Algorithms for Numbers and Public-key

Cryptography

Jean-Sébastien Coron

Université du Luxembourg

April 3, 2015

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

e C programming
e Functions
@ Algorithmic number theory

e Subtraction
o Euclidean division
o Euler function

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Functions

@ double max(double a,double b)
{

double m;
if (a>b)
{
m=a;
}

else
{

m=b;
}

return m;

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Using functions

@ For function
double max(double a,double b)

o Let x,y,z be variables of type double.
e Then instruction

z=max (x,y);

applies function max to variables x and y.
e and stores the result in z.

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Call by value

@ When function is called, the value of variables given as
argument are copied in the parameter variables of the
function.

o double max(double a,double b)

o z=max(x,y);

e The content of variables x and y is copied into a and b.
o Call by value

o If the content of variables a or b is modified inside the
function, this does not affect variables x and y.

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Call by reference

@ We would like to modify the value of variables given as
argument.

o We would like a function swap(u,v) that swaps the variables.

void swap(int a,int b) {
int m=a; a=b; b=m;
}
int main()
{
int u=1; int v=2;
swap (u,v);
printf ("u=Yd v=¥d\n",u,v); // u=1 v=2
}

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

@ The previous example does not work.
e The function swap only swap the values of variables a,b, not
the values of u,v.
@ Solution: use pointers:

o We give to swap the address of variables u,v.
e The function swap will exchange the values at these two
adresses.

e One call swap(&u,&v) ;

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Call by reference

@ Address of a variable d’une variable=pointer
e The function swap takes as input two pointers.

void swap(int *a,int *b) {
int m=%*a;
*a=*b; *b=m;
}
int main()
{
int u=1; int v=2;
swap (&u, &v) ;
printf ("u=%d v=%d\n",u,v); // u=2 v=1
}

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Conclusion

@ When do we use call by reference ?

e When we want to modify the value of a variable given as
argument.
o Otherwise, it is better to use call by value.

void addition(int a,int b,int *c) {

*c=a+b;
}
int main()
{
int u=1; int v=2; int w;
addition(u,v,&w);
printf ("w=Y%d\n",w); // w=3
}

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Algorithmic number theory

@ Goal: modular computation with large integers.
e Addition, multiplication, inversion modulo n.
@ Euclidean division:
e Given a, b, find g, r such that

a=b-q+r

where a, b are big integers.

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Division with remainder

] Leta:(ak,l...ao)g and b:(bgfl...bo)B witha> b >0
and bg,1750.
e Compute g and r suchthat a=b-qg+rand 0 <r < b.
e g=(gm-1---9o), With m:=k — £+ 1.

@ Algorithm overview:

r < a

for i = m— 1 downto 0 do
qi < r/(B'b)
rr—B.gi-b
output r

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Division with remainder

@ Foralli,0<r< B’ b after step i
e Therefore, 0 < r < b eventually.
e How to compute q; = r/(B' - b)
e Test all possible values of 0 < g; < B

o Not efficient, except if B is small (e.g. B = 10).
e Possible to do much better

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Division with remainder

e Complete algorithm (for small B)

r< a

for i = m — 1 downto 0 do
gi <0

while r >= 10
r—r—B.b
gi<qi+1
gi<qi—1
r<—r+B"-b

output r

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

@ For a € Z, let len(a) be the number of bits in the binary
representation of |a:

o len(a) = |logylal] +1ifa#0
o len(0)=1
@ Let a and b be two arbitrary integers

o We can compute a =+ b in time O(len(a) + len(b))

o We can compute a- b in time O(len(a) len(b))

o If b # 0, we can compute the quotient g and the remainder r
ina=b-q+rintime O(len(b)len(q))

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Computing in Z,

o Computingc=a+binZ,
o letc+a+binZ
o Let c <~ ¢ mod n.
o Complexity: O(log n)

e Computing c=a-bin Z,
o letc+a-binZ
o Let c ¢ mod n.
o Complexity: O(log? n).

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Euler function

@ Definition:

o ¢(n) for n > 0 is defined as the number of integers a
comprised between 0 and n — 1 such that ged(a, n) = 1.

o 6(1) = 1, 6(2) = 1, 6(3) = 2, $(4) = 2.
o Equivalently:

o Let Z} be the set of integers a comprised between 0 and n — 1
such that ged(a, n) = 1.
o Then ¢(n) = |Z}).

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

o If p > 2 is prime, then

¢(p)=p—1

@ More generally, for any e > 1,

P(p%)=p°t (p—1)

e For n,m > 0 such that gcd(n, m) = 1, we have:

¢(n-m) = ¢(n) - ¢(m)

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

o(p®) =p='-(p—1)

o If pis prime
o Then for any integer 1 < a < p, gcd(a,p) =1
o Therefore ¢(p) = p—1
o For n = p®, the integers between 0 and n not co-prime with n
are

° Ovp,2‘pv"'v(p671 _1) P
o There are p~1 of them.
o Therefore, ¢(p¢) = p¢ — pe 1 =p¢1.(p—1)

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

o Consider the map:

f:Zy, — Z)x7r,
a — (a mod n,a mod m)

From the Chinese remainder theorem, the map is a bijection.
Moreover, gcd(a, n- m) = 1 if and only if gcd(a, n) = 1 and
ged(a, m) = 1.

Therefore, |Z,,| = |Z%| - |27,

This implies ¢(n - m) = ¢(n) - p(m).

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

o If n=p;*...p¢ is the factorization of n into primes, then :
r r
o(n) =TTp " (pi—1) =n]Ja-1/p)
i=1 i=1

o Proof: immediate consequence of the two previous properties.

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Multiplicative order

@ The multiplicative order of an integer a modulo n is defined as
the smallest integer k > 0 such that

a“=1 modn

@ Example
i 1 2 3 4
1’ mod 5 1 1 1 1
2' mod 5 2 4 3 1
3’ mod 5 3 4 2 1
4" mod 5 4 1 4 1

e Modulo 5, 1 has order 1, 2 and 3 have order 4, and 4 has order
2.

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Euler's theorem

@ Theorem
e For any integer n > 1 and any integer a such that
gcd(a, n) = 1, we have a®(” =1 mod n.
@ Proof

o Consider the map f : Z% — Z%, such that f(b) = a- b for any
be Z*.
e f is a permutation, therefore :

[Te=]]Gbp=a""-(]]>

beZ beZ beZ;

o Therefore, we obtain a®(™ =1 mod n.

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

Fermat’s little theorem

@ Theorem

e For any prime p and any integer a %= 0 mod p, we have
aP~! =1 mod p. Moreover, for any integer a, we have a°? = a
mod p.

@ Proof
o Follows from Euler's theorem and ¢(p) = p — 1.

Jean-Sébastien Coron Algorithms for Numbers and Public-key Cryptography

