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Discrete-log based cryptography

@ Discrete-log based group
e The multiplicative group Z;
@ Discrete-log based cryptosystems

@ ElGamal encryption: security proof
o Diffie-Hellmann key exchange
@ Schnorr signature scheme

@ Elliptic-Curve cryptography
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The multiplicative group Z;,

@ Let p be a prime integer.
@ The set Zj, is the set of integers modulo p which are
invertible modulo p.
e The set Zj is a cyclic group of order p — 1 for the operation
of multiplication modulo p.

@ Generators of Zp:

@ There exists g € Z such that any h € Zj; can be uniquely
writtenas h=¢g* mod pwith0 < x <p—1.

@ The integer x is called the discrete logarithm of h to the
base g, and denoted log, h.
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Finding a generator of Z;

@ Finding a generator of Z;, for prime p.
@ The factorization of p — 1 is needed. Otherwise, no efficient
algorithm is known.
@ Factoring is hard, but it is possible to generate p such that
the factorization of p — 1 is known.
@ Generator of Z,
e g € Z} is a generator of Z if and only if g(°~")/9 £ 1
mod p for each prime factor g of p — 1.
e There are ¢(p — 1) generators of Zj
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Generating p and q

@ Generate p such that p — 1 =2 - g for some prime q.
@ Generate a random prime p.
o Testif g = (p—1)/2is prime. Otherwise, generate another
p.
@ Finding a generator g for Zj
@ Generate a random g € Zj with g # +1
@ Check that g? # 1 mod p. Otherwise, generate another g.
o Complexity :
@ There are ¢(p — 1) = g — 1 generators.
@ g is a generator with probability ~ 1/2.
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Discrete logarithm

@ Discrete logarithm problem :

@ Given g, h such that h = g* for x £ Zp—1, find x.
@ Computing discrete logarithms in Zj

@ Hard problem: no efficient algorithm is known for large p.
@ Brute force: enumerate all possible x. Complexity O(p).
@ Baby step/giant step method: complexity O(,/p).
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Subgroup of Z;,

@ We want to work in a prime-order subgroup of Z
@ Generate p,gsuchthatp—1=2-gand p, g are prime
@ Find a generator g of Zj
@ Then g’ = g> mod pis a generator of a subgroup G of Zp
of prime order q.
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El-Gamal encryption

@ Key generation

o Let G be a subgroup of Z; of prime order g and g a
generator of G.

o Letx & Zq. Let h=g*¥ mod p.

@ Public-key : (g, h). Private-key : x
@ Encryptionof me G:

o Letr & Zq

@ Qutputc=(g",h" - m)
@ Decryption of ¢ = (¢1, &)

@ Output m= c,/(cf) mod p
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Security of EI-Gamal

@ To recover m from (g", h" - m)
@ One must find A" from (g, 9", h = g*)
@ Computational Diffie-Hellmann problem (CDH) :
e Given (g, g%, g*), find g#
@ No efficient algorithm is known.
@ Best algorithm is finding the discrete-log
@ However, attacker may already have some information
about the plaintext !
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Semantic security

@ Indistinguishability of encryption (IND-CPA)
@ The attacker receives pk
@ The attacker outputs two messages myg, my
@ The attacker receives encryption of mg for random bit 5.
@ The attacker outputs a “guess” 5’ of 3
@ Adversary’s advantage :
o Adv = |Pr[g' = ] — 3
@ A scheme is IND-CPA secure if the advantage of any
computationally bounded adversary is a negligible function
of the security parameter.
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Proof of security

@ Reductionist proof :
o If there is an attacker who can break IND-CPA with
non-negligible probability,
@ then we can use this attacker to solve DDH with
non-negligible probability
@ The Decision Diffie-Hellmann problem (DDH) :

o Given (g, g%, g° z) where z = g®if y =1 and z & Gif
~ = 0, where ~ is random bit, find ~.

) AdVDDH = | Pr[’yl = ’y] — %

@ No efficient algorithm known when G is a prime-order
subgroup of Z,.
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Proof of security

@ We get (g, g2, g°, z) and must determine if z = g2

We give pk = (g, h = g% = g*) to the adversary

sk = a = x is unknown.

Adversary sends mg, my

We send ¢ = (g° = ¢, z- mg) for random bit 3
Adversary outputs 5’ and we output v’ = 1if 3/ = s and 0
otherwise.

©

¢ © ¢ ¢
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@ If v =0, then zisrandomin G
@ Adversary gets no information about g
o Prif’ =pBly=0]=1/2
° Priy) =qly=0]=1/2
@ If vy =1,then z = g2 = g™ = h" where h = g*.
@ cis a legitimate El-Gamal ciphertext.
o Pr[8 =fly=1]=1/2+Adva
@ Prly =~y =1] =1/2+ Advy
@ Analysis

o Priy’ =19] = ( /2+1/2+ Adva)/2 = 1/2 4 Ada
o Advppy = A%
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Security of EI-Gamal

® Advppy = 2%a

@ From an adversary running in time t, with advantage Advg,
we can construct a DDH solver running in time t4 + O(k)
with advantage 294,

@ where k is the security parameter.

@ El-Gamal is IND-CPA under the DDH assumption

@ Conversely, if no algorithm can solve DDH in time t with
advantage > ¢, no adversary can break El-Gamal in time
t — O(k) with advantage > 2 - ¢
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Chosen-ciphertext attack

@ El-Gamal is not chosen-ciphertext secure
@ Given c = (9", h" - m) where pk = (g, h)
@ Ask for the decryption of ¢’ = (g"*', A*+' - m) and recover
m.
@ The Cramer-Shoup encryption scheme (1998)

@ Can be seen as extension of El-Gamal.
@ Chosen-ciphertext secure (IND-CCA) without random
oracle.
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The Cramer-Shoup cryptosystem

@ Key generation

o Let G a group of prime order g

o Generate random gy, g- € G and randoms

X1, X2, Y1, Y2, Z € Lq

o Letc=g"g2.d=9V g, h=9

@ Let H be a hash function

@ pk =(91,92,¢,d,h,H) and sk = (xq, X2, Y1, Y2, Z)
@ Encryptionof me G

@ Generate a random r € Zq

o C=(9], 95, hm, c"d™)

o where a = H(g{, g5, h"m)
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The Cramer-Shoup cryptosystem

@ Decryption of C = (uy, Uo, €, V)
@ Compute a = H(uy, up, v) and test if :

u;ﬁ +}’1au§2+}’2a —v
@ Output “reject” if the condition does not hold.
@ Otherwise, output :
m=e/(u)*

@ INC-CCA security

@ Cramer-Shoup is secure secure against adaptive chosen
ciphertext attack
@ without the random oracle model assumption
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Diffie-Hellman protocol

@ Diffie-Hellman key exchange

@ Enables Alice and Bob to establish a shared secret key
@ without having talked to each other before.

@ Key generation

@ Let p aprime integer and G a subgroup of Z; of order g
and generator g.

@ Alice generates x £ Gand publishes X = g¥ mod p. She
keeps x secret.

@ Bob generates a random y £ Gand publishes Y = g¥
mod p. He keeps y secret.
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Diffie-Hellman protocol

@ Key establishment

@ Alice sends X to Bob. Bob sends Y to Alice.
@ Alice computes K; = Y* mod p
@ Bob computes K, = XY mod p

Ka=Y"=(g") =9V =(9") =X =Kp

@ Alice and Bob now share the same key

o K=K, =Kp
@ K can be used as a session key to symmetrically encrypt
data.
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Security of Diffie-Hellman

@ Computational Diffie-Hellmann problem (CDH) :
e Given (g, g%, g°), find g®
@ No efficient algorithm is known.
@ Best algorithm is finding the discrete-log.

@ Man in the middle attack

@ An attacker in the middle can impersonate Alice or Bob and
establish a shared key with Alice and Bob.
@ The parties must be authenticated

@ With a PKI, the parties may sign g% and g°
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The MQV protocol

@ The MQV protocol

o Designed by Menezes, Qu and Vanstone in 1995.

o Efficient authenticated Diffie-Hellman protocol.

@ Requires a PKI.

e Standardized in the public-key standard IEEE P1363.

@ The HMQV protocol (2005)
o Improvement of MQV with formal security analysis.
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The HMQV protocol

@ Setup:
@ Alice has public-key g% and sk a
@ Bob’s has public-key g and sk b
@ The HMQV protocol:
@ Alice and Bob run a basic DH key exchange
@ Alice sends X = g* to Bob
@ Bobsends Y = g’ to Alice
Alice computes o4 = (YB®)**9%
Bob computes og = (XA%)r+eb
Alice and Bob set K = H(oa) = H(oB)
where d = HQ(X, lDBob) and e = HQ(Y, /DA/ice)

® © ¢ ¢
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Security properties of HMQV

@ HMAQV is proven secure in the Canetti-Krawczyk model
@ in the random oracle model
@ under the CDH assumption

@ The model covers:
@ Impersonation attacks

@ An attacker impersonates Alice and establishes a session
key with Alice and Bob.

@ Known-key attacks

@ If a session key is leaked, this does not affect the security of
other session keys.
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The Schnorr signature scheme

@ Key generation:
@ Let G be a group of order g and let g be a generator.
Generate a private key x < Zq
@ The publickeyis y = g*¥ mod p
@ Signature generation of m
o Generate a random K in Zq
o Letr =gk e=H(m|r)and s = (k — xe) mod g
@ Signature is (s, e).
@ Signature verification of (s, e)
o Letr, =g°° mod pand e, = HM|r,)
@ Checkthate, =e.
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Security of Schnorr signatures

@ Security of Schnorr signatures
@ Provably secure against existential forgery in a chosen
message attack
@ in the random oracle model under the discrete-log
assumption
@ using the “Forking lemma” (Pointcheval and Stern, 1996)
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Elliptic Curves

@ Defines a new group different from Z

o Different assumption
@ Advantage: shorter keys

@ Elliptic-curve equation over Zp:
o y2=x3+ ax+ bwhere a,b € Z,
@ Group structure

@ The set of points together with O can define a group
structure
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EC: addition formula in char # 2,3

o LetP= (X1,y1) Z20and Q = (Xg,yg) # 0. Then
P+ Q = (x3,y3) with:

X3 = )\2—X1—X2
Y3 = AMX1 —X3) =y
) { Ler iftP#£Q
= 3x2+a . .
T ifP=Q
® P=(x,y1)# 0= -P=(x,-y)

Jean-Sébastien Coron Cryptography



Computing a multiple of a point

@ Double-and-add Algorithm:
input Pand d = (dy_1,...,00)

output Q = dP

QP

for i from ¢ — 2 downto 0 do
Q<+ 2Q
ifdi=1thenQ+ Q+ P

output Q
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Computing the group order

@ Ordinary elliptic-curves
o y>’=x3+ax+b modp
o Let nbe the number of points, including O.
o We must have n= k - g where q is a large prime.
@ then work in subgroup of order q.
@ Computing the group order n:
@ Schoof’s algorithm.
@ Schoof-Elkies-Atkin algorihm.
@ or use standardized curves.
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EC El-Gamal encryption

@ Key generation

o Let G be an elliptic curve subgroup of prime order g and G
a generator of G.

o Leta & Z,. Let H=aG.

@ Public-key : (G, H). Private-key : «
@ Encryption of m:

o Letr & Zq

@ Qutput ¢ = (rG, (rH)x & m) where (rH), denotes the x
coordinate of rH.

@ Decryption of ¢ = (Cy, ¢2)
o Output m= (aCy) @ &
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