Algorithmic Number Theory Course 7

Jean-Sébastien Coron

University of Luxembourg

May 2, 2014

Summary

- Polynomial arithmetic and applications.
 - Basic arithmetic
 - Euclid's algorithm
 - Chinese remaindering and polynomial interpolation.
- Many similarities with operations in \mathbb{Z} .

Basic arithmetic

- Let R be a ring. Let $k \ge 1$.
 - ullet We represent a degree k-1 polynomial

$$a(X) = \sum_{i=0}^{k-1} a_i \cdot X^i \in R[X]$$

as a coefficient vector $(a_0, a_1, \ldots, a_{k-1})$.

- When $a_{k-1} \neq 0$, we let deg a = k 1.
- Example: $R = \mathbb{Z}$ or $R = \mathbb{Z}_n$.
- Addition and substraction of polynomials.
 - Just add or substract coefficient vectors.

Multiplication of polynomials

- Let $a=\sum\limits_{i=0}^{k-1}a_iX^i\in R[X]$ and $b=\sum\limits_{i=0}^{\ell-1}b_iX^i\in R[X]$ where $k,\ell\geq 1.$
 - The product $c := a \cdot b$ is of the form $c = \sum_{i=0}^{k+\ell-2} c_i X^i$
 - Can be computed in $\mathcal{O}(k \cdot \ell)$ operations in R:

$$\begin{array}{l} \text{for } i \leftarrow 0 \text{ to } k + \ell - 2 \text{ do } c_i \leftarrow 0 \\ \text{for } i \leftarrow 0 \text{ to } k - 1 \text{ do} \\ \text{for } j \leftarrow 0 \text{ to } \ell - 1 \text{ do} \\ c_{i+j} \leftarrow c_{i+j} + a_i \cdot b_j \end{array}$$

Division of polynomials

- Let a, b two polynomials in R[X], such that the leading coefficient of b is invertible in R.
 - We want to compute $q, r \in R[X]$ such that

$$a = b \cdot q + r$$

where $\deg r < \deg b$.

- We denote $r := a \mod b$.
- Let deg a=k-1 and deg $b=\ell-1$.
 - if $k < \ell$, then let $q \leftarrow 0$ and $r \leftarrow a$

Division of polynomials

- Let $b_{\ell-1}$ be the leading term of b and let $b_{\ell-1}^{-1}$ be its inverse
 - 1) Let $r \leftarrow a$
 - 2) For $i \leftarrow k \ell$ down to 0 do
 - $q_i \leftarrow r_{i+\ell-1} \cdot b_{\ell-1}^{-1}$
 - $r \leftarrow r q_i \cdot b \cdot X^i$
 - 3) $q \leftarrow \sum_{i=0}^{k-\ell} q_i X^i$
- Complexity: $\mathcal{O}(\ell(k-\ell+1))$.

Arithmetic in R[X]/(n)

- As for modular integer arithmetic, we can do arithmetic in R[X]/(n).
 - Where $n \in R[X]$ is a polynomial of degree $\ell > 0$ whose leading coefficient is in R^* (most of the time, 1).
- Let $\alpha \in R[X]/(n)$. There exists $a \in R[X]$ such that $\alpha = \{a' \in R[X] : a' = a + p \cdot n, p \in R[X]\} = [a]_n$
 - One can take the *canonical representative* of α by taking the unique polynomial r such that $\deg r < \ell$ and $\alpha = [r]_n$
 - Select any polynomial $a' \in \alpha$, and compute $a = q \cdot n + r$ where deg $r < \deg n = \ell$

Polynomial congruence

- Let F be a field. Let $n \in F[X]$.
 - For polynomials $a, b \in F[X]$, we say that a is congruent to b modulo n if n|(a-b).
 - Notation: $a \equiv b \pmod{n}$.
- Using division with remainder:
 - For any $a \in F[X]$, there exists a unique $b \in F[X]$ such that $a \equiv b \pmod{n}$ and $\deg(b) < n$.
 - Take $b := a \mod n$.

Arithmetic in R[X]/(n)

- Addition, substraction
 - Compute c := a + b or c := a b.
 - Complexity: $\mathcal{O}(\ell)$ operations in R.
- Multiplication
 - Compute $c := a \cdot b$.
 - Compute $c' := c \mod n$.
 - Complexity: $\mathcal{O}(\ell^2)$ operations in R.

Greatest Common Divisor

- Let F be a field. Let $a, b \in F[X]$.
 - $d \in F[X]$ is a common divisor of a and b if d|a and d|b.
 - Such a d is a greatest common divisor of a and b if d is monic (leading coefficient equal to 1) or zero, and all other common divisors of a and b divide d.
 - We denote $d = \gcd(a, b)$.
- Theorem (proof: see Shoup's book).
 - For any $a, b \in F[X]$, there exists a unique greatest common divisor d of a and b.
 - Moreover, there exists $u, v \in F[X]$ such that $a \cdot u + b \cdot v = d$.

Euclid's algorithm

- Computes gcd(a, b) for $a, b \in F[X]$. Analogous to the integer case.
 - Input: $a, b \in F[X]$ with deg $a \ge \deg b$ and $a \ne 0$.
 - Output $d = \gcd(a, b) \in F[X]$. • $r \leftarrow a, r' \leftarrow b$

```
while r' \neq 0 do r'' \leftarrow r \mod r' (r, r') \leftarrow (r', r'') d \leftarrow r/\operatorname{lc}(r) //\operatorname{lc=leading coefficient}
```

Theorem

Let $a, b \in F[X]$, with deg $a \ge \deg b$ and $a, b \ne 0$. The previous algorithm outputs $\gcd(a, b)$ in at most deg b + 1 steps.

Proof.

Let $r_0=a$, $r_1=b$ and $r_i=r_{i+1}\cdot q_i+r_{i+2}$ for $0\leq i\leq \ell-1$, where $r_{\ell+1}=0$. We have that $\deg r_i$ for $i\geq 1$ is strictly decreasing, therefore $\ell\leq \deg b+1$. Moreover,

$$\gcd(a,b)=\gcd(r_0,r_1)=\cdots=\gcd(r_\ell,r_{\ell+1})=\gcd(r_\ell,0)=r_\ell/\mathsf{lc}(r_\ell)$$

Euclid's extended algorithm

- Input: $a, b \in F[X]$ with deg $a \ge \deg b$ and $a \ne 0$.
- Output: $d, s, t \in F[X]$ such that $d = \gcd(a, b)$ and as + bt = d. $r \leftarrow a, r' \leftarrow b$ $s \leftarrow 1, s' \leftarrow 0$ $t \leftarrow 0, t' \leftarrow 1$ while $r' \neq 0$ do Compute q, r'' such that r = r'q + r'', with $\deg(r'') < \deg(r')$ $(r, s, t, r', s', t') \leftarrow (r', s', t', r'', s - s'a, t - t'a)$ $c \leftarrow lc(r)$ $d \leftarrow r/c, s \leftarrow s/c, t \leftarrow t/c$ Output d, s, t.

Modular inverses

- Modular inverse
 - Let $n \in F[X]$, $n \neq 0$ and $a \in F[X]$. $a' \in F[X]$ is a modular inverse of a modulo n if $aa' \equiv 1 \pmod{n}$.
- Facts (analogous to the integer case)
 - Let $a, n \in F[X]$ with $n \neq 0$. Then a has a multiplicative inverse modulo n iff gcd(a, n) = 1 (a and n are relatively prime).
 - If a has a multiplicative inverse, it is unique modulo n.
 - Denote by a^{-1} the unique mulitplicative inverse of a modulo n with deg(a) < deg(n).

Computing modular inverses

- Let $n \in F[X]$ with $\ell := \deg n > 0$. Let $y \in F[X]$ with $\deg y < \ell$.
 - Using the Extended Euclidean Algorithm, find $d, s, t \in F[X]$ such that

$$s \cdot y + t \cdot n = d$$
 and $d = \gcd(y, n)$

- If gcd(y, n) = 1, then s is a multiplicative inverse of y modulo n. Moreover, $\deg s < \ell$ so $s = y^{-1} \mod n$.
- Computation time:
 - $\mathcal{O}(\ell^2)$ operations in F.

The field F[x]/(n)

- If $n \in F[X]$ is irreducible, then F[X]/(n) is a field.
 - Addition, substraction in F[X]/(n) in $\mathcal{O}(\ell)$ operations.
 - Multiplication in F[X]/(n) in $\mathcal{O}(\ell^2)$ operations.
 - Inverse in F[X]/(n) in $\mathcal{O}(\ell^2)$ operations (using the Extended Euclidean algorithm).

Chinese remaindering

- Theorem (analogous to the integer case)
 - Let $n_1, \ldots, n_k \in F[X]$ such that $n_i \neq 0$ and $\gcd(n_i, n_j) = 1$ for all $i \neq j$. Let $a_1, \ldots, a_k \in F[X]$. There exists a polynomial $z \in F[X]$ such that :

$$z \equiv a_i \pmod{n_i} \quad (i = 1, \dots, k)$$

- Moreover, the polynomial z is unique modulo $n := \prod_{i=1}^k n_i$.
- $z := \sum_{i=1}^k \omega_i \cdot a_i$, where $\omega_i := n'_i \cdot m_i$, $n'_i := n/n_i$ and $m_i := (n'_i)^{-1} \mod n_i$.

Polynomial interpolation

- Problem:
 - Given $(a_1, b_1), \ldots (a_k, b_k) \in F$, where the b_i s are distinct, find $z \in F[X]$ such that $z(b_i) = a_i$ for all $i = 1, \ldots, k$ and deg z < k.
- Can be viewed as a special case of Chinese remaindering.
 - Take $n_i = (X b_i)$. The n_i are pairwise relatively prime since the b_i are distinct. Moreover:

$$z \equiv a_i \pmod{n_i} \Leftrightarrow z(b_i) = a_i$$

• $n_i' = \prod_{j \neq i} (X - b_j)$ and $m_i = 1/\prod_{j \neq i} (b_i - b_j) \in F$.

$$z = \sum_{i=1}^k a_i \frac{\prod_{j \neq i} (X - b_j)}{\prod_{j \neq i} (b_i - b_j)}$$

Polynomial interpolation

- Theorem
 - Given $(a_0, b_0), \ldots (a_{k-1}, b_{k-1}) \in F^2$, where the b_i 's are distincts, there is a unique $z \in F[X]$ such that $z(b_i) = a_i$ for all $i = 0, \ldots, k-1$ and deg z < k.
 - $z = \sum_{i=0}^{k-1} a_i \frac{\prod_{j \neq i} (X b_j)}{\prod_{j \neq i} (b_i b_j)}$
- Write $z = \sum_{i=0}^{k-1} z_i \cdot X^i$.
 - This implies that $\sigma: F^k \to F^k, (z_0, \dots, z_{k-1}) \to (a_0, \dots, a_{k-1})$ such that $a_i = z(b_i)$ for $i = 0, \dots, k-1$ is a bijection.

Secret sharing

- Assume that Alice has a secret value $s \in F$ that she wants to share among m parties P_1, \ldots, P_m with m > k so that:
 - Any subset of *k* parties can reconstruct the secret *s*.
 - Any subset of less than k-1 parties obtain no information about s

Application of secret-sharing

Application:

- Alice wants to backup some secret data on file servers.
- Even if some of the file servers crash, she can always reconstruct her secret data as long as at least k servers are available.
- If an attacker takes control of less than k-1 servers, then he obtains no information about Alice's secret.

Procedure

- Sharing the secret $s \in F$:
 - Alice generates and publish distinct elements b_0, \ldots, b_m in F, where $b_0 = 0$.
 - Alice let $z_0 := s$, then generates random $z_1, \dots, z_{k-1} \in F$, and let $z = \sum_{i=0}^{k-1} z_i X^i$
 - For i = 1, ..., m, Alice gives party P_i its share $a_i := z(b_i)$.
- Reconstructing the share
 - For the polynomial interpolation theorem, any subset of k parties can find s by first interpolating z on the k points and then recovering $z(b_0) = z(0) = s$.

Security

- Consider a subset of k-1 parties, P_1, \ldots, P_{k-1} , with corresponding b_1, \ldots, b_{k-1} .
 - Let $z(X) = \sum_{j=0}^{k-1} z_j X^j$ and $a_i = z(b_i)$ for all $1 \le i \le k-1$.
 - Write $a_0 := z(b_0) = z_0 = s$.
 - We have a bijection:

$$\Psi_{z_0}: F^{k-1} \to F^{k-1} \ (z_1, \dots, z_{k-1}) \to (a_1, \dots, a_{k-1})$$

where $a_i = z(b_i)$ for all $1 \le i \le k-1$.

- Namely for any a_1, \ldots, a_{k-1} , given $a_0 = z(b_0) = z_0$ there is a unique $z_0, z_1, \ldots, z_{k-1}$ such that $a_i = z(b_i)$ for all $0 \le i \le k-1$.
- Therefore for all $s = z_0 \in F$, the vector (a_1, \ldots, a_{k-1}) is uniformly distributed in F^{k-1} .
- Therefore the vector (a_1, \ldots, a_{k-1}) does not given any information about the secret s.

Finite fields

- Definition
 - A field is a commutative ring (F, +, *) such that $0 \neq 1$ and all elements except 0 have a multiplicative inverse.
 - A finite field is a field that contains only finitely many elements.
- Example:
 - For any prime p, \mathbb{Z}_p is a finite field

Finite fields

Properties

- The order or number of elements of a finite field is of the form p^n for prime p and $n \ge 1$.
- For any prime p and integer n ≥ 1, there exists a finite field of pⁿ elements.
- Any two finite fields with same number of elements are isomorphic.
- Notation
 - $GF(p^n)$ or \mathbb{F}_{p^n} .

Construction

- Construction of $GF(p^n)$
 - Select an irreducible polynomial f(X) of degree n with coefficients in GF(p)
 - Then the set of polynomials in GF(p)[X] modulo f(X) is a finite field of size p^n .
- Example
 - $F(X) = X^2 + X + 1$ is irreducible in $GF(2) = \{0, 1\}$.
 - Then $GF(2^2) = GF(2)[X]/ < X^2 + X + 1 >$
 - $GF(2^2) = \{0, 1, X, X + 1\}$
 - Addition: addition of polynomials
 - Multiplication: use $X^2 + X + 1 = 0$

Example

- $f(X) = X^4 + X^3 + 1$ is irreducible over over GF(2).
 - f(0) = 0 + 0 + 1 = 1 and f(1) = 1 + 1 + 1 = 1 so no root $= \xi$ no irreducible factor of degree 1.
 - Only irreducible polynomial of degree 2: $X^2 + X + 1$ and $(X^2 + X + 1)^2 = X^4 + 2X^3 + 3X^2 + 2X + 1 = X^4 + X^2 + 1 \neq f(X)$
- $GF(2^4) = GF(2)/ < X^4 + X^3 + 1 >$
 - Its elements can be written $a_3X^3 + a_2X^2 + a_1X + a_0$ where $a_0, \ldots, a_3 \in \{0, 1\}^4$.
 - Can be represented as 4-bit strings.

The field $GF(2)/(X^4 + X^3 + 1)$

- Addition in $GF(2^4)$: bitwise xor.
- Multiplication: multiply the polynomials modulo f.

•
$$1010 \rightarrow (X^3 + X)$$
, $0101 \rightarrow (X^2 + 1)$

•
$$(X^3 + X)(X^2 + 1) = X^5 + X$$

•
$$X^5 + X = X^3 + 1 \mod (X^4 + X^3 + 1)$$

- so $1010 \cdot 0101 = 1001$
- Inversion: use Euclid extended algorithm (or exhaustive search for small fields).

•
$$(X^3 + X) \cdot (X^3 + X + 1) = X^6 + X^3 + X^2 + X = X^2 \cdot (X^3 + 1) + X^3 + X^2 + X = X^5 + X^3 + X = (X^4 + X) + X^3 + X = X^4 + X^3 = 1$$

• so $1010^{-1} = 1011$