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@ Polynomial arithmetic and applications.

e Basic arithmetic
e Euclid’s algorithm
o Chinese remaindering and polynomial interpolation.

@ Many similarities with operations in Z.

Jean-Sébastien Coron Algorithmic Number Theory



Basic arithmetic

@ Let R be aring. Let k > 1.
o We represent a degree k — 1 polynomial

k—1
a(X) =Y a- X' € R[X]
i=0
as a coefficient vector (ag, a1, ..., ak—1).

o When ax_1 #0, we let dega = k — 1.
e Example: R=Z or R=7,.

@ Addition and substraction of polynomials.
o Just add or substract coefficient vectors.
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Multiplication of polynomials

k-1
o leta= > aX' €R[X]and b= ZbX’eR[X] where

i=0
k, 0> 1.
k=2
o The product c:=a-bisof theformc= > X'
i=0
o Can be computed in O(k - £) operations in R:

fori<~0tok+/¢—2doci+ 0
for i< 0to k—1do
for j« O0tol—1do
c,-+j<—c,~+j+a,~-bj
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Division of polynomials

@ Let a, b two polynomials in R[X], such that the leading
coefficient of b is invertible in R.

o We want to compute g, r € R[X] such that

a=b-q+r

where deg r < deg b.
e We denote r := a mod b.

o Letdega=k—1anddegh=1/¢—1.
o if k</ thenlet g« 0and r+ a
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Division of polynomials

o Let by_1 be the leading term of b and let bg__l1 be its inverse

o 1) Letr« a
e 2) For i + k — ¢ down to 0 do

-1
° ql'<_ri+271'be_1
e r+r—gqi-b-X

k—2¢ .
° 3) q < Z q,'X'
i=0

o Complexity: O(¢(k — £+ 1)).

Jean-Sébastien Coron Algorithmic Number Theory



Arithmetic in R[X]/(n)

@ As for modular integer arithmetic, we can do arithmetic in
R[X1/(n).
o Where n € R[X] is a polynomial of degree ¢ > 0 whose leading
coefficient is in R* (most of the time, 1).

o Let a € R[X]/(n). There exists a € R[X] such that
a={d eR[X]:d =a+p-npeR[X]}=]a]n
o One can take the canonical representative of « by taking the
unique polynomial r such that degr < £ and a = [r],
o Select any polynomial a’ € o, and compute a = g - n+ r where
degr < degn=1/{
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Polynomial congruence

o Let F be a field. Let n € F[X].

e For polynomials a, b € F[X], we say that a is congruent to b
modulo n if n|(a — b).
o Notation: a = b (mod n).
@ Using division with remainder:

e For any a € F[X], there exists a unique b € F[X] such that
a = b (mod n) and deg(b) < n.
o Take b:=a mod n.
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Arithmetic in R[X]/(n)

@ Addition, substraction
o Compute c:=a+borc:=a—b.
o Complexity: O(¢) operations in R.
@ Multiplication
o Compute c:=a- b.
o Compute ¢’ := ¢ mod n.
o Complexity: O(£?) operations in R.
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Greatest Common Divisor

o Let F be a field. Let a, b € F[X].

e d € F[X] is a common divisor of a and b if d|a and d|b.

e Such a d is a greatest common divisor of a and b if d is monic
(leading coefficient equal to 1) or zero, and all other common
divisors of a and b divide d.

o We denote d = gcd(a, b).

@ Theorem (proof: see Shoup's book).
o For any a, b € F[X], there exists a unique greatest common

divisor d of a and b.
o Moreover, there exists u,v € F[X] such that a-u+b-v =d.
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Euclid’s algorithm

e Computes gcd(a, b) for a, b € F[X]. Analogous to the integer
case.
o Input: a,b € F[X] with dega > deg b and a # 0.
o Output d = gecd(a, b) € F[X].
oer<ar«b
while r' # 0 do
r" < r mod r’
(r, ")« (r',r")
d + r/lc(r)  // lc=leading coefficient
output d
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Let a, b € F[X], with dega > deg b and a, b # 0. The previous
algorithm outputs gcd(a, b) in at most deg b + 1 steps.

| A

Proof.

Let p=a, n=>band ri=ri11-qi+ rizo for 0 < i < /¢ —1, where
re+1 = 0. We have that deg rj for i > 1 is strictly decreasing,
therefore £ < deg b+ 1. Moreover,

ged(a, b) = ged(rp, ) = - -+ = ged(re, rev1) = ged(re, 0) = rg/Ic(ry)

Ol

v
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Euclid’s extended algorithm

e Input: a, b € F[X] with dega > deg b and a # 0.
e Output: d,s, t € F[X] such that d = gcd(a, b) and
as+ bt =d.
r<a r' «+<b
s+ 1,5«0
t+0,t' <1
while r’ #£ 0 do
Compute g, r” such that r = r'q + r”, with
deg(r”) < deg(r’)
(rys,t,r',s' t')« (s, t/,r' s —s'q,t—tq)
¢ +lc(r)
d«r/c,s<s/c,t+ t/c
Output d, s, t.
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Modular inverses

@ Modular inverse
o Let ne F[X], n#0and a € F[X]. & € F[X] is a modular
inverse of a modulo n if aa’ =1 (mod n).
@ Facts (analogous to the integer case)
o Let a,n € F[X] with n# 0. Then a has a multiplicative inverse

modulo n iff gcd(a, n) =1 (a and n are relatively prime).
e If a has a multiplicative inverse, it is unique modulo n.

o Denote by a—! the unique mulitplicative inverse of a modulo n
with deg(a) < deg(n).
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Computing modular inverses

o Let n e F[X] with ¢ :=degn > 0. Let y € F[X] with
degy < /.

o Using the Extended Euclidean Algorithm, find d,s,t € F[X]
such that

s-y+t-n=d and d =gcd(y,n)

o If gcd(y, n) =1, then s is a multiplicative inverse of y modulo
n. Moreover, degs < £ so s =y~ mod n.

o Computation time:
o O(f?) operations in F.
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The field F[x]/(n)

e If n € F[X] is irreducible, then F[X]/(n) is a field.
e Addition, substraction in F[X]/(n) in O(¢) operations.
o Multiplication in F[X]/(n) in O(£?) operations.
o Inverse in F[X]/(n) in O(¢?) operations (using the Extended
Euclidean algorithm).
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Chinese remaindering

@ Theorem (analogous to the integer case)
o Let ny,...,ne € F[X] such that n; # 0 and ged(n;, nj) =1 for
all i #j. Let ay,...,ax € F[X]. There exists a polynomial
z € F[X] such that :

z=a;(mod n;) (i=1,...,k)

. S k
o Moreover, the polynomial z is unique modulo n:= [],_; n;.

K
° z:= ) w;-a;, where w; :==n}-m;, nl:=n/n; and
i=1
m; = (n)~t mod n;.
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Polynomial interpolation

@ Problem:

o Given (a1, b1),...(ak, bx) € F, where the b;s are distinct, find
z € F[X] such that z(b;) = a; for all i =1,..., k and
degz < k.

@ Can be viewed as a special case of Chinese remaindering.

o Take n; = (X — b;). The n; are pairwise relatively prime since
the b; are distinct. Moreover:

z=a; (mod nm) < z(b;) = a;

o = 1(X = bj)and mi =1/T[;;(bi — b;) € F.
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Polynomial interpolation

@ Theorem
o Given (ag, by),-..(ak_1, bx_1) € F?, where the b;'s are
distincts, there is a unique z € F[X] such that z(b;) = a; for
aIIi_O .,k—1and degz < k.

.5 E [, (x-b)

& ’H,#,(b —by)
o Write z = 0 zi- X'
e This implles that o : FK — FK (z0,...,zk—1) — (a0, - - -, ak_1)

such that a; = z(b;) for i =0,...,k — 1 is a bijection.
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Secret sharing

@ Assume that Alice has a secret value s € F that she wants to
share among m parties Pi, ..., Py, with m > k so that:
e Any subset of k parties can reconstruct the secret s.
e Any subset of less than k — 1 parties obtain no information
about s.
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Application of secret-sharing

o Application:

e Alice wants to backup some secret data on file servers.

e Even if some of the file servers crash, she can always
reconstruct her secret data as long as at least k servers are
available.

o If an attacker takes control of less than k — 1 servers, then he
obtains no information about Alice's secret.

Jean-Sébastien Coron Algorithmic Number Theory



Procedure

@ Sharing the secret s € F:

o Alice generates and publish distinct elements by, ..., by, in F,
where by = 0.
o Alice let zy := s, then generates random z;,...,2zx_1 € F, and

let z =310 zi X
e Fori=1,...,m, Alice gives party P; its share a; := z(b;).
@ Reconstructing the share

e For the polynomial interpolation theorem, any subset of k
parties can find s by first interpolating z on the k points and
then recovering z(by) = z(0) = s.
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o Consider a subset of k — 1 parties, Py,..., Pr_1, with
corresponding by, ..., bk_1.
k-1
o Let z(X) = " z X/ and a; = z(b;) forall 1 < i < k — 1.
j=0

o Write ag := z(by) = 20 = s.
e We have a bijection:

W, PRl R
(Zl,...,Zk_l) — (al,...,ak_l)

where a; = z(b;) forall 1 << k—1.

o Namely for any ay, ..., ax_1, given ag = z(by) = zp there is a
unique zg, 71, ..., Zxk—1 such that a; = z(b;) for all
0<i<k-1.

o Therefore for all s = z5 € F, the vector (a1,...,ak—1) is

uniformly distributed in F<—1.

@ Therefore the vector (a1, ..., akx—1) does not given any
information about the secret s.
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Finite fields

@ Definition

o A field is a commutative ring (F,+, %) such that 0 # 1 and all
elements except 0 have a multiplicative inverse.

o A finite field is a field that contains only finitely many
elements.

@ Example:
e For any prime p, Z, is a finite field
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Finite fields

@ Properties
e The order or number of elements of a finite field is of the form
p" for prime p and n > 1.
e For any prime p and integer n > 1, there exists a finite field of
p" elements.
e Any two finite fields with same number of elements are
isomorphic.
@ Notation
o GF(p") or Fpn.
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e Construction of GF(p")

o Select an irreducible polynomial f(X) of degree n with
coefficients in GF(p)
o Then the set of polynomials in GF(p)[X] modulo f(X) is a
finite field of size p".
@ Example
F(X) = X% + X + 1 is irreducible in GF(2) = {0,1}.
Then GF(2%) = GF(2)[X]/ < X2+ X +1>
GF(2?) ={0,1,X,X + 1}
Addition: addition of polynomials
Multiplication: use X? 4+ X +1=0
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o f(X)=X*+ X3+ 1is irreducible over over GF(2).
o f(0)=04+0+1=1and f(1)=1+1+1=1so no root =;
no irreducible factor of degree 1.
e Only irreducible polynomial of degree 2: X2 4+ X + 1 and
(X2 XA+1)2 = X442X3+3X242X+1 = X4+ X2+1 # £(X)
o GF(2*)=GF(2)/ < X*+ X3 +1>
o Its elements can be written a3 X3 + a,X? + a; X + ag where
ag,...,a3z € {07 1}4
o Can be represented as 4-bit strings.
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The field GF(2)/(X* + X3 + 1)

e Addition in GF(2%): bitwise xor.

o Multiplication: multiply the polynomials modulo f.

1010 — (X3 + X), 0101 — (X2 + 1)

(XP+X)(X2+1) =X+ X

X5+ X=X341 mod (X*+ X3 +1)

so 1010 - 0101 = 1001

@ Inversion: use Euclid extended algorithm (or exhaustive search

for small fields).
o (X34 X)(X3P+X+1) =X+ X3+ X2+ X =X2-(X3+1)+
X34X24X = X54X34X = (X4 X))+ X34+ X = X4+ X3 =1

e s0 101071 = 1011
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