
Algorithms for Numbers and Public-key
Cryptography

Jean-Sébastien Coron

Université du Luxembourg

April 3, 2015

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Summary

C programming

Functions

Algorithmic number theory

Subtraction
Euclidean division
Euler function

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Functions

double max(double a,double b)

{

double m;

if(a>b)

{

m=a;

}

else

{

m=b;

}

return m;

}

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Using functions

For function
double max(double a,double b)

Let x,y,z be variables of type double.
Then instruction

z=max(x,y);

applies function max to variables x and y.
and stores the result in z.

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Call by value

When function is called, the value of variables given as
argument are copied in the parameter variables of the
function.

double max(double a,double b)

z=max(x,y);

The content of variables x and y is copied into a and b.

Call by value

If the content of variables a or b is modified inside the
function, this does not affect variables x and y.

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Call by reference

We would like to modify the value of variables given as
argument.

We would like a function swap(u,v) that swaps the variables.

void swap(int a,int b) {

int m=a; a=b; b=m;

}

int main()

{

int u=1; int v=2;

swap(u,v);

printf("u=%d v=%d\n",u,v); // u=1 v=2

}

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Analysis

The previous example does not work.

The function swap only swap the values of variables a,b, not
the values of u,v.

Solution: use pointers:

We give to swap the address of variables u,v.
The function swap will exchange the values at these two
adresses.
One call swap(&u,&v);

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Call by reference

Address of a variable d’une variable=pointer

The function swap takes as input two pointers.

void swap(int *a,int *b) {

int m=*a;

*a=*b; *b=m;

}

int main()

{

int u=1; int v=2;

swap(&u,&v);

printf("u=%d v=%d\n",u,v); // u=2 v=1

}

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Conclusion

When do we use call by reference ?

When we want to modify the value of a variable given as
argument.
Otherwise, it is better to use call by value.

void addition(int a,int b,int *c) {

*c=a+b;

}

int main()

{

int u=1; int v=2; int w;

addition(u,v,&w);

printf("w=%d\n",w); // w=3

}

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Algorithmic number theory

Goal: modular computation with large integers.

Addition, multiplication, inversion modulo n.

Euclidean division:

Given a, b, find q, r such that

a = b · q + r

where a, b are big integers.

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Division with remainder

Let a = (ak−1 . . . a0)B and b = (b`−1 . . . b0)B with a > b > 0
and b`−1 6= 0.

Compute q and r such that a = b · q + r and 0 ≤ r < b.
q = (qm−1 . . . q0)B , with m := k − `+ 1.

Algorithm overview:

r ← a
for i = m − 1 downto 0 do
qi ← r/(B ib)
r ← r − B i · qi · b

output r

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Division with remainder

For all i , 0 ≤ r < B i · b after step i

Therefore, 0 ≤ r < b eventually.

How to compute qi = r/(B i · b)

Test all possible values of 0 ≤ qi < B
Not efficient, except if B is small (e.g. B = 10).
Possible to do much better

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Division with remainder

Complete algorithm (for small B)

r ← a
for i = m − 1 downto 0 do
qi ← 0
while r >= 0
r ← r − B i · b
qi ← qi + 1

qi ← qi − 1
r ← r + B i · b

output r

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Summary

For a ∈ Z, let len(a) be the number of bits in the binary
representation of |a|:

len(a) = blog2 |a|c+ 1 if a 6= 0
len(0) = 1

Let a and b be two arbitrary integers

We can compute a± b in time O(len(a) + len(b))
We can compute a · b in time O(len(a) len(b))
If b 6= 0, we can compute the quotient q and the remainder r
in a = b · q + r in time O(len(b) len(q))

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Computing in Zn

Computing c = a + b in Zn

Let c ← a + b in Z
Let c ← c mod n.
Complexity: O(log n)

Computing c = a · b in Zn

Let c ← a · b in Z
Let c ← c mod n.
Complexity: O(log2 n).

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Euler function

Definition:

φ(n) for n > 0 is defined as the number of integers a
comprised between 0 and n − 1 such that gcd(a, n) = 1.
φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2.

Equivalently:

Let Z∗n be the set of integers a comprised between 0 and n − 1
such that gcd(a, n) = 1.
Then φ(n) = |Z∗n|.

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Properties

If p ≥ 2 is prime, then

φ(p) = p − 1

More generally, for any e ≥ 1,

φ(pe) = pe−1 · (p − 1)

For n,m > 0 such that gcd(n,m) = 1, we have:

φ(n ·m) = φ(n) · φ(m)

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

φ(pe) = pe−1 · (p − 1)

If p is prime

Then for any integer 1 ≤ a < p, gcd(a, p) = 1
Therefore φ(p) = p − 1

For n = pe , the integers between 0 and n not co-prime with n
are

0, p, 2 · p, . . . , (pe−1 − 1) · p
There are pe−1 of them.
Therefore, φ(pe) = pe − pe−1 = pe−1 · (p − 1)

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

φ(n ·m) = φ(n) · φ(m)

Consider the map:

f : Z∗
nm → Z∗

n × Z∗
m

a → (a mod n, a mod m)

From the Chinese remainder theorem, the map is a bijection.
Moreover, gcd(a, n ·m) = 1 if and only if gcd(a, n) = 1 and
gcd(a,m) = 1.
Therefore, |Z∗nm| = |Z∗n| · |Z∗m|
This implies φ(n ·m) = φ(n) · φ(m).

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Theorem

If n = pe1
1 . . . perr is the factorization of n into primes, then :

φ(n) =
r∏

i=1

pei−1
i · (pi − 1) = n

r∏
i=1

(1− 1/pi)

Proof: immediate consequence of the two previous properties.

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Multiplicative order

The multiplicative order of an integer a modulo n is defined as
the smallest integer k > 0 such that

ak ≡ 1 mod n

Example

i 1 2 3 4

1i mod 5 1 1 1 1

2i mod 5 2 4 3 1

3i mod 5 3 4 2 1

4i mod 5 4 1 4 1

Modulo 5, 1 has order 1, 2 and 3 have order 4, and 4 has order
2.

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Euler’s theorem

Theorem

For any integer n > 1 and any integer a such that
gcd(a, n) = 1, we have aφ(n) ≡ 1 mod n.

Proof

Consider the map f : Z∗n → Z∗n, such that f (b) = a · b for any
b ∈ Z∗.
f is a permutation, therefore :

∏
b∈Z∗

n

b =
∏
b∈Z∗

n

(a · b) = aφ(n) ·

 ∏
b∈Z∗

n

b


Therefore, we obtain aφ(n) ≡ 1 mod n.

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Fermat’s little theorem

Theorem

For any prime p and any integer a 6= 0 mod p, we have
ap−1 ≡ 1 mod p. Moreover, for any integer a, we have ap ≡ a
mod p.

Proof

Follows from Euler’s theorem and φ(p) = p − 1.

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

