Cryptography

Course 9: 30 years of attacks against RSA

Jean-Sébastien Coron

Université du Luxembourg

May 9, 2014

Jean-Sébastien Coron Cryptography

Public-key encryption

@ Public-key encryption: two keys.
@ One key is made public and used to encrypt.
@ The other key is kept private and enables to decrypt.
@ Alice wants to send a message to Bob:
@ She encrypts it using Bob’s public-key.
@ Only Bob can decrypt it using his own private-key.
@ Alice and Bob do not need to meet to establish a secure
communication.

@ Security:
@ It must be difficult to recover the private-key from the
public-key
@ but not enough in practice.

Jean-Sébastien Coron Cryptography

The RSA algorithm

@ The RSA algorithm is the most widely-used public-key
encryption algorithm
o Invented in 1977 by Rivest, Shamir and Adleman.
@ Used for encryption and signature.
@ Widely used in electronic commerce protocols (SSL).

Jean-Sébastien Coron Cryptography

RSA

@ Key generation:
@ Generate two large distinct primes p and g of same bit-size.
o Computen=p-qand¢=(p—1)(g—1).
@ Select arandom integer e, 1 < e < ¢ such that

ged(e, ¢) =1

Compute the unique integer d such that

©

e-d=1 mod ¢

using the extended Euclidean algorithm.
The public key is (n,). The private key is d.

(2

Jean-Sébastien Coron Cryptography

RSA encryption

@ Encryption

@ Given a message m € [0,n — 1] and the recipent’s
public-key (n, e), compute the ciphertext:

c=m° modn

@ Decryption
@ Given a ciphertext c, to recover m, compute:

d

m=c modn

Jean-Sébastien Coron Cryptography

Euler function

@ Definition:
@ ¢(n) for n > 0 is defined as the number of integers a
comprised between 0 and n — 1 such that gcd(a, n) = 1.
° ¢(1)=1,9(2) =1, 6(3) =2, $(4) = 2.
@ Equivalently:
o Let Z; be the set of integers a comprised between 0 and
n—1such that gcd(a, n) = 1.
@ Then ¢(n) = |Z;].

Jean-Sébastien Coron Cryptography

@ If p > 2is prime, then

¢(p) =p—1

@ More generally, for any e > 1,

¢(p?) =p® - (p—1)

@ For n,m > 0 such that gcd(n, m) = 1, we have:

¢(n-m) = ¢(n) - p(m)

Jean-Sébastien Coron Cryptography

Euler’s theorem

@ Theorem

@ For any integer n > 1 and any integer a such that
ged(a, n) = 1, we have a®?™ =1 mod n.

@ Proof

@ Consider the map f: Z}, — Z}, such that f(b) = a- b for any
beZ.
@ fis a permutation, therefore :

[[e=1]](ab)=a"". (Hb)

beZy, beZy beZ;,

@ Therefore, we obtain a®?(™ =1 mod n.

Jean-Sébastien Coron Cryptography

Fermat’s little theorem

® Theorem
@ For any prime p and any integer a # 0 mod p, we have
a’~' =1 mod p. Moreover, for any integer a, we have
a’ =a mod p.
@ Proof
@ Follows from Euler’s theorem and ¢(p) = p — 1.

Jean-Sébastien Coron Cryptography

Proof that decryption works

® Since e-d =1 mod ¢, there is an integer k such that
e-d=1+Kk-¢.

@ If m+#0 mod p, then by Fermat’s little theorem mP~1 = 1
mod p, which gives :

m1+k'(p_1)'(q_1) =m mod p

This equality is also true if m=0 mod p.

This gives m®® = m mod p for all m.

Similarly, m®® = m mod q for all m.

By the Chinese Remainder Theorem, if p # g, then

e ¢ ¢ ¢

ed _

m m mod n

Jean-Sébastien Coron Cryptography

The RSA signature scheme

@ Key generation :

@ Public modulus: N = p- g where p and q are large primes.
@ Public exponent : e
@ Private exponent: d, suchthatd-e =1 mod ¢(N)

@ To sign a message m, the signer computes :
@ s=m mod N
@ Only the signer can sign the message.
@ To verify the signature, one checks that:
@ m=s° mod N
@ Anybody can verify the signature

Jean-Sébastien Coron Cryptography

Hash-and-sign paradigm

@ There are many attacks on basic RSA signatures:

o Existential forgery: r¢ = m mod N

@ Chosen-message attack: (m; - mp)? = m¢ - mg mod N
@ To prevent from these attacks, one usually uses a hash

function. The message is first hashed, then padded.
@ m— H(m) — 1001...0101||H(m)
o Example: PKCS#1 v1.5:
p(m) = 0001 FF....FF00[lcgyal[SHA(mM)
o IS0 9796-2: ;(m) = 6a|m[1]||H(m)|BC
@ The signature is then o = (m)? mod N

Jean-Sébastien Coron Cryptography

Attacks against RSA

@ Factoring
@ Equivalence between factoring and breaking RSA ?
@ Mathematical attacks

Attacks against plain RSA encryption and signature
@ Heuristic countermeasures

Low private / public exponent attacks

@ Provably secure constructions

@ Implementation attacks

@ Timing attacks, power attacks and fault attacks
o Countermeasures

(4

(4

Jean-Sébastien Coron Cryptography

Factoring attack

@ Factoring large integers

@ Best factoring algorithm: Number Field Sieve
@ Sub-exponential complexity

exp ((c+o(1)) '/ log?* n)

for n-bit integer.
@ Current factoring record: 768-bit RSA modulus.

@ Use at least 1024-bit RSA moduli
@ 2048-bit for long-term security.

Jean-Sébastien Coron Cryptography

Factoring vs breaking RSA

@ Breaking RSA:

@ Given (N, e) and y, find x such that y = x® mod N
@ Open problem

@ |s breaking RSA equivalent to factoring ?
@ Knowing d is equivalent to factoring

@ Probabilistic algorithm (RSA, 1978)
@ Deterministic algorithm (A. May 2004, J.S. Coron and A.
May 2007)

Jean-Sébastien Coron Cryptography

Probabilistic equivalence between knowing d and

factoring

@ We consider the particular case N = pg with p =3
(mod 4) and g =3 (mod 4).
@ Algorithm:
o Write u=e-d — 1. Therefore u is a multiple of
(N)=(p-1)-(g—1).
Write u = 2" - t for odd t.
Generate a random a € Zj,
Compute b= a' (mod N)
Return ged(b + 1, N)

¢ © ¢ ¢

Jean-Sébastien Coron Cryptography

@ Wehave t = s- ;1. -1 for some odd s.

° Let @, ={x €2z | xP~"/2=1 (mod p)}
@ Q, is a subgroup of Z, of order (p — 1)/2
o therefore (amod p) € Q, with probability 1/2
o Moreover:

acQ, = b=1(modp)
a¢Q, = b=-1(modp)
@ We obtain the factorization of Nif (a € Qo A b ¢ Qq) or

(a¢d Qo Nbe Qq)
@ This happens with probability 1/2

Jean-Sébastien Coron Cryptography

Elementary attacks

@ Plain RSA encryption: dictionary attack
@ If only two possible messages mgy and my, then only
co = (mp)® mod N and ¢y = (my)¢ mod N.
@ = encryption must be probabilistic.
@ PKCS#1v1.5
@ p(m) = 0002||r||00||m
@ ¢=p(m)® mod N
o Still insufficient (Bleichenbacher’s attack, 1998)

Jean-Sébastien Coron Cryptography

Attacks against Plain RSA signature

@ Existential forgery
@ r®=m mod N, so r is signature of m
@ Chosen message attack
o (m-m)?=mf-mg mod N
@ To prevent from these attacks, one first computes u(m),
and lets s = u(m)? mod N
o |1SO 9796-1:

wu(m) = s(mz)s(mz_1)mzmz_y ...s(my)s(mg)my6
@ I1SO 9796-2:
p(m) = eallm{1]||H(m)|BC
o PKCS#1 v1.5:

p(m) = 0001 FF....FF00[lcgyallSHA(mM)

Jean-Sébastien Coron Cryptography

Attacks against RSA signatures

@ Desmedt and Odlyzko attack (Crypto 85)
@ Based on finding messages m such that u(m) is smooth
(product of small primes only)
o u(m;) =] p;" for many messages m;.
i

@ Solve a linear system and write u(my) = [] u(my;)

@ Then u(mk)? = T u(m;))? mod N
i

I

@ Application to ISO 9796-1 and ISO 9796-2 signatures

@ Cryptanalysis of ISO 9796-1 (Coron, Naccache, Stern,
1999)

@ Cryptanalysis of ISO 9796-2 (Coron, Naccache, Tibouchi,
Weinmann, 2009)

@ Extension of Desmedt and Odlyzko attack.

@ For ISO 9796-2 the attack is feasible if the output size of the
hash function is small enough.

Jean-Sébastien Coron Cryptography

Low private exponent attacks

@ To reduce decryption time, one could use a small d
@ Wiener’s attack: recover d if d < N0
@ Boneh and Durfee’s attack (1999)

@ Recover d if d < N0-29
@ Based on lattice reduction and Coppersmith’s technique
@ Open problem: extend to d < N%°

@ Conclusion: devastating attack
o Use a full-size d

Jean-Sébastien Coron Cryptography

Low public exponent attack

@ To reduce encryption time, one can use a small e
@ Forexample e =3 ore =26 4 1
@ Coppersmith’s theorem :
@ Let N be an integer and f be a polynomial of degree 4.
Given N and f, one can recover in polynomial time all xo
such that f(xo) =0 mod N and xo < N'/%,
@ Application: partially known message attack :
e If ¢ = (B||m)® mod N, one can recover mif [m| < |N|/3
o Define f(x) = (B-2% + x)® — ¢ mod N.
@ Then f(m) =0 mod N and apply Coppersmith’s theorem
to recover m.

Jean-Sébastien Coron Cryptography

Low public exponent attack

@ Coppersmith’s short pad attack

Let ¢y = (m||r1)® mod N and ¢ = (m||r2)® mod N

One can recover mif ry,r» < N'/°

Let gi(x,y) = x* —crand go(x, ¥) = (X +¥)° — ca.

g1 and g» have a common root (m||ry, r2 — r1) modulo N.
h(y) = Resx(g1,92) has aroot A = r, — ry, withdegh = 9.
To recover m||ry, take gcd of g1(x, A) and go(x, A).

@ Conclusion:

@ Attack only works for particular encryption schemes.
@ Low public exponent is secure when provably secure
construction is used. One often takes e = 216 4 1.

¢ 6 ¢ ¢ ¢ ¢

Jean-Sébastien Coron Cryptography

Implementation attacks

@ The implementation of a cryptographic algorithm can
reveal more information
@ Passive attacks :
@ Timing attacks (Kocher, 1996): measure the execution time
@ Power attacks (Kocher et al., 1999): measure the power
consumption
@ Active attacks :
o Fault attacks (Boneh et al., 1997): induce a fault during
computation
@ Invasive attacks: probing.

Jean-Sébastien Coron Cryptography

Timing attacks

@ Described on RSA by Kocher at Crypto 96.
o Letd= 27:0 2id,'.
@ Computing m? mod N using square and multiply :
o letz+m
For i = n—1 downto 0 do
Letz + z2 mod N
lfd=1letz<~z-m mod N
@ Attack

o Let T; be the total time needed to compute m? mod N

o Let t; be the time needed to compute m? mod N

o If d,_4 = 1, the variables t; and T; are correlated, otherwise
they are independent. This gives d,,_1.

Jean-Sébastien Coron Cryptography

Countermeasures

Implement in constant time

@ Not always possible with hardware crypto-processors.
Exponent blinding:

o Compute matk¢(N) = md mod N for random k.
Message blinding

@ Compute (m-r)?/rd =m“ mod N for random r.
Modulus randomization

@ Compute m? mod (N - r) and reduce modulo N.

or a combination of the three.

Jean-Sébastien Coron Cryptography

Power attacks

@ Based on measuring power consumption
@ Introduced by Kocher et al. at Crypto 99.
o Initially applied on DES, but any cryptographic algorithm is
vulnerable.
@ Attack against exponentiation m? mod N :
@ If power consumption correlated with some bits of m?®
mod N, this means that m®* mod N was effectively
computed, and so d,_1 = 1.
@ Enables to recover d,_1 and by recursion the full d.

Jean-Sébastien Coron Cryptography

Countermeasures

@ Hardware countermeasures
@ Constant power consumption; dual rail logic.
@ Random delays to desynchronise signals.

@ Software countermeasures

@ Same as for timing attacks
@ Goal: randomization of execution
@ Drawback: increases execution time.

Jean-Sébastien Coron Cryptography

Fault attacks

@ Induce a fault during computation

@ By modifying voltage input
@ RSA with CRT: to compute s = m? mod N, compute :

e s, =m% mod pwhere d, =d mod p— 1

@ s;=m% mod g where d; = d mod q — 1

@ and recombine s, and s, using CRT to get s = m? mod N
@ Fault attack against RSA with CRT (Boneh et al., 1996)

o If s, is incorrect, then s® # m mod N while s* = m mod g
@ Therefore, gcd(N, s¢ — m) gives the prime factor g.

Jean-Sébastien Coron Cryptography

