Algorithmic Number Theory and Public-key

Cryptography

Course 6

Jean-Sébastien Coron

Université du Luxembourg

April 11, 2014

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

@ Algorithmic number theory.

o Generators of Z,
o Discrete logarithm and applications.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

@ Definitions

o A group G is finite if |G| is finite. The number of elements in
a finite group is called its order.

e A group G is cyclic if there is an element g € G such that for
each h € G there is an integer i such that h = g’. Such an
element g is called a generator of G.

o Let G be a finite group and a € G. The order of a is definded
to be the least positive integer t such that at = 1.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

@ Facts

o Let G be finite group and a € G. The order of a divides the
order of G.

o Let G be a cyclic group of order n and d|n, then G has exactly
¢(d) elements of order d. In particular, G has ¢(n) generators.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Properties of Z

o Definition of Z7,

o The set Z} is the set of integers modulo n which are invertible
modulo n.

o The set Z* is a group of order ¢(n) for the operation of
multiplication modulo n.

@ Properties

o Z for prime p is a cyclic group of order p — 1.

o There exists a generator g € Zj, such that for all o € Zj, «
can be written uniquely as a =g* mod pfor0 < x < p— 1.

o The integer x is called the discrete logarithm of « to the base
g, and denoted log, a.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Finding a generator of Z

e Finding a generator of Zj for prime p.
e The factorization of p — 1 is needed. Otherwise, no efficient
algorithm is known.
e Factoring is hard, but it is possible to generate p such that the
factorization of p — 1 is known.
e Generator of Zj,
o g € Z} is a generator of Z? if and only if g(P~1/9 £ 1 mod p
for each prime factor g of p — 1.
o There are ¢(p — 1) generators of Zj,

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Finding a generator

@ Let gi1,...q, be the prime factors of p — 1
o 1) Generate a random g € Z
e 2) Fori=1to rdo
o Compute oj = g»V/9% mod p
o If i =1 mod p, go back to step 1.
o 3) Output g as a generator of Zj
o Complexity:
o There are ¢(p — 1) generators of Z.
o Arandom g € Zj is a generator with probability
o(p—1)/(p—1).
o If p—1=2-q for prime g, then ¢(p — 1) = g — 1 and this
probability is ~ 1/2.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Generating p and g

@ Goal: generate p such that p —1 =2 q for prime q.

o Generate a random prime p.
o Test if g=(p—1)/2is prime. Otherwise, generate another p.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Discrete logarithm

o Let g be a generator of Zj,

o Forall a€Z,
0<x<p-—-1.
o The integer x is called the discrete logarithm of a to the base

g, and denoted log, a.

a can be written uniquely as a = g* mod p for

e Computing discrete logarithms in Zj

e Hard problem: no efficient algorithm is known for large p.
o Brute force: enumerate all possible x. Complexity O(p).
o Baby step/giant step method: complexity O(,/p).

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Baby step/giant step method

o Given a = g* mod p where 0 < x < p— 1, we wish to
compute x.

o Let m= [,/p]. Build a table:
L:{(gi mod p,i)|0 < i< m}

and sort L according to the first component g’ mod p.
o Size: O(,/plogp). Time: O(\/plog” p).
e Compute the sequence of values a- g™ mod p, until a
collision with g’ is found in the table L, which gives:

=g'modp=a=g/ ™

a-gm modp=x=j-m+i

o Time: O(,/plog? p). Memory: O(,/plog p)

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Discrete Logarithms in groups of order g¢

@ Let p be a prime and g a generator of a subgroup of Z, of
order g€ for some g, where e > 1.

@ Given a = g* mod p for 0 < x < g€, we wish to compute x.
e Wewritex=u-q+vwhere0<v<gand0<u<qg¢?!
0 2% = (go" . (gqsfl)v mod p
o We compute v by using the previous method in the subgroup
of order g generated by g‘?’e_1
@ a-g ¥ =(g%" so we compute u recursively, in the subgroup
of order g1 generated by g9.
e Time complexity O(e - /q - log? p)

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Discrete Logarithms in Z;

@ Let p be a prime and we know the factorization

,
p—1=]]q"
i=1

@ Given a = g* mod p for 0 < x < p — 1 where g is a generator
of Zj,, we wish to compute x.
@ For1l </ <r we have:

e /el = (gl /a")" = (glo-/al)” " od p

o We compute x; = x mod q;" for all 1 < i < r by using the
previous method in the subgroup generated by g(p_l)/qiei

@ Using CRT we find x from the x;’s.

Complexity O(,/q - logk p), where g = maxg;

@ The hardness of computing discrete logarithms in Z% is

determined by the size of the largest prime factor of p — 1.
o In general we work in a subgroup of Zj, of prime order.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Diffie-Hellman protocol

@ Enables Alice and Bob to establish a shared secret key that
nobody else can compute, without having talked to each other
before.

o Key generation

o Let p a prime integer, and let g be a generator of Z;,. p and g
are public.

o Alice generates a random x and publishes X = g* mod p. She
keeps x secret.

e Bob generates a random y and publishes Y = g¥ mod p. He
keeps y secret.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Diffie-Hellman protocol

@ Key establishment
e Alice sends X to Bob. Bob sends Y to Alice.
e Alice computes K; = Y* mod p
e Bob computes K, = XY mod p

Ki=Y ' =(g) =g¥=() =X =K

@ Alice and Bob now share the same key K = K; = K},
e Without knowing x or y, the adversary is unable to compute
K.
o Computing g from g* and g” is called the Diffie-Hellman
problem, for which no efficient algorithm is known.
e The best known algorithm for solving the Diffie-Hellman
problem is to compute the discrete logarithm of g* or g¥.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

El-Gamal encryption

o Key generation
o Let G be a subgroup of Zj of prime order q and g a generator
of G.
o Let x & Zgq. Let h = g¥ mod p.
o Public-key : (g, h). Private-key : x
@ Encryption of me G :
o Let r & ZLg
o Output c = (g",h" - m)
@ Decryption of ¢ = (c1, &)
e Output m = ¢/(¢f) mod p

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Security of El-Gamal

@ To recover m from (g", h" - m)
e One must find A" from (g,g", h = g¥)
e Computational Diffie-Hellman problem (CDH) :
o Given (g,g? g"), find g?°
e No efficient algorithm is known.
e Best algorithm is finding the discrete-log

@ However, attacker may already have some information about
the plaintext !

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Chosen-ciphertext attack

o El-Gamal is not chosen-ciphertext secure

e Given ¢ = (g", h" - m) where pk = (g, h)

o Ask for the decryption of ¢’ = (g"*, h"*1 . m) and recover m.
@ The Cramer-Shoup encryption scheme (1998)

o Can be seen as extension of El-Gamal.
o Chosen-ciphertext secure (IND-CCA) without random oracle.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

The Cramer-Shoup cryptosystem

@ Key generation
o Let G a group of prime order g
Generate random g1, 8> € G and randoms xi, X2, y1, ¥2,Z € Zq
Let c=g1'g;°.d=g1'gy h=gf
Let H be a hash function
pk = (g1, &, ¢,d, h,H) and sk = (x1, x2, y1, Y2, 2)
@ Encryption of me G

o Generate a random r € Zq4
o C=(g{, g, h'm, c"d"®)
o where o = H(g{, g5, h"m)

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

The Cramer-Shoup cryptosystem

@ Decryption of C = (u, uz,e,v)
o Compute o = H(uy, up, v) and test if :

X1+yia, Xo+yscx
)

uy =V

o Output “reject” if the condition does not hold.
o Otherwise, output :

m=-e/(un)*
@ INC-CCA security

e Cramer-Shoup is secure secure against adaptive chosen
ciphertext attack
e under the decisional Diffie-Hellman assumption,
e without the random oracle model.
@ Decision Diffie-Hellman problem:

o Given (g,g%,87,z) where z=g¥ if b=0and z + G if
b =1, where b+ {0,1}, guess b.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

