Cryptography Identity-based Encryption

Jean-Sébastien Coron and David Galindo

Université du Luxembourg

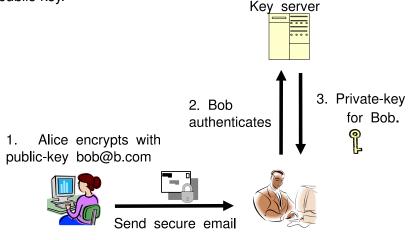
May 15, 2014

Jean-Sébastien Coron and David Galindo Cryptography

Identity-Based Encryption (IBE)

- What is Identity-Based Encryption ?
- Difference with conventional PK cryptography.
- Applications of IBE.
- Example of IBE scheme
 - Boneh-Franklin
- Security of IBE.
 - How the security of IBE is defined.
 - Security guarantee for Boneh-Franklin

< □ > < □ > < □ > < □ >

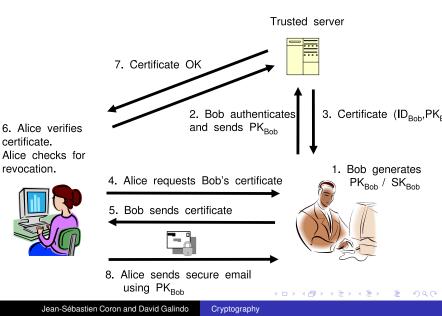

∃ >

Identity-Based Encryption

- Concept invented in 1984 by Adi Shamir.
- First practical realization in 2001 by Boneh and Franklin.
- Principle:
 - IBE allows for a party to encrypt a message using the recipient's identity as the public-key.
 - The corresponding private-key is provided by a central authority.

< □ > < □ > < □ > < □ >

 Alice sends an email to Bob using his identity as the public-key.



< /₽ ▶

Principle

- Alice encrypts her email using Bob's email address bob@b.com as the public-key.
- Bob receives the message. Bob contacts the key server, authenticates and obtains his private key.
- Bob can use his private-key to decrypt the message.
- The private-key can be used to decrypt any future message sent to Bob by Alice or any other user.

Conventional PK

• Simplification of secure communications:

- Avoids the need to distribute PK certificates.
- Users can use their email adress as their identity
- The recipient does not have to be online to present a PK certificate.
- The sender does not have to be online to check that the certificate is still valid.
- Alice can send an encrypted email to Bob even if Bob has no yet registered in the system.

Boneh-Franklin

Boneh-Franklin

- First efficient IBE, proposed by Boneh and Franklin at Crypto 2001 conference.
- Most famous IBE scheme to date.
- Based on bilinear pairing operation over an Elliptic-Curve.
- Proven secure, but low level of security compared to the elliptic-curve.

< □ > < 同 > < 回 > .

- Voltage Security
 - Founded in 2002 by Boneh and other people.
 - www.voltage.com
 - IBCS#1 standard.

Email encryption

- A company hosts the Private-Key Generator (PKG) and distributes private-keys to its employees.
- Employees can communicate securely between themselves, using their email adress as their public-key.

< □ > < 同 > < 回 > <

• Nobody except the mail recipient (and the PKG) can decipher the communications.

- Key-revocation in IBE is very simple
 - Alice encrypt her email sent to Bob using the public-key "bob@company.com || current-year".
 - Bob can then only decrypt if he has obtained the private-key for the corresponding year.
 - With "bob@company.com || current-date" instead, Bob must obtain a new private-key every day.
 - Key revocation : the PKG simply stops issuing private keys to Bob if Bob leaves the company. Then Bob can no longer read his email.

< □ > < 同 > < 回 > <</p>

- Encrypting into the future
 - Done with "bob@company.com || future-date"

Definition of IBE

- Setup algorithm
 - Output: system public parameters *params*, and private master-key *master-key*.
- Keygen algorithm
 - Input: params, master-key and identity v.
 - Output: private key d_v for v.
- Encrypt
 - Input: message *m*, identity *v* and *params*.
 - Output: ciphertext c.
- Decrypt
 - Input: params, ciphertext c and private-key d_v.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

• Output: plaintext m.

• Bilinear map :

- Let G be a group of order q, for a large prime q. Let g be a genarator of G. Let G₁ be a group of order q.
- Bilinear map: function e such that

$$e \ : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_1$$

- Bilinear: $e(g^a, g^b) = e(g, g)^{ab}$ for all $a, b \in \mathbb{Z}$.
- Non-degenerate: $e(g,g) \neq 1$.
- Computable: there exists an efficient algorithm to compute $e(h_1, h_2)$ for any $h_1, h_2 \in \mathbb{G}$.

ヘロト 人間 ト イヨト イヨト

э.

Implementation of bilinear map

- Weil pairing or Tate pairing over an elliptic curve.
 - Let p be a large prime with $p = 2 \mod 3$. Consider the Elliptic-Curve:

$$E/\mathbb{F}_p: y^2 = x^3 + 1$$

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

• The curve satisfies
$$\#E(\mathbb{F}_p) = p + 1$$
.
• Point addition: $P = (x_1, y_1), Q = (x_2, y_2)$, then $P + Q = (x_3, y_3)$ with $x_3 = \lambda^2 - x_1 - x_2$

$$y_3 = \lambda(x_1 - x_3) - y_1$$

with $\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1}, & \text{if } P \neq Q, \\ \frac{3x_1^2 + a}{2y_1}, & \text{if } P = Q. \end{cases}$

Definition of the Weil Pairing

$$e(P,Q) = rac{f_P(\mathcal{A}_Q)}{f_Q(\mathcal{A}_P)}$$

• where $A_P = (P + R_1) - (R_1)$ and $A_Q = (Q + R_2) - (R_2)$ for random points $R_1, R_2 \in E[n]$.

・ロト ・聞 ト ・ ヨト ・ ヨト …

= 900

- and $nA_P = (f_P)$ and $nA_Q = (f_Q)$.
- Computing the Weil pairing
 - Using Miller's algorithm.
 - Algorithm in O(log p) arithmetic operations mod p => O(log³ p) elementary operations.

The Boneh-Franklin IBE scheme

Boneh-Franklin

- First practical and secure IBE scheme.
- Published by Boneh and Franklin at Crypto 2001 conference.
- Two versions
 - BasicIdent, which only achieves IND-ID-CPA security

- FullIdent, that achieves IND-ID-CCA security
- Based on bilinear map
 - $e(g^a, h^b) = e(g, h)^{ab}$

Setup

• Let $\mathbb{G} = \langle g \rangle$ of prime order *p*. Let $H_1 : \{0, 1\}^* \to \mathbb{G}$ a hash function.

・ロン・雪と・雪と、 ヨン・

- Generate random $a \in \mathbb{Z}_p$. Let $h = g^a$.
- Public: (*g*, *h*). Secret: *a*.
- Keygen
 - Let v be an identity. Private-key $d_v = H_1(v)^a$

- Encryption
 - Generate a random $r \in \mathbb{Z}_p$.

$$C = \left(g^r, \ m \oplus H_2(e(H_1(v), h)^r)\right)$$

- Decryption
 - To decrypt $C = (c_1, c_2)$ using $d_v = H(v)^a$, compute:

$$m = H_2(e(d_v, c_1)) \oplus c_2$$

- Why decryption works
 - Using the bilinearity of e

$$e(H_1(v), h)^r = e(H_1(v), g^a)^r = e(H_1(v)^a, g^r) = e(d_v, c_1)$$

= 900

- What is security ?
 - Security is about preventing an intelligent adversary from doing certain tasks.
 - For example, recovering keys, decrypting ciphertexts, forging signatures...
- To rigorously formalize security, we must therefore:
 - 1. Specify the capabilities of the adversary (what he is allowed to do), and
 - 2. Specify in which case his attack would be successful.

< □ > < 同 > < 回 >

Security of IBE

- Strongest security model
 - Combine strongest capabilities with easiest adversary's goal.
- Adversary's goal
 - Could be to recover *master-key*.
 - Very ambitious goal: total break.
 - Could be to recover the private-key d_v for some particular identity v.
 - Could be to decipher a particular ciphertext *c*.
 - Obtain only one bit of information about a plaintext *m* given a ciphertext *c*.

< □ > < 同 > < 回 > <

Easiest goal

Indistinguishability of Encryption

- The adversary should "learn nothing" about a plaintext given a ciphertext.
 - The adversary chooses messages m_0 and m_1 .
 - He receives an encryption of m_b , for a random bit $b \in \{0, 1\}$

< □ > < 同 > < 回 > <

- The adversary outputs a guess b' of b.
- Succesfull if b' = b.
- Adversary's advantage:
 - Adv^{\mathcal{A}} = $\left| \Pr[b' = b] \frac{1}{2} \right|$
- Adversary's advantage must remain negligibly small.
 - Encryption must be probabilistic (or statefull).

- Passive adversary
 - Can only eavesdrop communications.
- Active adversary
 - Can corrupt users, and inject and modify messages transmitted over the network.
 - Can obtain private-keys d_v for identities v of his choice.

< □ > < 同 > < 回 >

- Can obtain the decryption of ciphertexts of his choice.
- Must still maintain "indistinguishability of encryption" for identities v for which d_v has not been obtained by the adversary.

Security definition

- IND-ID-CPA
 - Indistinguishability of encryption under a chosen message attack
- IND-ID-CCA
 - Indistinguishability of encryption under a chosen ciphertext attack
 - The adversary may additionnally request the decryption of ciphertexts *c* of his choice.

< □ > < 同 > < 回 > <

- After the challenge phase, we must have $c \neq c^*$.
- Strongest security notion.

Security of Boneh-Franklin

- Theorem
 - The BasicIdent scheme achieves IND-ID-CPA security, in the random oracle model, assuming the BDH assumption.
- Random oracle model
 - The hash functions *H*₁ and *H*₂ are viewed as ideal hash-functions, returning a random output for each new input.
- BDH assumption
 - BDH problem: given (g, g^a, g^b, g^c) , output $e(g, g)^{abc}$.
 - BDH assumption: there is no efficient algorithm that solves the BDH problem.

< □ > < 同 > < 回 > <

IBCS#1 standard

- Developed by Voltage Security
 - Available at http://tools.ietf.org/html/rfc5091
- Standard for IBE implementation
 - Algorithms for the Tate pairing over an Elliptic Curve.
 - Algorithms for Boneh-Franklin IBE
- Included at IETF (Internet Engineering Task Force) Drafts RFC 5091, RFC 5408 and RFC 5409
- IEEE P1363.3: Identity-Based Public Key Cryptography standard on-going

< □ > < 同 > < 回 > <

- Identity-Based encryption
 - Enables to avoid public-key certificates.
 - Drawback: the central PKG can decrypt all communications.
- Bilinear pairings
 - Most IBE schemes are based on bilinear pairings.
 - Pairings have many other applications.
- Active research area.
 - Pairing implementations.
 - New pairing-based schemes