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Public-key encryption

Public-key encryption: two keys.

One key is made public and used to encrypt.

The other key is kept private and enables to decrypt.

Alice wants to send a message to Bob:

She encrypts it using Bob’s public-key.
Only Bob can decrypt it using his own private-key.

Alice and Bob do not need to meet to establish a secure

communication.

Security:

It must be difficult to recover the private-key from the

public-key

but not enough in practice.
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The RSA algorithm

The RSA algorithm is the most widely-used public-key
encryption algorithm

Invented in 1977 by Rivest, Shamir and Adleman.
Used for encryption and signature.

Widely used in electronic commerce protocols (SSL).
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RSA

Key generation:

Generate two large distinct primes p and q of same bit-size.
Compute n = p · q and φ = (p − 1)(q − 1).
Select a random integer e, 1 < e < φ such that

gcd(e, φ) = 1
Compute the unique integer d such that

e · d ≡ 1 mod φ

using the extended Euclidean algorithm.
The public key is (n, e). The private key is d .
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RSA encryption

Encryption

Given a message m ∈ [0, n − 1] and the recipent’s

public-key (n, e), compute the ciphertext:

c = me mod n

Decryption

Given a ciphertext c, to recover m, compute:

m = cd mod n
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Euler function

Definition:

φ(n) for n > 0 is defined as the number of integers a

comprised between 0 and n − 1 such that gcd(a, n) = 1.

φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2.

Equivalently:

Let Z∗

n be the set of integers a comprised between 0 and
n − 1 such that gcd(a, n) = 1.

Then φ(n) = |Z∗

n|.
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Properties

If p ≥ 2 is prime, then

φ(p) = p − 1

More generally, for any e ≥ 1,

φ(pe) = pe−1 · (p − 1)

For n,m > 0 such that gcd(n,m) = 1, we have:

φ(n · m) = φ(n) · φ(m)
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Euler’s theorem

Theorem

For any integer n > 1 and any integer a such that
gcd(a, n) = 1, we have aφ(n) ≡ 1 mod n.

Proof

Consider the map f : Z∗

n → Z
∗

n, such that f (b) = a · b for any

b ∈ Z
∗.

f is a permutation, therefore :

∏

b∈Z
∗

n

b =
∏

b∈Z
∗

n

(a · b) = aφ(n) ·





∏

b∈Z
∗

n

b





Therefore, we obtain aφ(n) ≡ 1 mod n.
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Fermat’s little theorem

Theorem

For any prime p and any integer a 6= 0 mod p, we have

ap−1 ≡ 1 mod p. Moreover, for any integer a, we have
ap ≡ a mod p.

Proof

Follows from Euler’s theorem and φ(p) = p − 1.
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Proof that decryption works

Since e · d ≡ 1 mod φ, there is an integer k such that

e · d = 1 + k · φ.

If m 6= 0 mod p, then by Fermat’s little theorem mp−1 ≡ 1

mod p, which gives :

m1+k ·(p−1)·(q−1) ≡ m mod p

This equality is also true if m ≡ 0 mod p.

This gives med ≡ m mod p for all m.

Similarly, med ≡ m mod q for all m.
By the Chinese Remainder Theorem, if p 6= q, then

med ≡ m mod n
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The RSA signature scheme

Key generation :

Public modulus: N = p · q where p and q are large primes.

Public exponent : e
Private exponent: d , such that d · e = 1 mod φ(N)

To sign a message m, the signer computes :

s = md mod N

Only the signer can sign the message.

To verify the signature, one checks that:

m = se mod N
Anybody can verify the signature
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Hash-and-sign paradigm

There are many attacks on basic RSA signatures:

Existential forgery: re = m mod N
Chosen-message attack: (m1 · m2)

d = md
1 · md

2 mod N

To prevent from these attacks, one usually uses a hash
function. The message is first hashed, then padded.

m −→ H(m) −→ 1001 . . .0101‖H(m)
Example: PKCS#1 v1.5:

µ(m) = 0001 FF....FF00||cSHA||SHA(m)
ISO 9796-2: µ(m) = 6A‖m[1]‖H(m)‖BC
The signature is then σ = µ(m)d mod N
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Attacks against RSA

Factoring

Equivalence between factoring and breaking RSA ?

Mathematical attacks

Attacks against plain RSA encryption and signature
Heuristic countermeasures

Low private / public exponent attacks
Provably secure constructions

Implementation attacks

Timing attacks, power attacks and fault attacks

Countermeasures
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Factoring attack

Factoring large integers

Best factoring algorithm: Number Field Sieve
Sub-exponential complexity

exp
(

(c + ◦(1)) n1/3 log2/3 n
)

for n-bit integer.

Current factoring record: 768-bit RSA modulus.

Use at least 1024-bit RSA moduli

2048-bit for long-term security.
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Factoring vs breaking RSA

Breaking RSA:

Given (N, e) and y , find x such that y = xe mod N

Open problem

Is breaking RSA equivalent to factoring ?

Knowing d is equivalent to factoring

Probabilistic algorithm (RSA, 1978)
Deterministic algorithm (A. May 2004, J.S. Coron and A.

May 2007)
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Probabilistic equivalence between knowing d and

factoring

We consider the particular case N = pq with p ≡ 3

(mod 4) and q ≡ 3 (mod 4).

Algorithm:

Write u = e · d − 1. Therefore u is a multiple of

φ(N) = (p − 1) · (q − 1).
Write u = 2r · t for odd t.

Generate a random a ∈ Z
∗

N

Compute b ≡ at (mod N)
Return gcd(b + 1,N)
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Analysis

We have t = s · p−1
2 · q−1

2 for some odd s.

Let Qp = {x ∈ Z
∗

p | x (p−1)/2 ≡ 1 (mod p)}

Qp is a subgroup of Zp of order (p − 1)/2
therefore (a mod p) ∈ Qp with probability 1/2

Moreover:

a ∈ Qp ⇒ b ≡ 1 (mod p)

a /∈ Qp ⇒ b ≡ −1 (mod p)

We obtain the factorization of N if (a ∈ Qp ∧ b /∈ Qq) or
(a /∈ Qp ∧ b ∈ Qq)

This happens with probability 1/2

Jean-Sébastien Coron Cryptography



Elementary attacks

Plain RSA encryption: dictionary attack

If only two possible messages m0 and m1, then only
c0 = (m0)

e mod N and c1 = (m1)
e mod N.

⇒ encryption must be probabilistic.

PKCS#1 v1.5

µ(m) = 0002‖r‖00‖m
c = µ(m)e mod N

Still insufficient (Bleichenbacher’s attack, 1998)
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Attacks against Plain RSA signature

Existential forgery

re = m mod N, so r is signature of m

Chosen message attack

(m1 · m2)
d = md

1 · md
2 mod N

To prevent from these attacks, one first computes µ(m),
and lets s = µ(m)d mod N

ISO 9796-1:

µ(m) = s̄(mz)s(mz−1)mzmz−1 . . . s(m1)s(m0)m06

ISO 9796-2:

µ(m) = 6A‖m[1]‖H(m)‖BC

PKCS#1 v1.5:

µ(m) = 0001 FF....FF00||cSHA||SHA(m)
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Attacks against RSA signatures

Desmedt and Odlyzko attack (Crypto 85)

Based on finding messages m such that µ(m) is smooth
(product of small primes only)

µ(mi) =
∏

j

p
αi,j

j for many messages mi .

Solve a linear system and write µ(mk ) =
∏

i

µ(mi)

Then µ(mk )
d =

∏

i

µ(mi)
d mod N

Application to ISO 9796-1 and ISO 9796-2 signatures

Cryptanalysis of ISO 9796-1 (Coron, Naccache, Stern,
1999)

Cryptanalysis of ISO 9796-2 (Coron, Naccache, Tibouchi,

Weinmann, 2009)
Extension of Desmedt and Odlyzko attack.

For ISO 9796-2 the attack is feasible if the output size of the
hash function is small enough.
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Low private exponent attacks

To reduce decryption time, one could use a small d

Wiener’s attack: recover d if d < N0.25

Boneh and Durfee’s attack (1999)

Recover d if d < N0.29

Based on lattice reduction and Coppersmith’s technique

Open problem: extend to d < N0.5

Conclusion: devastating attack

Use a full-size d
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Low public exponent attack

To reduce encryption time, one can use a small e

For example e = 3 or e = 216 + 1

Coppersmith’s theorem :

Let N be an integer and f be a polynomial of degree δ.

Given N and f , one can recover in polynomial time all x0

such that f (x0) = 0 mod N and x0 < N1/δ.

Application: partially known message attack :

If c = (B‖m)3 mod N, one can recover m if |m| < |N|/3

Define f (x) = (B · 2k + x)3 − c mod N.
Then f (m) = 0 mod N and apply Coppersmith’s theorem

to recover m.
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Low public exponent attack

Coppersmith’s short pad attack

Let c1 = (m‖r1)
3 mod N and c2 = (m‖r2)

3 mod N

One can recover m if r1, r2 < N1/9

Let g1(x , y) = x3 − c1 and g2(x , y) = (x + y)3 − c2.
g1 and g2 have a common root (m‖r1, r2 − r1) modulo N.

h(y) = Resx (g1, g2) has a root ∆ = r2 − r1, with deg h = 9.

To recover m‖r1, take gcd of g1(x ,∆) and g2(x ,∆).

Conclusion:

Attack only works for particular encryption schemes.

Low public exponent is secure when provably secure

construction is used. One often takes e = 216 + 1.
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Implementation attacks

The implementation of a cryptographic algorithm can

reveal more information

Passive attacks :

Timing attacks (Kocher, 1996): measure the execution time
Power attacks (Kocher et al., 1999): measure the power

consumption

Active attacks :

Fault attacks (Boneh et al., 1997): induce a fault during
computation

Invasive attacks: probing.
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Timing attacks

Described on RSA by Kocher at Crypto 96.

Let d =
∑n

i=0 2idi .

Computing md mod N using square and multiply :

Let z ← m

For i = n− 1 downto 0 do

Let z ← z2 mod N

If di = 1 let z ← z ·m mod N

Attack

Let Ti be the total time needed to compute md
i mod N

Let ti be the time needed to compute m3
i mod N

If dn−1 = 1, the variables ti and Ti are correlated, otherwise

they are independent. This gives dn−1.

Jean-Sébastien Coron Cryptography



Countermeasures

Implement in constant time

Not always possible with hardware crypto-processors.

Exponent blinding:

Compute md+k ·φ(N) = md mod N for random k .

Message blinding

Compute (m · r)d/rd = md mod N for random r .

Modulus randomization

Compute md mod (N · r) and reduce modulo N.

or a combination of the three.
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Power attacks

Based on measuring power consumption

Introduced by Kocher et al. at Crypto 99.

Initially applied on DES, but any cryptographic algorithm is
vulnerable.

Attack against exponentiation md mod N :

If power consumption correlated with some bits of m3

mod N, this means that m3 mod N was effectively
computed, and so dn−1 = 1.

Enables to recover dn−1 and by recursion the full d .
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Countermeasures

Hardware countermeasures

Constant power consumption; dual rail logic.

Random delays to desynchronise signals.

Software countermeasures

Same as for timing attacks
Goal: randomization of execution

Drawback: increases execution time.
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Fault attacks

Induce a fault during computation

By modifying voltage input

RSA with CRT: to compute s = md mod N, compute :

sp = mdp mod p where dp = d mod p − 1
sq = mdq mod q where dq = d mod q − 1

and recombine sp and sq using CRT to get s = md mod N

Fault attack against RSA with CRT (Boneh et al., 1996)

If sp is incorrect, then se 6= m mod N while se = m mod q
Therefore, gcd(N, se − m) gives the prime factor q.
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