
Cryptography
Course 9: 30 years of attacks against RSA

Jean-Sébastien Coron

Université du Luxembourg

May 9, 2014

Jean-Sébastien Coron Cryptography

Public-key encryption

Public-key encryption: two keys.

One key is made public and used to encrypt.

The other key is kept private and enables to decrypt.

Alice wants to send a message to Bob:

She encrypts it using Bob’s public-key.
Only Bob can decrypt it using his own private-key.

Alice and Bob do not need to meet to establish a secure

communication.

Security:

It must be difficult to recover the private-key from the

public-key

but not enough in practice.

Jean-Sébastien Coron Cryptography

The RSA algorithm

The RSA algorithm is the most widely-used public-key
encryption algorithm

Invented in 1977 by Rivest, Shamir and Adleman.
Used for encryption and signature.

Widely used in electronic commerce protocols (SSL).

Jean-Sébastien Coron Cryptography

RSA

Key generation:

Generate two large distinct primes p and q of same bit-size.
Compute n = p · q and φ = (p − 1)(q − 1).
Select a random integer e, 1 < e < φ such that

gcd(e, φ) = 1
Compute the unique integer d such that

e · d ≡ 1 mod φ

using the extended Euclidean algorithm.
The public key is (n, e). The private key is d .

Jean-Sébastien Coron Cryptography

RSA encryption

Encryption

Given a message m ∈ [0, n − 1] and the recipent’s

public-key (n, e), compute the ciphertext:

c = me mod n

Decryption

Given a ciphertext c, to recover m, compute:

m = cd mod n

Jean-Sébastien Coron Cryptography

Euler function

Definition:

φ(n) for n > 0 is defined as the number of integers a

comprised between 0 and n − 1 such that gcd(a, n) = 1.

φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2.

Equivalently:

Let Z∗

n be the set of integers a comprised between 0 and
n − 1 such that gcd(a, n) = 1.

Then φ(n) = |Z∗

n|.

Jean-Sébastien Coron Cryptography

Properties

If p ≥ 2 is prime, then

φ(p) = p − 1

More generally, for any e ≥ 1,

φ(pe) = pe−1 · (p − 1)

For n,m > 0 such that gcd(n,m) = 1, we have:

φ(n · m) = φ(n) · φ(m)

Jean-Sébastien Coron Cryptography

Euler’s theorem

Theorem

For any integer n > 1 and any integer a such that
gcd(a, n) = 1, we have aφ(n) ≡ 1 mod n.

Proof

Consider the map f : Z∗

n → Z
∗

n, such that f (b) = a · b for any

b ∈ Z
∗.

f is a permutation, therefore :

∏

b∈Z
∗

n

b =
∏

b∈Z
∗

n

(a · b) = aφ(n) ·





∏

b∈Z
∗

n

b





Therefore, we obtain aφ(n) ≡ 1 mod n.

Jean-Sébastien Coron Cryptography

Fermat’s little theorem

Theorem

For any prime p and any integer a 6= 0 mod p, we have

ap−1 ≡ 1 mod p. Moreover, for any integer a, we have
ap ≡ a mod p.

Proof

Follows from Euler’s theorem and φ(p) = p − 1.

Jean-Sébastien Coron Cryptography

Proof that decryption works

Since e · d ≡ 1 mod φ, there is an integer k such that

e · d = 1 + k · φ.

If m 6= 0 mod p, then by Fermat’s little theorem mp−1 ≡ 1

mod p, which gives :

m1+k ·(p−1)·(q−1) ≡ m mod p

This equality is also true if m ≡ 0 mod p.

This gives med ≡ m mod p for all m.

Similarly, med ≡ m mod q for all m.
By the Chinese Remainder Theorem, if p 6= q, then

med ≡ m mod n

Jean-Sébastien Coron Cryptography

The RSA signature scheme

Key generation :

Public modulus: N = p · q where p and q are large primes.

Public exponent : e
Private exponent: d , such that d · e = 1 mod φ(N)

To sign a message m, the signer computes :

s = md mod N

Only the signer can sign the message.

To verify the signature, one checks that:

m = se mod N
Anybody can verify the signature

Jean-Sébastien Coron Cryptography

Hash-and-sign paradigm

There are many attacks on basic RSA signatures:

Existential forgery: re = m mod N
Chosen-message attack: (m1 · m2)

d = md
1 · md

2 mod N

To prevent from these attacks, one usually uses a hash
function. The message is first hashed, then padded.

m −→ H(m) −→ 1001 . . .0101‖H(m)
Example: PKCS#1 v1.5:

µ(m) = 0001 FF....FF00||cSHA||SHA(m)
ISO 9796-2: µ(m) = 6A‖m[1]‖H(m)‖BC
The signature is then σ = µ(m)d mod N

Jean-Sébastien Coron Cryptography

Attacks against RSA

Factoring

Equivalence between factoring and breaking RSA ?

Mathematical attacks

Attacks against plain RSA encryption and signature
Heuristic countermeasures

Low private / public exponent attacks
Provably secure constructions

Implementation attacks

Timing attacks, power attacks and fault attacks

Countermeasures

Jean-Sébastien Coron Cryptography

Factoring attack

Factoring large integers

Best factoring algorithm: Number Field Sieve
Sub-exponential complexity

exp
(

(c + ◦(1)) n1/3 log2/3 n
)

for n-bit integer.

Current factoring record: 768-bit RSA modulus.

Use at least 1024-bit RSA moduli

2048-bit for long-term security.

Jean-Sébastien Coron Cryptography

Factoring vs breaking RSA

Breaking RSA:

Given (N, e) and y , find x such that y = xe mod N

Open problem

Is breaking RSA equivalent to factoring ?

Knowing d is equivalent to factoring

Probabilistic algorithm (RSA, 1978)
Deterministic algorithm (A. May 2004, J.S. Coron and A.

May 2007)

Jean-Sébastien Coron Cryptography

Probabilistic equivalence between knowing d and

factoring

We consider the particular case N = pq with p ≡ 3

(mod 4) and q ≡ 3 (mod 4).

Algorithm:

Write u = e · d − 1. Therefore u is a multiple of

φ(N) = (p − 1) · (q − 1).
Write u = 2r · t for odd t.

Generate a random a ∈ Z
∗

N

Compute b ≡ at (mod N)
Return gcd(b + 1,N)

Jean-Sébastien Coron Cryptography

Analysis

We have t = s · p−1
2 · q−1

2 for some odd s.

Let Qp = {x ∈ Z
∗

p | x (p−1)/2 ≡ 1 (mod p)}

Qp is a subgroup of Zp of order (p − 1)/2
therefore (a mod p) ∈ Qp with probability 1/2

Moreover:

a ∈ Qp ⇒ b ≡ 1 (mod p)

a /∈ Qp ⇒ b ≡ −1 (mod p)

We obtain the factorization of N if (a ∈ Qp ∧ b /∈ Qq) or
(a /∈ Qp ∧ b ∈ Qq)

This happens with probability 1/2

Jean-Sébastien Coron Cryptography

Elementary attacks

Plain RSA encryption: dictionary attack

If only two possible messages m0 and m1, then only
c0 = (m0)

e mod N and c1 = (m1)
e mod N.

⇒ encryption must be probabilistic.

PKCS#1 v1.5

µ(m) = 0002‖r‖00‖m
c = µ(m)e mod N

Still insufficient (Bleichenbacher’s attack, 1998)

Jean-Sébastien Coron Cryptography

Attacks against Plain RSA signature

Existential forgery

re = m mod N, so r is signature of m

Chosen message attack

(m1 · m2)
d = md

1 · md
2 mod N

To prevent from these attacks, one first computes µ(m),
and lets s = µ(m)d mod N

ISO 9796-1:

µ(m) = s̄(mz)s(mz−1)mzmz−1 . . . s(m1)s(m0)m06

ISO 9796-2:

µ(m) = 6A‖m[1]‖H(m)‖BC

PKCS#1 v1.5:

µ(m) = 0001 FF....FF00||cSHA||SHA(m)

Jean-Sébastien Coron Cryptography

Attacks against RSA signatures

Desmedt and Odlyzko attack (Crypto 85)

Based on finding messages m such that µ(m) is smooth
(product of small primes only)

µ(mi) =
∏

j

p
αi,j

j for many messages mi .

Solve a linear system and write µ(mk) =
∏

i

µ(mi)

Then µ(mk)
d =

∏

i

µ(mi)
d mod N

Application to ISO 9796-1 and ISO 9796-2 signatures

Cryptanalysis of ISO 9796-1 (Coron, Naccache, Stern,
1999)

Cryptanalysis of ISO 9796-2 (Coron, Naccache, Tibouchi,

Weinmann, 2009)
Extension of Desmedt and Odlyzko attack.

For ISO 9796-2 the attack is feasible if the output size of the
hash function is small enough.

Jean-Sébastien Coron Cryptography

Low private exponent attacks

To reduce decryption time, one could use a small d

Wiener’s attack: recover d if d < N0.25

Boneh and Durfee’s attack (1999)

Recover d if d < N0.29

Based on lattice reduction and Coppersmith’s technique

Open problem: extend to d < N0.5

Conclusion: devastating attack

Use a full-size d

Jean-Sébastien Coron Cryptography

Low public exponent attack

To reduce encryption time, one can use a small e

For example e = 3 or e = 216 + 1

Coppersmith’s theorem :

Let N be an integer and f be a polynomial of degree δ.

Given N and f , one can recover in polynomial time all x0

such that f (x0) = 0 mod N and x0 < N1/δ.

Application: partially known message attack :

If c = (B‖m)3 mod N, one can recover m if |m| < |N|/3

Define f (x) = (B · 2k + x)3 − c mod N.
Then f (m) = 0 mod N and apply Coppersmith’s theorem

to recover m.

Jean-Sébastien Coron Cryptography

Low public exponent attack

Coppersmith’s short pad attack

Let c1 = (m‖r1)
3 mod N and c2 = (m‖r2)

3 mod N

One can recover m if r1, r2 < N1/9

Let g1(x , y) = x3 − c1 and g2(x , y) = (x + y)3 − c2.
g1 and g2 have a common root (m‖r1, r2 − r1) modulo N.

h(y) = Resx (g1, g2) has a root ∆ = r2 − r1, with deg h = 9.

To recover m‖r1, take gcd of g1(x ,∆) and g2(x ,∆).

Conclusion:

Attack only works for particular encryption schemes.

Low public exponent is secure when provably secure

construction is used. One often takes e = 216 + 1.

Jean-Sébastien Coron Cryptography

Implementation attacks

The implementation of a cryptographic algorithm can

reveal more information

Passive attacks :

Timing attacks (Kocher, 1996): measure the execution time
Power attacks (Kocher et al., 1999): measure the power

consumption

Active attacks :

Fault attacks (Boneh et al., 1997): induce a fault during
computation

Invasive attacks: probing.

Jean-Sébastien Coron Cryptography

Timing attacks

Described on RSA by Kocher at Crypto 96.

Let d =
∑n

i=0 2idi .

Computing md mod N using square and multiply :

Let z ← m

For i = n− 1 downto 0 do

Let z ← z2 mod N

If di = 1 let z ← z ·m mod N

Attack

Let Ti be the total time needed to compute md
i mod N

Let ti be the time needed to compute m3
i mod N

If dn−1 = 1, the variables ti and Ti are correlated, otherwise

they are independent. This gives dn−1.

Jean-Sébastien Coron Cryptography

Countermeasures

Implement in constant time

Not always possible with hardware crypto-processors.

Exponent blinding:

Compute md+k ·φ(N) = md mod N for random k .

Message blinding

Compute (m · r)d/rd = md mod N for random r .

Modulus randomization

Compute md mod (N · r) and reduce modulo N.

or a combination of the three.

Jean-Sébastien Coron Cryptography

Power attacks

Based on measuring power consumption

Introduced by Kocher et al. at Crypto 99.

Initially applied on DES, but any cryptographic algorithm is
vulnerable.

Attack against exponentiation md mod N :

If power consumption correlated with some bits of m3

mod N, this means that m3 mod N was effectively
computed, and so dn−1 = 1.

Enables to recover dn−1 and by recursion the full d .

Jean-Sébastien Coron Cryptography

Countermeasures

Hardware countermeasures

Constant power consumption; dual rail logic.

Random delays to desynchronise signals.

Software countermeasures

Same as for timing attacks
Goal: randomization of execution

Drawback: increases execution time.

Jean-Sébastien Coron Cryptography

Fault attacks

Induce a fault during computation

By modifying voltage input

RSA with CRT: to compute s = md mod N, compute :

sp = mdp mod p where dp = d mod p − 1
sq = mdq mod q where dq = d mod q − 1

and recombine sp and sq using CRT to get s = md mod N

Fault attack against RSA with CRT (Boneh et al., 1996)

If sp is incorrect, then se 6= m mod N while se = m mod q
Therefore, gcd(N, se − m) gives the prime factor q.

Jean-Sébastien Coron Cryptography

