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Identity-Based Encryption

Identity-Based Encryption

Concept invented in 1984 by Adi Shamir.
First practical realization in 2001 by Boneh and Franklin.

Principle:

IBE allows for a party to encrypt a message using the

recipient’s identity as the public-key.
The corresponding private-key is provided by a central

authority.
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IBE

Alice sends an email to Bob using his identity as the

public-key.
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Definition of IBE

Setup algorithm

Output: system public parameters params, and private
master-key master-key.

Keygen algorithm

Input: params, master-key and identity v .

Output: private key dv for v .

Encrypt

Input: message m, identity v and params.

Output: ciphertext c.

Decrypt

Input: params, ciphertext c and private-key dv .
Output: plaintext m.
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Bilinear map

Bilinear map :

Let G be a group of order q, for a large prime q. Let g be a
genarator of G. Let G1 be a group of order q.

Bilinear map: function e such that

e : G×G→ G1

Bilinear: e(ga
, gb) = e(g,g)ab for all a, b ∈ Z.

Non-degenerate: e(g,g) 6= 1.

Computable: there exists an efficient algorithm to compute

e(h1, h2) for any h1, h2 ∈ G.
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The Boneh-Franklin IBE scheme

Boneh-Franklin

First practical and secure IBE scheme.

Published by Boneh and Franklin at Crypto 2001
conference.

Two versions

BasicIdent, which only achieves IND-ID-CPA security

FullIdent, that achieves IND-ID-CCA security

Based on bilinear map

e(ga, hb) = e(g, h)ab
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BasicIdent

Setup

Let G = 〈g〉 of prime order p. Let H1 : {0, 1}∗ → G a hash

function.

Generate random a ∈ Zp. Let h = ga.
Public: (g, h). Secret: a.

Keygen

Let v be an identity. Private-key dv = H1(v)
a
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Boneh-Franklin

Encryption

Generate a random r ∈ Zp.

C =
(

gr , m ⊕ H2

(

e(H1(v), h)
r
)

)

Decryption

To decrypt C = (c1, c2) using dv = H(v)a, compute:

m = H2

(

e(dv , c1)
)

⊕ c2

Why decryption works

Using the bilinearity of e

e(H1(v), h)
r = e(H1(v), g

a)r = e(H1(v)
a, gr ) = e(dv , c1)
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Security of IBE

What is security ?

Security is about preventing an intelligent adversary from

doing certain tasks.
For example, recovering keys, decrypting ciphertexts,

forging signatures...

To rigorously formalize security, we must therefore:

1. Specify the capabilities of the adversary (what he is
allowed to do), and

2. Specify in which case his attack would be successful.
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Security of IBE

Strongest security model

Combine strongest capabilities with easiest adversary’s

goal.

Adversary’s goal
Could be to recover master-key.

Very ambitious goal: total break.

Could be to recover the private-key dv for some particular
identity v .

Could be to decipher a particular ciphertext c.
Obtain only one bit of information about a plaintext m given
a ciphertext c.

Easiest goal
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Indistinguishability of Encryption

The adversary should “learn nothing” about a plaintext
given a ciphertext.

The adversary chooses messages m0 and m1.

He receives an encryption of mb, for a random bit b ∈ {0, 1}
The adversary outputs a guess b′ of b.

Succesfull if b′ = b.

Adversary’s advantage:

AdvA =
∣

∣Pr[b′ = b]− 1
2

∣

∣

Adversary’s advantage must remain negligibly small.

Encryption must be probabilistic (or statefull).
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Adversary’s capabilities

Passive adversary

Can only eavesdrop communications.

Active adversary
Can corrupt users, and inject and modify messages
transmitted over the network.

Can obtain private-keys dv for identities v of his choice.

Can obtain the decryption of ciphertexts of his choice.

Must still maintain “indistinguishability of encryption” for

identities v for which dv has not been obtained by the

adversary.
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Security definition

Adversary Challenger
params
←− (Params, Master-key)

Private-key queries
v
−→ Using Master-key

dv←−

Challenge phase
v∗

,m0,m1−→ c∗ = Encrypt(mb, v
∗)

c∗

←− for random b

Private-key queries
v 6=v∗

−→ Using Master-key
dv←−

Guess phase
b′

−→ b′ ?
= b

AdvA =
∣

∣Pr[b′ = b]− 1
2

∣

∣
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Security definition

IND-ID-CPA

Indistinguishability of encryption under a chosen message
attack

IND-ID-CCA

Indistinguishabilty of encryption under a chosen ciphertext

attack
The adversary may additionnally request the decryption of

ciphertexts c of his choice.

After the challenge phase, we must have c 6= c∗.
Strongest security notion.
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Security of Boneh-Franklin

Theorem

The BasicIdent scheme achieves IND-ID-CPA security, in
the random oracle model, assuming the BDH assumption.

Random oracle model

The hash functions H1 and H2 are viewed as ideal

hash-functions, returning a random output for each new
input.

BDH assumption

BDH problem: given (g, ga, gb, gc), output e(g, g)abc .

BDH assumption: there is no efficient algorithm that solves
the BDH problem.
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BasicIdent’

We prove the security of a variant BasicIdent’

The message m belongs to G1, where

e : G×G→ G1

Encryption is done as:

C = (gr , m · e(H(v), h)r )

instead of

C =
(

gr , m ⊕ H2

(

e(H1(v), h)
r
)

)

Proving the security of the original BasicIdent is then easy.
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BasicIdent’

Setup

Let h = ga for a← Zp

Public: (g, h). Secret: a.

Keygen for identity v

Private-key dv = H(v)a

Encryption

C = (gr , m · e(H(v), h)r ) = (c1, c2)

Decryption

m = c2/e(H(v)a, c1)
e(H(v), h)r = e(H(v), ga)r = e(H(v)a, gr )
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Security intuition/statement

Sender ga,gb, c → e(g,g)abc = e(ga,gb)c

Receiver gab,gc → e(g,g)abc = e(gab,gc)

Adversary ga,gb,gc
9 e(g,g)abc

Theorem Let A an IND-ID-CCA adversary running in time t

and with advantage ε against BF-IBE making at most qE ,qD,qH

queries. Then there exists B running in time roughly t with

advantage at least ε

q2
H

qD
against BDH problem in G.
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The DBDH problem

Bilinear DH problem (BDH)

Given (g, ga, gb, gc), compute e(g, g)abc

Decisional Bilinear DH problem (DBDH)

Let β be a random bit.

Given (g, ga, gb, gc , z) where z = e(g, g)abc if β = 1 and

z ← G1 otherwise, determine β.
AdvA =

∣

∣Pr[β′ = β]− 1
2

∣

∣

If BDH is easy, then DBDH is easy.

Conversely, if DBDH is hard, then BDH is hard.

The converse is not necessarily true.
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Proof of security

Proof for the basic construction

From an adversary A that breaks the BasicIdent’, we

construct an algorithm R that solves the DBDH problem.

Setup

R receives the DBDH challenge

(g,A = ga,B = gb,C = gc , z) where z = e(g, g)abc if β = 1

and z ← G1 otherwise.
We must output a guess β′ of β
Public-key: (g, h = A = ga).

Master-key a unknown.

Generate a random index j ∈ [1, qh + qe + 1]

qh: number of hash queries.

qe: number of private-key queries.
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Proof of security

i-th hash queries for H1(v) :

If i = j, answer H1(v) = B = gb.
Otherwise generate a random x ∈ Zq , and answer

H1(v) = gx

Private-key query for v :

If no hash-query for H1(v), simulate one.
If H1(v) = B, abort and return a random β′.

Otherwise H1(v) = gx for some known x .

Then return dv = H1(v)
a = gax = Ax
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Challenge and guess

Challenge phase for identity v∗ with m0,m1.

If H1(v
∗) = B = gb, then let

C =
(

C = gc , mγ · z
)

for random bit γ. If z = e(g, g)abc , then with h = A = ga:

C =
(

gc , mγ · e(H(v∗), h)c
)

which is a regular BasicIdent’ ciphertext for identity v∗.

Otherwise abort and return a random β′.

Guess phase: A answers γ′

If γ′ = γ, output β′ = 1 (meaning z = e(g, g)abc )
otherwise output β′ = 0 (z 6= e(g, g)abc )
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Analysis (1)

We first consider the case z = e(g,g)abc (β = 1)

If i = j then

C =
(

gc , mγ · e(g, g)
abc

)

=
(

gc , mγ · e(g
b, ga)c

)

=
(

gc , mγ · e(H1(v
∗), h)c

)

The ciphertext is distributed correctly, so

Pr[γ′ = γ|β = 1 ∧ i = j] = 1/2 + εA

which gives:

Pr[β′ = β|β = 1 ∧ i = j] = 1/2 + εA

When i 6= j we return a random β′, therefore

Pr[γ′ = γ|β = 1 ∧ i 6= j] = 1/2
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Analysis (2)

This gives

Pr[γ′ = γ|β = 1] = Pr[γ′ = γ|β = 1 ∧ i = j] · Pr[i = j]

+Pr[γ′ = γ|β = 1 ∧ i = j] · Pr[i 6= j]

=

(

1

2
+ εA

)

·
1

qh + qe + 1

+
1

2
·

(

1−
1

qh + qe + 1

)

=
1

2
+ εA ·

1

qh + qe + 1

Therefore

Pr[β′ = β|β = 1] =
1

2
+ εA ·

1

qh + qe + 1
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Analysis (3)

If z is randomly distributed in G1 (β = 0)
Then the adversary gets no information about γ
Pr[γ′ = γ|β = 0] = 1/2
Pr[β′ = β|β = 1] = 1/2

One obtains

Pr[β′ = β] = Pr[β′ = β|β = 1] · Pr[β = 1]

+Pr[β′ = β|β = 0] · Pr[β = 0]

=

(

1

2
+ εA ·

1

qh + qe + 1

)

·
1

2
+

1

2
·

1

2

=
1

2
+

εA

2(qh + qe + 1)

The advantage ε of R in solving DBDH is then:

ε = |Pr[β′ = β]− 1/2| =
εA

2(qh + qe + 1)
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Security result

Theorem

If the DBDH problem cannot be solved with advantage

better than ε in time t, then the BasicIdent’ scheme cannot
be IND-ID-CPA broken with probability better than εA in

time tA
where εA = 2 · (qh + qe + 1) · ε
and tA = O(t)
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