Algorithmic Number Theory and Public-key Cryptography

Course 5

Jean-Sébastien Coron

University of Luxembourg

April 10, 2014

Summary

- Algorithmic number theory.
 - Application of Euler function and Fermat's little theorem: the RSA algorithm.
 - Probabilistic primality testing and prime number generation.

The RSA algorithm

- The RSA algorithm is the most widely-used public-key encryption algorithm
 - Invented in 1977 by Rivest, Shamir and Adleman.
 - Used for encryption and signature.
 - Widely used in electronic commerce protocols (SSL).

Public-key encryption

- Public-key encryption: two keys.
 - One key is made public and used to encrypt.
 - The other key is kept private and enables to decrypt.
- Alice wants to send a message to Bob:
 - She encrypts it using Bob's public-key.
 - Only Bob can decrypt it using his own private-key.
 - Alice and Bob do not need to meet to establish a secure communication.
- Security:
 - It must be difficult to recover the private-key from the public-key
 - but not enough in practice.

RSA

- Key generation:
 - Generate two large distinct primes p and q of same bit-size.
 - Compute $n = p \cdot q$ and $\phi = (p-1)(q-1)$.
 - Select a random integer e, $1 < e < \phi$ such that $\gcd(e, \phi) = 1$
 - Compute the unique integer d such that

$$e \cdot d \equiv 1 \pmod{\phi}$$

using the extended Euclidean algorithm.

• The public key is (n, e). The private key is d.

RSA encryption

- Encryption
 - Given a message $m \in [0, n-1]$ and the recipent's public-key (n, e), compute the ciphertext:

$$c = m^e \mod n$$

- Decryption
 - Given a ciphertext c, to recover m, compute:

$$m = c^d \mod n$$

- Message encoding
 - ullet The message m is viewed as an integer between 0 and n-1
 - One can always interpret a bit-string of length less than $|\log_2 n|$ as such a number.
 - One must be careful: plain RSA encryption is insecure.

Proof that decryption works

- We must show that $m^{ed} = m \mod n$.
- Since $e \cdot d \equiv 1 \mod \phi$, there is an integer k such that $e \cdot d = 1 + k \cdot \phi = 1 + k \cdot (p-1) \cdot (q-1)$. Therefore we must show that:

$$m^{1+k\cdot(p-1)\cdot(q-1)} \equiv m \pmod{n}$$

• If $m \neq 0 \mod p$, then by Fermat's little theorem $m^{p-1} \equiv 1 \pmod p$, which gives :

$$m^{1+k\cdot(p-1)\cdot(q-1)} \equiv m \pmod{p}$$

- This equality is also true if $m \equiv 0 \pmod{p}$.
- This gives $m^{ed} \equiv m \pmod{p}$ for all m.
- Similarly, $m^{ed} \equiv m \pmod{q}$ for all m.
- By the Chinese Remainder Theorem, if $p \neq q$, then

$$m^{ed} \equiv m \pmod{n}$$

Decrypting with CRT

- Given the factors p and q of $n = p \cdot q$, instead of computing $m = c^d \mod n$, compute:
 - $m_p = c^{d_p} \mod p$, where $d_p = d \mod (p-1)$
 - $m_q = c^{d_q} \mod q$, where $d_q = d \mod (q-1)$
 - Using CRT, find m such that $m \equiv m_p \pmod{p}$ and $m \equiv m_q \pmod{q}$:

$$m = \left(m_p \cdot (q^{-1} \bmod p) \cdot q + m_q \cdot (p^{-1} \bmod q) \cdot p\right) \bmod n$$

• Since exponentiation is cubic, this is roughly 4 times faster.

Security of RSA

- The security of RSA is based on the hardness of factoring.
 - Given $n = p \cdot q$, it should be difficult to recover p and q.
 - No efficient algorithm is known to do that. Best algorithms have sub-exponential complexity.
 - Factoring record: a 768-bit RSA modulus *n*.
 - In practice, one uses at least 1024-bit RSA moduli.
- However, there are many other lines of attacks.
 - Attacks against plain RSA encryption
 - Low private / public exponent attacks
 - Implementation attacks: timing attacks, power attacks and fault attacks

Primality Testing

- Motivation for prime generation:
 - Generate the primes p and q in RSA.
 - p and q must be large: at least 512 bits.
- Goal of primality testing:
 - Given an integer n, determine whether n is prime or composite.
- Simplest algorithm: trial division.
 - Test if *n* is divisible by 2, 3, 4, 5,... We can stop at \sqrt{n} .
 - Algorithm determines if n is prime or composite, and outputs the factors of n if n is composite.
 - Very inefficient algorithm
 - Requires around \sqrt{n} arithmetic operations.
 - If n has 256 bits, then 2¹²⁸ arithmetic operations. If 2³⁰ operations/s, this takes 10²² years!

Probabilistic primality testing

- Goal: describe an efficient probabilistic primality test.
 - Can test primality for a 512-bit integer *n* in less than a second.
- Probabilistic primality testing.
 - The algorithm does not find the factors of *n*.
 - The algorithm may make a mistake (pretend that an integer n is prime whereas it is composite).
 - But the mistake can be made arbitrarily small (e.g. $< 2^{-100}$, so this makes no difference in practice.

Distribution of prime numbers

- Let $\pi(x)$ be the number of primes in the interval [2, x].
- Theorem (Prime number theorem)
 - We have $\pi(x) \simeq x/\log x$.
- Fact (approximation of the *n*-th prime number)
 - Let p_n denote the n-th prime number. Then $p_n \simeq n \cdot \log n$. More explicitely,

$$n \log n < p_n < n(\log n + \log \log n)$$
 for $n \ge 6$

The Fermat test

- Fermat's little theorem
 - If n is prime and a is an integer between 1 and n-1, then $a^{n-1} \equiv 1 \mod n$.
 - Therefore, if the primality of n is unknown, finding $a \in [1, n-1]$ such that $a^{n-1} \neq 1 \mod n$ proves that n is composite.
- Fermat primality test with security parameter t.

For
$$i=1$$
 to t do Choose a random $a \in [2, n-2]$ Compute $r=a^{n-1} \mod n$ If $r \neq 1$ then return "composite" Return "prime"

• Complexity: $\mathcal{O}(t \cdot \log^3 n)$

Analysis of Fermat's test

- Let $L_n = \{a \in [1, n-1] : a^{n-1} \equiv 1 \mod n\}$
- Theorem:
 - If *n* is prime, then $L_n = \mathbb{Z}_n^*$. If *n* is composite and $L_n \subsetneq \mathbb{Z}_n^*$, then $|L_n| < (n-1)/2$.
- Proof:
 - If *n* is prime, $L_n = \mathbb{Z}_n^*$ from Fermat.
 - If n is composite, since L_n is a sub-group of \mathbb{Z}_n^* and the order of a subgroup divides the order of the group, $|\mathbb{Z}_n^*| = m \cdot |L_n|$ for some integer m.

$$|L_n| = \frac{1}{m} |\mathbb{Z}_n^*| \le \frac{1}{2} |\mathbb{Z}_n^*| \le \frac{n-1}{2}$$

Analysis of Fermat's test

- If *n* is composite and $L_n \subsetneq \mathbb{Z}_n^*$
 - then $a^{n-1} = 1 \mod n$ with probability at most 1/2 for a random $a \in [2, n-2]$.
 - The algorithm outputs "prime" wih probability at most 2^{-t} .
- Unfortunately, there are odd composite numbers n such that $L_n = \mathbb{Z}_n^*$.
 - Such numbers are called Carmichael numbers. The smallest Carmichael number is 561.
 - Carmichael numbers are rare, but there are an infinite number of them, so we cannot ignore them.

The Miller-Rabin test

- The Miller-Rabin test is based on the following fact:
 - Let n be a prime > 2, let $n-1=2^s \cdot r$ where r is odd. Let a be any integer such that $\gcd(a,n)=1$. Then either $a^r\equiv 1$ mod n or $a^{2^j \cdot r}\equiv -1 \mod n$ for some j, $0 \le j \le s-1$.

Proof:

- Since *n* is prime, $a^{n-1} \equiv 1 \mod n$, therefore $a^{r \cdot 2^s} \equiv 1 \mod n$
- Consider j_0 the minimum $0 \le j \le s-1$ such that $a^{r \cdot 2^{j+1}} \equiv 1$ mod n. Let $\beta := a^{r \cdot 2^{j_0}} \mod n$
- Then $\beta^2 \equiv 1 \mod n$. We must have $\beta = \pm 1$ because a polynomial of degree 2 has at most two roots over \mathbb{Z}_n for n prime.
- If $j_0 = 0$, then $a^r \equiv \pm 1 \mod n$
- If $j_0 > 0$, then we must have $a^{r2^{j_0}} \equiv -1 \mod n$ (instead j_0 would not be the minimum).

The Miller-Rabin test

```
Write n-1=2^s \cdot r for odd r.
For i = 1 to t do
  Generate a random a \in [2, n-2]. Let \beta \leftarrow a^r \mod n.
  If \beta \neq 1 and \beta \neq -1 do
     i \leftarrow 1.
      While j \leq s-1 and \beta \neq -1 do
        Let \beta \leftarrow \beta^2 \mod n
        If \beta = +1 return "composite"
        i \leftarrow i + 1
      If \beta \neq -1 return "composite"
Return "prime"
```

The Miller-Rabin test

- Property
 - If n is prime, then the Miller-Rabin test always declares n as prime.
 - If $n \ge 3$ is composite, then the probability that the Miller-Rabin test outputs "prime" is less than $\left(\frac{1}{4}\right)^t$
- Most widely used test in practice.
 - With t = 40, error probability less than 2^{-80} . Much less than the probability of a hardware failure.
 - Can test the primality of a 512-bit integer in less than a second.
 - Complexity: $\mathcal{O}(\log^3 n)$

Prime number generation

- ullet To generate a prime integer of size ℓ bits
 - Generate a random integer n of size ℓ bits
 - Test its primality with Miller-Rabin.
 - If *n* is declared prime, output *n*, otherwise generate another *n* again.