Algorithms for Numbers and Public-key Cryptography

Jean-Sébastien Coron

Université du Luxembourg

April 3, 2015

- C programming
 - Functions
- Algorithmic number theory
 - Subtraction
 - Euclidean division
 - Euler function

Functions

```
• double max(double a,double b)
  {
    double m;
    if(a>b)
    ł
      m=a;
    }
    else
    ł
      m=b;
    }
    return m;
  }
```

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

э

∃ >

.⊒ . ►

• For function

double max(double a,double b)

- Let x,y,z be variables of type double.
- Then instruction

```
z=max(x,y);
```

applies function max to variables x and y.

• and stores the result in z.

- When function is called, the value of variables given as argument are copied in the parameter variables of the function.
 - double max(double a,double b)
 - z=max(x,y);
 - The content of variables x and y is copied into a and b.
- Call by value
 - If the content of variables a or b is modified inside the function, this does not affect variables x and y.

Call by reference

- We would like to modify the value of variables given as argument.
 - We would like a function swap(u,v) that swaps the variables.

```
void swap(int a,int b) {
    int m=a; a=b; b=m;
}
int main()
{
    int u=1; int v=2;
    swap(u,v);
    printf("u=%d v=%d\n",u,v); // u=1 v=2
}
```

- The previous example does not work.
 - The function swap only swap the values of variables a,b, not the values of u,v.
- Solution: use pointers:
 - We give to swap the address of variables u,v.
 - The function swap will exchange the values at these two adresses.
 - One call swap(&u,&v);

Call by reference

• Address of a variable d'une variable=pointer

• The function swap takes as input two pointers.

```
void swap(int *a,int *b) {
    int m=*a;
    *a=*b; *b=m;
}
int main()
{
    int u=1; int v=2;
    swap(&u,&v);
    printf("u=%d v=%d\n",u,v); // u=2 v=1
}
```

Conclusion

- When do we use call by reference ?
 - When we want to modify the value of a variable given as argument.
 - Otherwise, it is better to use call by value.

```
void addition(int a,int b,int *c) {
    *c=a+b;
}
int main()
{
    int u=1; int v=2; int w;
    addition(u,v,&w);
    printf("w=%d\n",w); // w=3
}
```

• Goal: modular computation with large integers.

- Addition, multiplication, inversion modulo *n*.
- Euclidean division:
 - Given *a*, *b*, find *q*, *r* such that

$$a = b \cdot q + r$$

where a, b are big integers.

Division with remainder

- Let $a = (a_{k-1} \dots a_0)_B$ and $b = (b_{\ell-1} \dots b_0)_B$ with a > b > 0and $b_{\ell-1} \neq 0$.
 - Compute q and r such that $a = b \cdot q + r$ and $0 \le r < b$.
 - $q = (q_{m-1} \dots q_0)_B$, with $m := k \ell + 1$.
- Algorithm overview:

$$r \leftarrow a$$

for $i = m - 1$ downto 0 do
 $q_i \leftarrow r/(B^i b)$
 $r \leftarrow r - B^i \cdot q_i \cdot b$
output r

伺 ト イ ヨ ト イ ヨ ト

-

- For all i, $0 \le r < B^i \cdot b$ after step i
 - Therefore, $0 \le r < b$ eventually.
- How to compute $q_i = r/(B^i \cdot b)$
 - Test all possible values of $0 \le q_i < B$
 - Not efficient, except if B is small (e.g. B = 10).
 - Possible to do much better

Division with remainder

• Complete algorithm (for small *B*)

$$r \leftarrow a$$

for $i = m - 1$ downto 0 do
 $q_i \leftarrow 0$
while $r \ge 0$
 $r \leftarrow r - B^i \cdot b$
 $q_i \leftarrow q_i + 1$
 $q_i \leftarrow q_i - 1$
 $r \leftarrow r + B^i \cdot b$
output r

э

∃ >

- For a ∈ Z, let len(a) be the number of bits in the binary representation of |a|:
 - $\operatorname{len}(a) = \lfloor \log_2 |a| \rfloor + 1$ if $a \neq 0$
 - len(0) = 1
- Let a and b be two arbitrary integers
 - We can compute $a \pm b$ in time $\mathcal{O}(\operatorname{len}(a) + \operatorname{len}(b))$
 - We can compute $a \cdot b$ in time $\mathcal{O}(\operatorname{len}(a)\operatorname{len}(b))$
 - If b ≠ 0, we can compute the quotient q and the remainder r in a = b · q + r in time O(len(b) len(q))

• Computing c = a + b in \mathbb{Z}_n

- Let $c \leftarrow a + b$ in \mathbb{Z}
- Let $c \leftarrow c \mod n$.
- Complexity: $\mathcal{O}(\log n)$
- Computing $c = a \cdot b$ in \mathbb{Z}_n
 - Let $c \leftarrow a \cdot b$ in \mathbb{Z}
 - Let $c \leftarrow c \mod n$.
 - Complexity: $\mathcal{O}(\log^2 n)$.

• Definition:

 φ(n) for n > 0 is defined as the number of integers a
 comprised between 0 and n − 1 such that gcd(a, n) = 1.

•
$$\phi(1) = 1$$
, $\phi(2) = 1$, $\phi(3) = 2$, $\phi(4) = 2$.

- Equivalently:
 - Let \mathbb{Z}_n^* be the set of integers *a* comprised between 0 and n-1 such that gcd(a, n) = 1.

• Then
$$\phi(n) = |\mathbb{Z}_n^*|$$
.

• If $p \ge 2$ is prime, then

$$\phi(p) = p - 1$$

• More generally, for any $e \geq 1$,

$$\phi(p^e) = p^{e-1} \cdot (p-1)$$

• For n, m > 0 such that gcd(n, m) = 1, we have:

$$\phi(\mathbf{n}\cdot\mathbf{m})=\phi(\mathbf{n})\cdot\phi(\mathbf{m})$$

$$\phi(p^e) = p^{e-1} \cdot (p-1)$$

• If p is prime

- Then for any integer $1 \leq a < p$, $\gcd(a, p) = 1$
- Therefore $\phi(p) = p 1$
- For $n = p^e$, the integers between 0 and *n* not co-prime with *n* are
 - $0, p, 2 \cdot p, \dots, (p^{e-1} 1) \cdot p$
 - There are p^{e-1} of them.
 - Therefore, $\phi(p^e) = p^e p^{e-1} = p^{e-1} \cdot (p-1)$

 $\phi(\mathbf{n} \cdot \mathbf{m}) = \phi(\mathbf{n}) \cdot \phi(\mathbf{m})$

Consider the map:

$$egin{array}{rcl} f:\mathbb{Z}_{nm}^{*}&
ightarrow&\mathbb{Z}_{n}^{*} imes\mathbb{Z}_{m}^{*}\ a&
ightarrow&(a\mod n,a\mod m) \end{array}$$

- From the Chinese remainder theorem, the map is a bijection.
- Moreover, $gcd(a, n \cdot m) = 1$ if and only if gcd(a, n) = 1 and gcd(a, m) = 1.
- Therefore, $|\mathbb{Z}_{nm}^*| = |\mathbb{Z}_n^*| \cdot |\mathbb{Z}_m^*|$
- This implies $\phi(n \cdot m) = \phi(n) \cdot \phi(m)$.

• If $n = p_1^{e_1} \dots p_r^{e_r}$ is the factorization of *n* into primes, then :

$$\phi(n) = \prod_{i=1}^{r} p_i^{e_i-1} \cdot (p_i-1) = n \prod_{i=1}^{r} (1-1/p_i)$$

• Proof: immediate consequence of the two previous properties.

Multiplicative order

• The multiplicative order of an integer *a* modulo *n* is defined as the smallest integer *k* > 0 such that

$$a^k \equiv 1 \mod n$$

Example

	i	1	2	3	4
1'	mod 5	1	1	1	1
2 ⁱ	mod 5	2	4	3	1
3'	mod 5	3	4	2	1
4 ⁱ	mod 5	4	1	4	1

• Modulo 5, 1 has order 1, 2 and 3 have order 4, and 4 has order 2.

- Theorem
 - For any integer n > 1 and any integer a such that gcd(a, n) = 1, we have $a^{\phi(n)} \equiv 1 \mod n$.
- Proof
 - Consider the map $f : \mathbb{Z}_n^* \to \mathbb{Z}_n^*$, such that $f(b) = a \cdot b$ for any $b \in \mathbb{Z}^*$.
 - f is a permutation, therefore :

$$\prod_{b\in\mathbb{Z}_n^*}b=\prod_{b\in\mathbb{Z}_n^*}(a\cdot b)=a^{\phi(n)}\cdot\left(\prod_{b\in\mathbb{Z}_n^*}b\right)$$

• Therefore, we obtain $a^{\phi(n)} \equiv 1 \mod n$.

Theorem

- For any prime p and any integer a ≠ 0 mod p, we have a^{p-1} ≡ 1 mod p. Moreover, for any integer a, we have a^p ≡ a mod p.
- Proof
 - Follows from Euler's theorem and $\phi(p) = p 1$.