
Algorithmic Number Theory
Course 7
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Summary

Polynomial arithmetic and applications.

Basic arithmetic
Euclid’s algorithm
Chinese remaindering and polynomial interpolation.

Many similarities with operations in Z.

Jean-Sébastien Coron Algorithmic Number Theory



Basic arithmetic

Let R be a ring. Let k ≥ 1.

We represent a degree k − 1 polynomial

a(X ) =
k−1∑
i=0

ai · X i ∈ R[X ]

as a coefficient vector (a0, a1, . . . , ak−1).
When ak−1 6= 0, we let deg a = k − 1.
Example: R = Z or R = Zn.

Addition and substraction of polynomials.

Just add or substract coefficient vectors.
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Multiplication of polynomials

Let a =
k−1∑
i=0

aiX
i ∈ R[X ] and b =

`−1∑
i=0

biX
i ∈ R[X ] where

k, ` ≥ 1.

The product c := a · b is of the form c =
k+`−2∑
i=0

ciX
i

Can be computed in O(k · `) operations in R:

for i ← 0 to k + `− 2 do ci ← 0
for i ← 0 to k − 1 do

for j ← 0 to `− 1 do
ci+j ← ci+j + ai · bj
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Division of polynomials

Let a, b two polynomials in R[X ], such that the leading
coefficient of b is invertible in R.

We want to compute q, r ∈ R[X ] such that

a = b · q + r

where deg r < deg b.
We denote r := a mod b.

Let deg a = k − 1 and deg b = `− 1.

if k < `, then let q ← 0 and r ← a
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Division of polynomials

Let b`−1 be the leading term of b and let b−1
`−1 be its inverse

1) Let r ← a
2) For i ← k − ` down to 0 do

qi ← ri+`−1 · b−1
`−1

r ← r − qi · b · X i

3) q ←
k−∑̀
i=0

qiX
i

Complexity: O(`(k − `+ 1)).
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Arithmetic in R[X ]/(n)

As for modular integer arithmetic, we can do arithmetic in
R[X ]/(n).

Where n ∈ R[X ] is a polynomial of degree ` > 0 whose leading
coefficient is in R∗ (most of the time, 1).

Let α ∈ R[X ]/(n). There exists a ∈ R[X ] such that
α = {a′ ∈ R[X ] : a′ = a + p · n, p ∈ R[X ]} = [a]n

One can take the canonical representative of α by taking the
unique polynomial r such that deg r < ` and α = [r ]n
Select any polynomial a′ ∈ α, and compute a = q · n + r where
deg r < deg n = `
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Polynomial congruence

Let F be a field. Let n ∈ F [X ].

For polynomials a, b ∈ F [X ], we say that a is congruent to b
modulo n if n|(a− b).
Notation: a ≡ b (mod n).

Using division with remainder:

For any a ∈ F [X ], there exists a unique b ∈ F [X ] such that
a ≡ b (mod n) and deg(b) < n.
Take b := a mod n.
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Arithmetic in R[X ]/(n)

Addition, substraction

Compute c := a + b or c := a− b.
Complexity: O(`) operations in R.

Multiplication

Compute c := a · b.
Compute c ′ := c mod n.
Complexity: O(`2) operations in R.
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Greatest Common Divisor

Let F be a field. Let a, b ∈ F [X ].

d ∈ F [X ] is a common divisor of a and b if d |a and d |b.
Such a d is a greatest common divisor of a and b if d is monic
(leading coefficient equal to 1) or zero, and all other common
divisors of a and b divide d .
We denote d = gcd(a, b).

Theorem (proof: see Shoup’s book).

For any a, b ∈ F [X ], there exists a unique greatest common
divisor d of a and b.
Moreover, there exists u, v ∈ F [X ] such that a · u + b · v = d .
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Euclid’s algorithm

Computes gcd(a, b) for a, b ∈ F [X ]. Analogous to the integer
case.

Input: a, b ∈ F [X ] with deg a ≥ deg b and a 6= 0.
Output d = gcd(a, b) ∈ F [X ].
r ← a, r ′ ← b
while r ′ 6= 0 do

r ′′ ← r mod r ′

(r , r ′)← (r ′, r ′′)
d ← r/lc(r) // lc=leading coefficient
output d
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Theorem

Let a, b ∈ F [X ], with deg a ≥ deg b and a, b 6= 0. The previous
algorithm outputs gcd(a, b) in at most deg b + 1 steps.

Proof.

Let r0 = a, r1 = b and ri = ri+1 · qi + ri+2 for 0 ≤ i ≤ `− 1, where
r`+1 = 0. We have that deg ri for i ≥ 1 is strictly decreasing,
therefore ` ≤ deg b + 1. Moreover,

gcd(a, b) = gcd(r0, r1) = · · · = gcd(r`, r`+1) = gcd(r`, 0) = r`/lc(r`)
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Euclid’s extended algorithm

Input: a, b ∈ F [X ] with deg a ≥ deg b and a 6= 0.

Output: d , s, t ∈ F [X ] such that d = gcd(a, b) and
as + bt = d .
r ← a, r ′ ← b
s ← 1, s ′ ← 0
t ← 0, t ′ ← 1
while r ′ 6= 0 do

Compute q, r ′′ such that r = r ′q + r ′′, with
deg(r ′′) < deg(r ′)

(r , s, t, r ′, s ′, t ′)← (r ′, s ′, t ′, r ′′, s − s ′q, t − t ′q)
c ←lc(r)
d ← r/c , s ← s/c , t ← t/c
Output d , s, t.
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Modular inverses

Modular inverse

Let n ∈ F [X ], n 6= 0 and a ∈ F [X ]. a′ ∈ F [X ] is a modular
inverse of a modulo n if aa′ ≡ 1 (mod n).

Facts (analogous to the integer case)

Let a, n ∈ F [X ] with n 6= 0. Then a has a multiplicative inverse
modulo n iff gcd(a, n) = 1 (a and n are relatively prime).
If a has a multiplicative inverse, it is unique modulo n.

Denote by a−1 the unique mulitplicative inverse of a modulo n
with deg(a) < deg(n).
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Computing modular inverses

Let n ∈ F [X ] with ` := deg n > 0. Let y ∈ F [X ] with
deg y < `.

Using the Extended Euclidean Algorithm, find d , s, t ∈ F [X ]
such that

s · y + t · n = d and d = gcd(y , n)

If gcd(y , n) = 1, then s is a multiplicative inverse of y modulo
n. Moreover, deg s < ` so s = y−1 mod n.

Computation time:

O(`2) operations in F .

Jean-Sébastien Coron Algorithmic Number Theory



The field F [x ]/(n)

If n ∈ F [X ] is irreducible, then F [X ]/(n) is a field.

Addition, substraction in F [X ]/(n) in O(`) operations.
Multiplication in F [X ]/(n) in O(`2) operations.
Inverse in F [X ]/(n) in O(`2) operations (using the Extended
Euclidean algorithm).
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Chinese remaindering

Theorem (analogous to the integer case)

Let n1, . . . , nk ∈ F [X ] such that ni 6= 0 and gcd(ni , nj) = 1 for
all i 6= j . Let a1, . . . , ak ∈ F [X ]. There exists a polynomial
z ∈ F [X ] such that :

z ≡ ai (mod ni ) (i = 1, . . . , k)

Moreover, the polynomial z is unique modulo n :=
∏k

i=1 ni .

z :=
k∑

i=1

ωi · ai , where ωi := n′i ·mi , n
′
i := n/ni and

mi := (n′i )
−1 mod ni .
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Polynomial interpolation

Problem:

Given (a1, b1), . . . (ak , bk) ∈ F , where the bi s are distinct, find
z ∈ F [X ] such that z(bi ) = ai for all i = 1, . . . , k and
deg z < k .

Can be viewed as a special case of Chinese remaindering.

Take ni = (X − bi ). The ni are pairwise relatively prime since
the bi are distinct. Moreover:

z ≡ ai (mod ni )⇔ z(bi ) = ai

n′i =
∏

j 6=i (X − bj) and mi = 1/
∏

j 6=i (bi − bj) ∈ F .

z =
k∑

i=1

ai

∏
j 6=i (X − bj)∏
j 6=i (bi − bj)
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Polynomial interpolation

Theorem

Given (a0, b0), . . . (ak−1, bk−1) ∈ F 2, where the bi ’s are
distincts, there is a unique z ∈ F [X ] such that z(bi ) = ai for
all i = 0, . . . , k − 1 and deg z < k .

z =
k−1∑
i=0

ai

∏
j 6=i (X−bj )∏
j 6=i (bi−bj )

Write z =
∑k−1

i=0 zi · X i .

This implies that σ : F k → F k , (z0, . . . , zk−1)→ (a0, . . . , ak−1)
such that ai = z(bi ) for i = 0, . . . , k − 1 is a bijection.
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Secret sharing

Assume that Alice has a secret value s ∈ F that she wants to
share among m parties P1, . . . ,Pm with m > k so that:

Any subset of k parties can reconstruct the secret s.
Any subset of less than k − 1 parties obtain no information
about s.
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Application of secret-sharing

Application:

Alice wants to backup some secret data on file servers.
Even if some of the file servers crash, she can always
reconstruct her secret data as long as at least k servers are
available.
If an attacker takes control of less than k − 1 servers, then he
obtains no information about Alice’s secret.
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Procedure

Sharing the secret s ∈ F :

Alice generates and publish distinct elements b0, . . . , bm in F ,
where b0 = 0.
Alice let z0 := s, then generates random z1, . . . , zk−1 ∈ F , and

let z =
∑k−1

i=0 ziX
i

For i = 1, . . . ,m, Alice gives party Pi its share ai := z(bi ).

Reconstructing the share

For the polynomial interpolation theorem, any subset of k
parties can find s by first interpolating z on the k points and
then recovering z(b0) = z(0) = s.
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Security

Consider a subset of k − 1 parties, P1, . . . ,Pk−1, with
corresponding b1, . . . , bk−1.

Let z(X ) =
k−1∑
j=0

zjX
j and ai = z(bi ) for all 1 ≤ i ≤ k − 1.

Write a0 := z(b0) = z0 = s.
We have a bijection:

Ψz0 : F k−1 → F k−1

(z1, . . . , zk−1) → (a1, . . . , ak−1)

where ai = z(bi ) for all 1 ≤ i ≤ k − 1.
Namely for any a1, . . . , ak−1, given a0 = z(b0) = z0 there is a
unique z0, z1, . . . , zk−1 such that ai = z(bi ) for all
0 ≤ i ≤ k − 1.
Therefore for all s = z0 ∈ F , the vector (a1, . . . , ak−1) is
uniformly distributed in F k−1.

Therefore the vector (a1, . . . , ak−1) does not given any
information about the secret s.
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Finite fields

Definition

A field is a commutative ring (F ,+, ∗) such that 0 6= 1 and all
elements except 0 have a multiplicative inverse.
A finite field is a field that contains only finitely many
elements.

Example:

For any prime p, Zp is a finite field
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Finite fields

Properties

The order or number of elements of a finite field is of the form
pn for prime p and n ≥ 1.
For any prime p and integer n ≥ 1, there exists a finite field of
pn elements.
Any two finite fields with same number of elements are
isomorphic.

Notation

GF (pn) or Fpn .
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Construction

Construction of GF (pn)

Select an irreducible polynomial f (X ) of degree n with
coefficients in GF (p)
Then the set of polynomials in GF (p)[X ] modulo f (X ) is a
finite field of size pn.

Example

F (X ) = X 2 + X + 1 is irreducible in GF (2) = {0, 1}.
Then GF (22) = GF (2)[X ]/ < X 2 + X + 1 >
GF (22) = {0, 1,X ,X + 1}
Addition: addition of polynomials
Multiplication: use X 2 + X + 1 = 0
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Example

f (X ) = X 4 + X 3 + 1 is irreducible over over GF (2).

f (0) = 0 + 0 + 1 = 1 and f (1) = 1 + 1 + 1 = 1 so no root =¿
no irreducible factor of degree 1.
Only irreducible polynomial of degree 2: X 2 + X + 1 and
(X 2 +X +1)2 = X 4 +2X 3 +3X 2 +2X +1 = X 4 +X 2 +1 6= f (X )

GF (24) = GF (2)/ < X 4 + X 3 + 1 >

Its elements can be written a3X
3 + a2X

2 + a1X + a0 where
a0, . . . , a3 ∈ {0, 1}4.
Can be represented as 4-bit strings.
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The field GF (2)/(X 4 + X 3 + 1)

Addition in GF (24): bitwise xor.

Multiplication: multiply the polynomials modulo f .

1010→ (X 3 + X ), 0101→ (X 2 + 1)
(X 3 + X )(X 2 + 1) = X 5 + X
X 5 + X = X 3 + 1 mod (X 4 + X 3 + 1)
so 1010 · 0101 = 1001

Inversion: use Euclid extended algorithm (or exhaustive search
for small fields).

(X 3 +X ) · (X 3 +X + 1) = X 6 +X 3 +X 2 +X = X 2 · (X 3 + 1) +
X 3+X 2+X = X 5+X 3+X = (X 4+X )+X 3+X = X 4+X 3 = 1
so 1010−1 = 1011
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