
Algorithmic Number Theory and Public-key
Cryptography

Course 6

Jean-Sébastien Coron

Université du Luxembourg

April 11, 2014

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Summary

Algorithmic number theory.

Generators of Zp

Discrete logarithm and applications.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Groups

Definitions

A group G is finite if |G | is finite. The number of elements in
a finite group is called its order.
A group G is cyclic if there is an element g ∈ G such that for
each h ∈ G there is an integer i such that h = g i . Such an
element g is called a generator of G .
Let G be a finite group and a ∈ G . The order of a is definded
to be the least positive integer t such that at = 1.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Groups

Facts

Let G be finite group and a ∈ G . The order of a divides the
order of G .
Let G be a cyclic group of order n and d |n, then G has exactly
φ(d) elements of order d . In particular, G has φ(n) generators.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Properties of Z∗n

Definition of Z∗
n

The set Z∗n is the set of integers modulo n which are invertible
modulo n.
The set Z∗n is a group of order φ(n) for the operation of
multiplication modulo n.

Properties

Z∗p for prime p is a cyclic group of order p − 1.
There exists a generator g ∈ Z∗p such that for all α ∈ Z∗p, α
can be written uniquely as α = g x mod p for 0 ≤ x < p − 1.
The integer x is called the discrete logarithm of α to the base
g , and denoted logg α.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Finding a generator of Z∗p

Finding a generator of Z∗
p for prime p.

The factorization of p − 1 is needed. Otherwise, no efficient
algorithm is known.
Factoring is hard, but it is possible to generate p such that the
factorization of p − 1 is known.

Generator of Z∗
p

g ∈ Z∗p is a generator of Z∗p if and only if g (p−1)/q 6= 1 mod p
for each prime factor q of p − 1.
There are φ(p − 1) generators of Z∗p

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Finding a generator

Let q1, . . . qr be the prime factors of p − 1

1) Generate a random g ∈ Z∗p
2) For i = 1 to r do

Compute αi = g (p−1)/qi mod p
If αi = 1 mod p, go back to step 1.

3) Output g as a generator of Z∗p
Complexity:

There are φ(p − 1) generators of Z∗p.
A random g ∈ Z∗p is a generator with probability
φ(p − 1)/(p − 1).
If p − 1 = 2 · q for prime q, then φ(p − 1) = q − 1 and this
probability is ' 1/2.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Generating p and q

Goal: generate p such that p − 1 = 2 · q for prime q.

Generate a random prime p.
Test if q = (p − 1)/2 is prime. Otherwise, generate another p.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Discrete logarithm

Let g be a generator of Z∗
p

For all a ∈ Z∗p, a can be written uniquely as a = g x mod p for
0 ≤ x < p − 1.
The integer x is called the discrete logarithm of a to the base
g , and denoted logg a.

Computing discrete logarithms in Z∗
p

Hard problem: no efficient algorithm is known for large p.
Brute force: enumerate all possible x . Complexity O(p).
Baby step/giant step method: complexity O(

√
p).

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Baby step/giant step method

Given a = g x mod p where 0 ≤ x < p − 1, we wish to
compute x .

Let m = b√pc. Build a table:

L =
{

(g i mod p, i) | 0 ≤ i < m
}

and sort L according to the first component g i mod p.

Size: O(
√

p log p). Time: O(
√

p log2 p).

Compute the sequence of values a · g−j ·m mod p, until a
collision with g i is found in the table L, which gives:

a · g−j ·m = g i mod p ⇒ a = g j ·m+i mod p ⇒ x = j ·m + i

Time: O(
√

p log2 p). Memory: O(
√

p log p)

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Discrete Logarithms in groups of order qe

Let p be a prime and g a generator of a subgroup of Z∗
p of

order qe for some q, where e > 1.

Given a = g x mod p for 0 ≤ x < qe , we wish to compute x .

We write x = u · q + v where 0 ≤ v < q and 0 ≤ u < qe−1

aq
e−1

=
(

gqe−1
)x

=
(

gqe−1
)v

mod p

We compute v by using the previous method in the subgroup
of order q generated by gqe−1

a · g−v = (gq)u so we compute u recursively, in the subgroup
of order qe−1 generated by gq.

Time complexity O(e · √q · log2 p)

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Discrete Logarithms in Z∗p
Let p be a prime and we know the factorization

p − 1 =
r∏

i=1

qei
i

Given a = g x mod p for 0 ≤ x < p − 1 where g is a generator
of Z∗

p, we wish to compute x .

For 1 ≤ i ≤ r we have:

a(p−1)/q
ei
i =

(
g (p−1)/q

ei
i

)x
=
(

g (p−1)/q
ei
i

)x mod q
ei
i

mod p

We compute xi = x mod qei
i for all 1 ≤ i ≤ r by using the

previous method in the subgroup generated by g (p−1)/q
ei
i

Using CRT we find x from the xi ’s.

Complexity O(
√

q · logk p), where q = max qi

The hardness of computing discrete logarithms in Z∗
p is

determined by the size of the largest prime factor of p − 1.
In general we work in a subgroup of Z∗p of prime order.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Diffie-Hellman protocol

Enables Alice and Bob to establish a shared secret key that
nobody else can compute, without having talked to each other
before.

Key generation

Let p a prime integer, and let g be a generator of Z∗p. p and g
are public.
Alice generates a random x and publishes X = g x mod p. She
keeps x secret.
Bob generates a random y and publishes Y = g y mod p. He
keeps y secret.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Diffie-Hellman protocol

Key establishment

Alice sends X to Bob. Bob sends Y to Alice.
Alice computes Ka = Y x mod p
Bob computes Kb = X y mod p

Ka = Y x = (g y)x = g xy = (g x)y = X y = Kb

Alice and Bob now share the same key K = Ka = Kb

Without knowing x or y , the adversary is unable to compute
K .
Computing g xy from g x and g y is called the Diffie-Hellman
problem, for which no efficient algorithm is known.
The best known algorithm for solving the Diffie-Hellman
problem is to compute the discrete logarithm of g x or g y .

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

El-Gamal encryption

Key generation

Let G be a subgroup of Z∗p of prime order q and g a generator
of G .
Let x

R← Zq. Let h = g x mod p.
Public-key : (g , h). Private-key : x

Encryption of m ∈ G :

Let r
R← Zq

Output c = (g r , hr ·m)

Decryption of c = (c1, c2)

Output m = c2/(cx
1) mod p

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Security of El-Gamal

To recover m from (g r , hr ·m)

One must find hr from (g , g r , h = g x)

Computational Diffie-Hellman problem (CDH) :

Given (g , g a, gb), find g ab

No efficient algorithm is known.
Best algorithm is finding the discrete-log

However, attacker may already have some information about
the plaintext !

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

Chosen-ciphertext attack

El-Gamal is not chosen-ciphertext secure

Given c = (g r , hr ·m) where pk = (g , h)
Ask for the decryption of c ′ = (g r+1, hr+1 ·m) and recover m.

The Cramer-Shoup encryption scheme (1998)

Can be seen as extension of El-Gamal.
Chosen-ciphertext secure (IND-CCA) without random oracle.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

The Cramer-Shoup cryptosystem

Key generation

Let G a group of prime order q
Generate random g1, g2 ∈ G and randoms x1, x2, y1, y2, z ∈ Zq

Let c = g x1
1 g x2

2 , d = g y1

1 g y2

2 , h = g z
1

Let H be a hash function
pk = (g1, g2, c , d , h,H) and sk = (x1, x2, y1, y2, z)

Encryption of m ∈ G

Generate a random r ∈ Zq

C = (g r
1 , g r

2 , hrm, c rd rα)
where α = H(g r

1 , g
r
2 , h

rm)

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

The Cramer-Shoup cryptosystem

Decryption of C = (u1, u2, e, v)

Compute α = H(u1, u2, v) and test if :

ux1+y1α
1 ux2+y2α

2 = v

Output “reject” if the condition does not hold.
Otherwise, output :

m = e/(u1)z

INC-CCA security

Cramer-Shoup is secure secure against adaptive chosen
ciphertext attack
under the decisional Diffie-Hellman assumption,
without the random oracle model.

Decision Diffie-Hellman problem:

Given (g , g x , g y , z) where z = g xy if b = 0 and z ← G if
b = 1, where b ← {0, 1}, guess b.

Jean-Sébastien Coron Algorithmic Number Theory and Public-key Cryptography

