Cryptography Security Proof of Boneh-Franklin IBE

Jean-Sébastien Coron

Université du Luxembourg

June 6, 2014

Jean-Sébastien Coron Cryptography

・ロン・雪と・雪と、 ヨン・

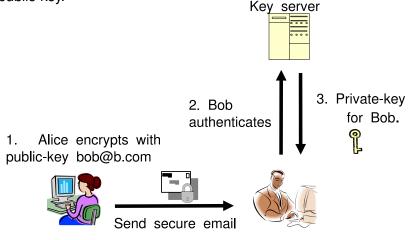
E 990

Identity-Based Encryption

- Concept invented in 1984 by Adi Shamir.
- First practical realization in 2001 by Boneh and Franklin.
- Principle:
 - IBE allows for a party to encrypt a message using the recipient's identity as the public-key.
 - The corresponding private-key is provided by a central authority.

< □ > < □ > < □ > < □ >

 Alice sends an email to Bob using his identity as the public-key.



Definition of IBE

- Setup algorithm
 - Output: system public parameters *params*, and private master-key *master-key*.
- Keygen algorithm
 - Input: params, master-key and identity v.
 - Output: private key d_v for v.
- Encrypt
 - Input: message *m*, identity *v* and *params*.
 - Output: ciphertext c.
- Decrypt
 - Input: params, ciphertext c and private-key d_v.
 - Output: plaintext m.

э

• Bilinear map :

- Let G be a group of order q, for a large prime q. Let g be a genarator of G. Let G₁ be a group of order q.
- Bilinear map: function e such that

$$e \ : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_1$$

- Bilinear: $e(g^a, g^b) = e(g, g)^{ab}$ for all $a, b \in \mathbb{Z}$.
- Non-degenerate: $e(g,g) \neq 1$.
- Computable: there exists an efficient algorithm to compute $e(h_1, h_2)$ for any $h_1, h_2 \in \mathbb{G}$.

ヘロト 人間 ト イヨト イヨト

э.

The Boneh-Franklin IBE scheme

Boneh-Franklin

- First practical and secure IBE scheme.
- Published by Boneh and Franklin at Crypto 2001 conference.
- Two versions
 - BasicIdent, which only achieves IND-ID-CPA security
 - FullIdent, that achieves IND-ID-CCA security
- Based on bilinear map
 - $e(g^a, h^b) = e(g, h)^{ab}$

< ロ > < 同 > < 回 > < 回 > .

Setup

- Let $\mathbb{G} = \langle g \rangle$ of prime order *p*. Let $H_1 : \{0, 1\}^* \to \mathbb{G}$ a hash function.
- Generate random $a \in \mathbb{Z}_p$. Let $h = g^a$.
- Public: (*g*, *h*). Secret: *a*.
- Keygen
 - Let v be an identity. Private-key $d_v = H_1(v)^a$

イロト 人間 ト イヨト イヨト

- Encryption
 - Generate a random $r \in \mathbb{Z}_p$.

$$C = \left(g^r, \ m \oplus H_2(e(H_1(v), h)^r)\right)$$

- Decryption
 - To decrypt $C = (c_1, c_2)$ using $d_v = H(v)^a$, compute:

$$m=H_2\bigl(\textit{e}(\textit{d}_v,\textit{c}_1)\bigr)\oplus\textit{c}_2$$

- Why decryption works
 - Using the bilinearity of e

$$e(H_1(v),h)^r = e(H_1(v),g^a)^r = e(H_1(v)^a,g^r) = e(d_v,c_1)$$

= 900

- What is security ?
 - Security is about preventing an intelligent adversary from doing certain tasks.
 - For example, recovering keys, decrypting ciphertexts, forging signatures...
- To rigorously formalize security, we must therefore:
 - 1. Specify the capabilities of the adversary (what he is allowed to do), and
 - 2. Specify in which case his attack would be successful.

Security of IBE

- Strongest security model
 - Combine strongest capabilities with easiest adversary's goal.
- Adversary's goal
 - Could be to recover *master-key*.
 - Very ambitious goal: total break.
 - Could be to recover the private-key *d_v* for some particular identity *v*.
 - Could be to decipher a particular ciphertext *c*.
 - Obtain only one bit of information about a plaintext *m* given a ciphertext *c*.

< □ > < 同 > < 回 > <

Easiest goal

Indistinguishability of Encryption

- The adversary should "learn nothing" about a plaintext given a ciphertext.
 - The adversary chooses messages m_0 and m_1 .
 - He receives an encryption of m_b , for a random bit $b \in \{0, 1\}$
 - The adversary outputs a guess b' of b.
 - Succesfull if b' = b.
- Adversary's advantage:
 - Adv^{\mathcal{A}} = $\left| \Pr[b' = b] \frac{1}{2} \right|$
- Adversary's advantage must remain negligibly small.
 - Encryption must be probabilistic (or statefull).

< □ > < 同 > < 回 > <

- Passive adversary
 - Can only eavesdrop communications.
- Active adversary
 - Can corrupt users, and inject and modify messages transmitted over the network.
 - Can obtain private-keys d_v for identities v of his choice.
 - Can obtain the decryption of ciphertexts of his choice.
 - Must still maintain "indistinguishability of encryption" for identities v for which d_v has not been obtained by the adversary.

Security definition

Adversary	params	Challenger
Private-key queries	$\xrightarrow{v} \underbrace{d_v}$	(<i>Params, Master-key</i>) Using <i>Master-key</i>
Challenge phase	$v^*, \underline{m_0, m_1}$	$c^* = Encrypt(m_b, v^*)$
Private-key queries	$\stackrel{\overset{{\color{red}} c^{*}}{\longrightarrow}}{\overset{{\color{red}} v eq v^{*}}{\longrightarrow}}$	for random <i>b</i> Using <i>Master-key</i>
, , , , , , , , , , , , , , , , , , ,	$\overleftarrow{d_v}$	5 ,
Guess phase	$\xrightarrow{b'}$	$b'\stackrel{?}{=}b$
$Adv^\mathcal{A} = \left Pr[b' = b] - \frac{1}{2}\right $		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Security definition

- IND-ID-CPA
 - Indistinguishability of encryption under a chosen message attack
- IND-ID-CCA
 - Indistinguishability of encryption under a chosen ciphertext attack
 - The adversary may additionnally request the decryption of ciphertexts *c* of his choice.

< □ > < 同 > < 回 > <

- After the challenge phase, we must have $c \neq c^*$.
- Strongest security notion.

Security of Boneh-Franklin

- Theorem
 - The BasicIdent scheme achieves IND-ID-CPA security, in the random oracle model, assuming the BDH assumption.
- Random oracle model
 - The hash functions *H*₁ and *H*₂ are viewed as ideal hash-functions, returning a random output for each new input.
- BDH assumption
 - BDH problem: given (g, g^a, g^b, g^c) , output $e(g, g)^{abc}$.
 - BDH assumption: there is no efficient algorithm that solves the BDH problem.

< □ > < □ > < □ > < □ >

- We prove the security of a variant BasicIdent'
 - The message m belongs to \mathbb{G}_1 , where

$$\boldsymbol{e} \ : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_1$$

• Encryption is done as:

$$C=(g^r,\ m\cdot e(H(v),h)^r)$$

instead of

$$C = (g^r, m \oplus H_2(e(H_1(v), h)^r))$$

< □ > < 同 > < 回 > <

• Proving the security of the original BasicIdent is then easy.

BasicIdent'

Setup

- Let $h = g^a$ for $a \leftarrow \mathbb{Z}_p$
- Public: (*g*, *h*). Secret: *a*.
- Keygen for identity v
 - Private-key $d_v = H(v)^a$
- Encryption

•
$$C = (g^r, m \cdot e(H(v), h)^r) = (c_1, c_2)$$

Decryption

•
$$m = c_2/e(H(v)^a, c_1)$$

• $e(H(v), h)^r = e(H(v), g^a)^r = e(H(v)^a, g^r)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem Let \mathcal{A} an IND-ID-CCA adversary running in time tand with advantage ε against BF-IBE making at most q_E, q_D, q_H queries. Then there exists \mathcal{B} running in time roughly t with advantage at least $\frac{\varepsilon}{q_H^2 q_D}$ against BDH problem in \mathbb{G} .

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣

The DBDH problem

• Bilinear DH problem (BDH)

- Given (g, g^a, g^b, g^c) , compute $e(g, g)^{abc}$
- Decisional Bilinear DH problem (DBDH)
 - Let β be a random bit.
 - Given (g, g^a, g^b, g^c, z) where z = e(g, g)^{abc} if β = 1 and z ← G₁ otherwise, determine β.
 - Adv^{\mathcal{A}} = $\left| \Pr[\beta' = \beta] \frac{1}{2} \right|$
- If BDH is easy, then DBDH is easy.
 - Conversely, if DBDH is hard, then BDH is hard.
 - The converse is not necessarily true.

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

Proof of security

- Proof for the basic construction
 - From an adversary A that breaks the BasicIdent', we construct an algorithm R that solves the DBDH problem.
- Setup
 - *R* receives the DBDH challenge
 (*g*, *A* = *g^a*, *B* = *g^b*, *C* = *g^c*, *z*) where *z* = *e*(*g*, *g*)^{*abc*} if β = 1
 and *z* ← G₁ otherwise.

< □ > < 同 > < 回 >

- We must output a guess β' of β
- Public-key: $(g, h = A = g^a)$.
 - Master-key a unknown.
- Generate a random index $j \in [1, q_h + q_e + 1]$
 - *q_h*: number of hash queries.
 - *q_e*: number of private-key queries.

Proof of security

• *i*-th hash queries for $H_1(v)$:

- If i = j, answer $H_1(v) = B = g^b$.
- Otherwise generate a random $x \in \mathbb{Z}_q$, and answer $H_1(v) = g^x$
- Private-key query for v :
 - If no hash-query for $H_1(v)$, simulate one.
 - If $H_1(v) = B$, abort and return a random β' .
 - Otherwise $H_1(v) = g^x$ for some known *x*.
 - Then return $d_v = H_1(v)^a = g^{ax} = A^x$

< ロ > < 同 > < 回 > .

- Challenge phase for identity v^* with m_0, m_1 .
 - If $H_1(v^*) = B = g^b$, then let

$$\mathcal{C}=\left(\mathcal{C}=\mathcal{g}^{c},\ m_{\gamma}\cdot z
ight)$$

for random bit γ . If $z = e(g, g)^{abc}$, then with $h = A = g^a$:

$$\mathcal{C} = \left(g^c, \ m_\gamma \cdot e(H(v^*),h)^c
ight)$$

< □ > < 同 > < 回 > <

э.

which is a regular BasicIdent' ciphertext for identity v^* .

• Otherwise abort and return a random β' .

• Guess phase: \mathcal{A} answers γ'

- If $\gamma' = \gamma$, output $\beta' = 1$ (meaning $z = e(g, g)^{abc}$)
- otherwise output $\beta' = 0$ ($z \neq e(g, g)^{abc}$)

Analysis (1)

We first consider the case z = e(g, g)^{abc} (β = 1)
If i = j then

$$egin{array}{rcl} \mathcal{C} &=& \left(g^c, \ m_\gamma \cdot oldsymbol{e}(g,g)^{abc}
ight) = \left(g^c, \ m_\gamma \cdot oldsymbol{e}(g^b,g^a)^c
ight) \ &=& \left(g^c, \ m_\gamma \cdot oldsymbol{e}(H_1(oldsymbol{v}^*),h)^c
ight) \end{array}$$

• The ciphertext is distributed correctly, so

$$\Pr[\gamma' = \gamma | \beta = 1 \land i = j] = 1/2 + \varepsilon_A$$

which gives:

$$\Pr[\beta' = \beta | \beta = 1 \land i = j] = 1/2 + \varepsilon_A$$

• When $i \neq j$ we return a random β' , therefore

$$\Pr[\gamma' = \gamma | \beta = 1 \land i \neq j] = 1/2$$

◆ロ ▶ ◆ 圖 ▶ ◆ 圖 ▶ ◆ 圖 ■ ● ● ● ●

Analysis (2)

• This gives

$$\Pr[\gamma' = \gamma | \beta = 1] = \Pr[\gamma' = \gamma | \beta = 1 \land i = j] \cdot \Pr[i = j]$$

+
$$\Pr[\gamma' = \gamma | \beta = 1 \land i = j] \cdot \Pr[i \neq j]$$

=
$$\left(\frac{1}{2} + \varepsilon_A\right) \cdot \frac{1}{q_h + q_e + 1}$$

+
$$\frac{1}{2} \cdot \left(1 - \frac{1}{q_h + q_e + 1}\right)$$

=
$$\frac{1}{2} + \varepsilon_A \cdot \frac{1}{q_h + q_e + 1}$$

• Therefore

$$\Pr[\beta' = \beta | \beta = 1] = \frac{1}{2} + \varepsilon_A \cdot \frac{1}{q_h + q_e + 1}$$

・ロン・雪と・雪と・ ヨン・

Analysis (3)

• If z is randomly distributed in \mathbb{G}_1 ($\beta = 0$)

 $\bullet\,$ Then the adversary gets no information about $\gamma\,$

•
$$\Pr[\gamma'=\gamma|eta=0]=1/2$$

•
$$\Pr[\beta' = \beta | \beta = 1] = 1/2$$

One obtains

$$\Pr[\beta' = \beta] = \Pr[\beta' = \beta | \beta = 1] \cdot \Pr[\beta = 1] + \Pr[\beta' = \beta | \beta = 0] \cdot \Pr[\beta = 0]$$
$$= \left(\frac{1}{2} + \varepsilon_A \cdot \frac{1}{q_h + q_e + 1}\right) \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}$$
$$= \frac{1}{2} + \frac{\varepsilon_A}{2(q_h + q_e + 1)}$$

• The advantage ε of \mathcal{R} in solving DBDH is then:

$$\varepsilon = |\Pr[\beta' = \beta] - 1/2| = \frac{\varepsilon_A}{2(q_h + q_e + 1)}$$

э

Theorem

- If the DBDH problem cannot be solved with advantage better than ε in time t, then the BasicIdent' scheme cannot be IND-ID-CPA broken with probability better than ε_A in time t_A
- where $\varepsilon_A = 2 \cdot (q_h + q_e + 1) \cdot \varepsilon$
- and $t_A = \mathcal{O}(t)$

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

э.