i-1}
\end{cases}$$

i	0	1	2	3	4	5	6	7
r _i	47	18	11					
q_i	2							
Ui	1	0	1					
Vi	0	1	-2					

프 🖌 🛪 프 🛌

• Compute u, v such that $47 \cdot u + 18 \cdot v = 1$

•
$$(r_0, r_1) = (47, 18)$$

• $(u_0, u_1) = (1, 0)$
• $(v_0, v_1) = (0, 1)$

$$\begin{cases}
r_{i-2} = q_{i-2} \cdot r_{i-1} + r_i \\
u_i = u_{i-2} - q_{i-2} \cdot u_{i-1} \\
v_i = v_{i-2} - q_{i-2} \cdot v_{i-1}
\end{cases}$$

i	0	1	2	3	4	5	6	7
r _i	47	18	11	7				
q_i	2	1						
Ui	1	0	1	-1				
Vi	0	1	-2	3				

프 🖌 🛪 프 🛌

• Compute u, v such that $47 \cdot u + 18 \cdot v = 1$

•
$$(r_0, r_1) = (47, 18)$$

• $(u_0, u_1) = (1, 0)$
• $(v_0, v_1) = (0, 1)$

$$\begin{cases}
r_{i-2} = q_{i-2} \cdot r_{i-1} + r_i \\
u_i = u_{i-2} - q_{i-2} \cdot u_{i-1} \\
v_i = v_{i-2} - q_{i-2} \cdot v_{i-1}
\end{cases}$$

i	0	1	2	3	4	5	6	7
r _i	47	18	11	7	4			
q_i	2	1	1					
Ui	1	0	1	-1	2			
Vi	0	1	-2	3	-5			

프 🖌 🛪 프 🛌

• Compute u, v such that $47 \cdot u + 18 \cdot v = 1$

•
$$(r_0, r_1) = (47, 18)$$

• $(u_0, u_1) = (1, 0)$
• $(v_0, v_1) = (0, 1)$

$$\begin{cases}
r_{i-2} = q_{i-2} \cdot r_{i-1} + r_i \\
u_i = u_{i-2} - q_{i-2} \cdot u_{i-1} \\
v_i = v_{i-2} - q_{i-2} \cdot v_{i-1}
\end{cases}$$

i	0	1	2	3	4	5	6	7
r _i	47	18	11	7	4	3		
q_i	2	1	1	1				
Ui	1	0	1	-1	2	-3		
Vi	0	1	-2	3	-5	8		

프 🖌 🛪 프 🛌

• Compute u, v such that $47 \cdot u + 18 \cdot v = 1$

•
$$(r_0, r_1) = (47, 18)$$

• $(u_0, u_1) = (1, 0)$
• $(v_0, v_1) = (0, 1)$

$$\begin{cases}
r_{i-2} = q_{i-2} \cdot r_{i-1} + r_i \\
u_i = u_{i-2} - q_{i-2} \cdot u_{i-1} \\
v_i = v_{i-2} - q_{i-2} \cdot v_{i-1}
\end{cases}$$

i	0	1	2	3	4	5	6	7
r _i	47	18	11	7	4	3	1	
q_i	2	1	1	1	1			
Ui	1	0	1	-1	2	-3	5	
Vi	0	1	-2	3	-5	8	-13	

프 🖌 🛪 프 🛌

• Compute u, v such that $47 \cdot u + 18 \cdot v = 1$

•
$$(r_0, r_1) = (47, 18)$$

• $(u_0, u_1) = (1, 0)$
• $(v_0, v_1) = (0, 1)$

$$\begin{cases}
r_{i-2} = q_{i-2} \cdot r_{i-1} + r_i \\
u_i = u_{i-2} - q_{i-2} \cdot u_{i-1} \\
v_i = v_{i-2} - q_{i-2} \cdot v_{i-1}
\end{cases}$$

i	0	1	2	3	4	5	6	7
r _i	47	18	11	7	4	3	1	0
q_i	2	1	1	1	1			
Ui	1	0	1	-1	2	-3	5	
Vi	0	1	-2	3	-5	8	-13	

프 🖌 🛪 프 🛌

• Compute *u*, *v* such that $47 \cdot u + 18 \cdot v = 1$ • $(r_0, r_1) = (47, 18)$ • $(u_0, u_1) = (1, 0)$ • $(v_0, v_1) = (0, 1)$ $\begin{cases}
r_{i-2} = q_{i-2} \cdot r_{i-1} + r_i \\
u_i = u_{i-2} - q_{i-2} \cdot u_{i-1} \\
v_i = v_{i-2} - q_{i-2} \cdot v_{i-1}
\end{cases}$

i	0	1	2	3	4	5	6	7
r _i	47	18	11	7	4	3	1	0
q_i	2	1	1	1	1			
Ui	1	0	1	-1	2	-3	5	
Vi	0	1	-2	3	-5	8	-13	

 $47 \cdot 5 + 18 \cdot (-13) = 1$

御 と く ヨ と く ヨ と … ヨ

- Let a, n ∈ Z with n > 0 such that gcd(a, n) = 1. Let b ∈ Z. The equation a ⋅ x ≡ b (mod n) has a unique solution x modulo n.
 - Let a^{-1} by the multiplicative inverse of *a* modulo *n*.

$$a \cdot a^{-1} \cdot x \equiv x \equiv a^{-1} \cdot b \pmod{n}$$

- Example :
 - Find x such that $5 \cdot x \equiv 6 \pmod{7}$
 - 3 is the inverse of 5 modulo 7 because $5 \cdot 3 \equiv 1 \pmod{7}$.
 - $3 \cdot 5 \cdot x \equiv 15 \cdot x \equiv 1 \cdot x \equiv 3 \cdot 6 \equiv 4 \pmod{7}$
 - $x \equiv 4 \pmod{7}$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Chinese remainder theorem

- Chinese remainder theorem
 - Let two integers $n_1 > 1$ and $n_2 > 0$ with $gcd(n_1, n_2) = 1$.
 - For all $a_1, a_2 \in \mathbb{Z}$, there exists an integer *z* such that

$$\begin{cases} z \equiv a_1 \pmod{n_1} \\ z \equiv a_2 \pmod{n_2} \end{cases}$$

• *z* is unique modulo $n_1 \cdot n_2$.

Existence :

• Let $m_1 = (n_2)^{-1} \mod n_1$ and $m_2 = (n_1)^{-1} \mod n_2$

$$z := n_2 \cdot m_1 \cdot a_1 + n_1 \cdot m_2 \cdot a_2$$

•
$$z \equiv (n_2 \cdot m_1) \cdot a_1 \equiv a_1 \pmod{n_1}$$

• $z \equiv (n_1 \cdot m_2) \cdot a_2 \equiv a_2 \pmod{n_2}$

▲□ → ▲ □ → ▲ □ → ▲ □ → ● ●

Definition:

- φ(n) for n > 0 is defined as the number of integers a
 comprised between 0 and n − 1 such that gcd(a, n) = 1.
- $\phi(1) = 1, \phi(2) = 1, \phi(3) = 2, \phi(4) = 2.$
- Equivalently:
 - Let \mathbb{Z}_n^* be the set of integers *a* comprised between 0 and n-1 such that gcd(a, n) = 1.

• Then
$$\phi(n) = |\mathbb{Z}_n^*|$$
.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

• If $p \ge 2$ is prime, then

$$\phi(\boldsymbol{p}) = \boldsymbol{p} - \mathbf{1}$$

• More generally, for any $e \ge 1$,

$$\phi(p^e) = p^{e-1} \cdot (p-1)$$

• For n, m > 0 such that gcd(n, m) = 1, we have:

$$\phi(\mathbf{n}\cdot\mathbf{m})=\phi(\mathbf{n})\cdot\phi(\mathbf{m})$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

 $\phi(p^e) = p^{e-1} \cdot (p-1)$

If p is prime

- Then for any integer $1 \le a < p$, gcd(a, p) = 1
- Therefore $\phi(p) = p 1$
- For *n* = *p*^{*e*}, the integers between 0 and *n* not co-prime with *n* are
 - $0, p, 2 \cdot p, \dots, (p^{e-1} 1) \cdot p$
 - There are p^{e-1} of them.
 - Therefore, $\phi(p^e) = p^e p^{e-1} = p^{e-1} \cdot (p-1)$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

 $\phi(\mathbf{n} \cdot \mathbf{m}) = \phi(\mathbf{n}) \cdot \phi(\mathbf{m})$

Consider the map:

$$f: \mathbb{Z}_{nm} \to \mathbb{Z}_n \times \mathbb{Z}_m$$

 $a \to (a \mod n, a \mod m)$

- From the CRT, the map is a bijection.
- Moreover, $gcd(a, n \cdot m) = 1$ if and only if gcd(a, n) = 1 and gcd(a, m) = 1.
- Therefore, $|\mathbb{Z}_{nm}^*| = |\mathbb{Z}_n^*| \cdot |\mathbb{Z}_m^*|$
- This implies $\phi(n \cdot m) = \phi(n) \cdot \phi(m)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

• If $n = p_1^{e_1} \dots p_r^{e_r}$ is the factorization of *n* into primes, then :

$$\phi(n) = \prod_{i=1}^{r} p_i^{e_i-1} \cdot (p_i-1) = n \prod_{i=1}^{r} (1-1/p_i)$$

Proof: immediate consequence of the previous properties. Example

•
$$\phi(45) = \phi(3^2) \cdot \phi(5) = 3 \cdot 2 \cdot 4 = 24$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Euler's theorem

- Theorem
 - For any integer n > 1 and any integer a such that gcd(a, n) = 1, we have $a^{\phi(n)} \equiv 1 \mod n$.
- Proof
 - Consider the map $f : \mathbb{Z}_n^* \to \mathbb{Z}_n^*$, with $f(b) = a \cdot b$
 - f is a permutation, therefore :

$$\prod_{b\in\mathbb{Z}_n^*}b=\prod_{b\in\mathbb{Z}_n^*}f(b)=\prod_{b\in\mathbb{Z}_n^*}(a\cdot b)=a^{\phi(n)}\cdot\left(\prod_{b\in\mathbb{Z}_n^*}b\right)$$

• Therefore
$$a^{\phi(n)} \equiv 1 \pmod{n}$$
.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Theorem

- For any prime *p* and any integer $a \neq 0 \pmod{p}$, we have $a^{p-1} \equiv 1 \pmod{p}$. Moreover, for any integer *a*, we have $a^p \equiv a \pmod{p}$.
- Proof: follows from Euler's theorem and $\phi(p) = p 1$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Multiplicative order

 The multiplicative order of an integer *a* modulo *n* is defined as the smallest integer *k* > 0 such that

 $a^k \equiv 1 \pmod{n}$

- Lagrange theorem: we must have $k|\phi(n)$
- $a \in \mathbb{Z}$ a primitive root modulo *n* if $k = \phi(n)$

Example

i	1	2	3	4
1 ^{<i>i</i>} mod 5	1	1	1	1
2 ⁱ mod 5	2	4	3	1
3 ⁱ mod 5	3	4	2	1
4 ⁱ mod 5	4	1	4	1

- 1 has order 1, 4 has order 2.
- 2 and 3 have order 4 (primitive roots)

伺 とくき とくき とう

1

• \mathbb{Z}_p^* is a cyclic group

• There exists $g \in \mathbb{Z}_p^*$ such that

$$\mathbb{Z}_p^* = \{1, g, g^2, \dots, g^{p-2}\}$$

• Such a *g* is called a generator of \mathbb{Z}_p^* (primitive root).

Example

• In
$$\mathbb{Z}_5^*$$
, $\langle 2 \rangle = \{1, 2, 2^2, 2^3\} = \{1, 2, 4, 3\} = \mathbb{Z}_5^*$

• But in \mathbb{Z}_5^* , $\langle 4 \rangle = \{1,4\} \neq \mathbb{Z}_5^*$ so 4 is not a generator of \mathbb{Z}_5^* .

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 ● ④ ● ●

Quadratic residues

 A quadratic residue modulo n is the square of an integer modulo n

$$\mathsf{QR}_n = \{ y : \gcd(y, n) = 1 \land \exists x, y = x^2 \pmod{n} \}$$
$$\mathsf{NQR}_n = \{ y : \gcd(y, n) = 1 \land \forall x, y \neq x^2 \pmod{n} \}$$

Example

$$\label{eq:QR13} \begin{split} & \mathsf{QR}_{13} = \{1,3,4,9,10,12\} \\ & \mathsf{NQR}_{13} = \{2,5,6,7,8,11\} \end{split}$$

- because $\{1^2,2^2,3^2,4^2,5^2,6^2,7^2,8^2,9^2,10^2,11^2,12^2\}\equiv\{1,3,4,9,10,12\} \pmod{13}$
- Theorem: let p be a prime number, then $\#QR_p = \#NQR_p = (p-1)/2$

(四) (日) (日) 日

Legendre symbol

• For a prime number p, we define the Legendre symbol as

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{if } a \in \mathsf{QR}_p \\ -1 & \text{if } a \in \mathsf{NQR}_p \\ 0 & \text{if } p | a \end{cases}$$

• For a prime *p* number

$$a^{(p-1)/2} \equiv \left(rac{a}{p}
ight) \pmod{p}$$

• The Legendre symbol can be efficiently computed

• Let $g \in \mathbb{Z}_p^*$ be a generator of \mathbb{Z}_p^* . Let $x = g^r$ for some $r \in \mathbb{Z}$. $x \in QR_p \Leftrightarrow r$ is even

• The Legendre symbol reveals the parity of *r*.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

The Jacobi symbol

• For any integer $n = p_1 \cdot p_2 \cdots p_k$, we define the Jacobi symbol as

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right) \cdot \left(\frac{a}{p_2}\right) \cdots \left(\frac{a}{p_k}\right)$$

For *m*, *n* odd, positive integers, and for *a*, *b* ∈ Z. From the definition

$$\begin{pmatrix} \frac{ab}{n} \end{pmatrix} = \begin{pmatrix} \frac{a}{n} \end{pmatrix} \begin{pmatrix} \frac{b}{n} \end{pmatrix} \quad \left(\frac{a}{mn}\right) = \begin{pmatrix} \frac{a}{m} \end{pmatrix} \begin{pmatrix} \frac{a}{n} \end{pmatrix}$$
$$\begin{pmatrix} \frac{a}{n} \end{pmatrix} = \left(\frac{a \mod n}{n}\right)$$

Other properties

$$\begin{pmatrix} -1 \\ n \end{pmatrix} = (-1)^{(n-1)/2} \quad \left(\frac{2}{n}\right) = (-1)^{(n^2-1)/8}$$
$$\left(\frac{m}{n}\right) \left(\frac{n}{m}\right) = (-1)^{(m-1)(n-1)/4}$$

ロト・同ト・ヨト・ヨー

Computing the Jacobi symbol

Algorithm 1 Jacobi(<i>a</i> , <i>n</i>)	
1: If $a \le 1$ then return a	
2: if a is odd then	$\triangleright \left(\frac{a}{n}\right)\left(\frac{n}{a}\right) = (-1)^{(a-1)(n-1)/4}$
3: If $a \equiv n \equiv 3 \pmod{4}$	
4: then return –Jacobi(<i>n</i> mod a	a, a)
5: else return Jacobi(<i>n</i> mod <i>a</i> , <i>a</i>	a)
6: end if	<u> </u>
7: if a is even then	$\triangleright \left(\frac{2}{n}\right) = (-1)^{(n^2-1)/8}$
8: If $n = \pm 1 \pmod{8}$	
9: then return Jacobi $(a/2, n)$	
10: else return $-$ Jacobi $(a/2, n)$	
11: end if	
• Evernle	

$$\binom{37}{47} = \binom{10}{37} = -\binom{5}{37} = -\binom{2}{5} = \binom{1}{5} = 1$$

ヨン くヨン -

< 🗇 🕨

æ

Computing modular square roots

 For a prime number p ≡ 3 (mod 4) and α ∈ QR_p, we have that a square-root of α can be computed as:

$$\beta = \alpha^{(p+1)/4} \pmod{p}$$

- If β is the square root of α then -β is also a square root of α modulo p.
- Proof: since $\alpha \in QR_p$, there exists $\tilde{\beta}$ such that $\tilde{\beta}^2 = \alpha$

$$\beta^2 = \alpha^{(p+1)/2} = \tilde{\beta}^{p+1} = \tilde{\beta}^{p-1} \cdot \tilde{\beta}^2 = \tilde{\beta}^2 = \alpha$$

(雪) (ヨ) (ヨ)

Solving quadratic equations in \mathbb{Z}_p

$$a \cdot x^2 + b \cdot x + c = 0 \pmod{p}$$

If a solution exists it must be given by

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- Equation has a solution in Z_p iff Δ ∈ QR_p where
 Δ = b² − 4 ⋅ a ⋅ c
 - Compute √∆ in ℤ_p and recover the roots x₁, x₂

通 とく ヨ とく ヨ とう

Computing square roots modulo n = pq

- Given n = p ⋅ q for known primes p, q, and given α ∈ QR_n, we want to find β such that β² = α (mod n)
- First solve modulo p and q separately

$$\begin{cases} (\beta_p)^2 = \alpha \pmod{p} \\ (\beta_q)^2 = \alpha \pmod{q} \end{cases}$$

Solve the simultaneous congruence

$$\begin{cases} \beta = \beta_p \pmod{p} \\ \beta = \beta_q \pmod{q} \end{cases}$$

using the Chinese Reminder Theorem.