Cryptography
Discrete-log and elliptic-curve cryptography

Jean-Sébastien Coron
Université du Luxembourg

May 15, 2014
Discrete-log based cryptography

- Discrete-log based group
 - The multiplicative group \mathbb{Z}_p^*
- Discrete-log based cryptosystems
 - ElGamal encryption: security proof
 - Diffie-Hellmann key exchange
 - Schnorr signature scheme
- Elliptic-Curve cryptography
The multiplicative group \mathbb{Z}_p^*

- Let p be a prime integer.
 - The set \mathbb{Z}_p^* is the set of integers modulo p which are invertible modulo p.
 - The set \mathbb{Z}_p^* is a cyclic group of order $p - 1$ for the operation of multiplication modulo p.

- Generators of \mathbb{Z}_p^*:
 - There exists $g \in \mathbb{Z}_p^*$ such that any $h \in \mathbb{Z}_p^*$ can be uniquely written as $h = g^x \mod p$ with $0 \leq x < p - 1$.
 - The integer x is called the discrete logarithm of h to the base g, and denoted $\log_g h$.

Finding a generator of \mathbb{Z}_p^* for prime p.

- The factorization of $p - 1$ is needed. Otherwise, no efficient algorithm is known.
- Factoring is hard, but it is possible to generate p such that the factorization of $p - 1$ is known.

Generator of \mathbb{Z}_p^*

- $g \in \mathbb{Z}_p^*$ is a generator of \mathbb{Z}_p^* if and only if $g^{(p-1)/q} \neq 1 \mod p$ for each prime factor q of $p - 1$.
- There are $\phi(p - 1)$ generators of \mathbb{Z}_p^*
Generating p and q

- **Generate p such that $p - 1 = 2 \cdot q$ for some prime q.**
 - Generate a random prime p.
 - Test if $q = (p - 1)/2$ is prime. Otherwise, generate another p.

- **Finding a generator g for \mathbb{Z}_p^***
 - Generate a random $g \in \mathbb{Z}_p^*$ with $g \neq \pm 1$
 - Check that $g^q \neq 1 \mod p$. Otherwise, generate another g.

Complexity:
- There are $\phi(p - 1) = q - 1$ generators.
- g is a generator with probability $\approx 1/2$.

Jean-Sébastien Coron
Cryptography
Discrete logarithm problem:

- Given g, h such that $h = g^x$ for $x \overset{R}{\leftarrow} \mathbb{Z}_p$, find x.

Computing discrete logarithms in \mathbb{Z}_p^*:

- Hard problem: no efficient algorithm is known for large p.
- Brute force: enumerate all possible x. Complexity $\mathcal{O}(p)$.
- Baby step/giant step method: complexity $\mathcal{O}(\sqrt{p})$.
We want to work in a prime-order subgroup of \mathbb{Z}_p^*

- Generate p, q such that $p - 1 = 2 \cdot q$ and p, q are prime
- Find a generator g of \mathbb{Z}_p^*
- Then $g' = g^2 \mod p$ is a generator of a subgroup G of \mathbb{Z}_p^* of prime order q.
El-Gamal encryption

Key generation
- Let G be a subgroup of \mathbb{Z}_p^* of prime order q and g a generator of G.
- Let $x \overset{R}{\leftarrow} \mathbb{Z}_q$. Let $h = g^x \mod p$.
- Public-key : (g, h). Private-key : x

Encryption of $m \in G$:
- Let $r \overset{R}{\leftarrow} \mathbb{Z}_q$
- Output $c = (g^r, h^r \cdot m)$

Decryption of $c = (c_1, c_2)$
- Output $m = c_2 / (c_1^x) \mod p$
To recover m from $(g^r, h^r \cdot m)$
 - One must find h^r from $(g, g^r, h = g^x)$

Computational Diffie-Hellmann problem (CDH):
 - Given (g, g^a, g^b), find g^{ab}
 - No efficient algorithm is known.
 - Best algorithm is finding the discrete-log

However, attacker may already have some information about the plaintext!
Indistinguishability of encryption (IND-CPA)
- The attacker receives pk
- The attacker outputs two messages m_0, m_1
- The attacker receives encryption of m_β for random bit β.
- The attacker outputs a “guess” β' of β

Adversary’s advantage:
- $\text{Adv} = |\Pr[\beta' = \beta] - \frac{1}{2}|$
- A scheme is IND-CPA secure if the advantage of any computationally bounded adversary is a negligible function of the security parameter.
Proof of security

- Reductionist proof:
 - If there is an attacker who can break IND-CPA with non-negligible probability,
 - then we can use this attacker to solve DDH with non-negligible probability

- The Decision Diffie-Hellmann problem (DDH):
 - Given \((g, g^a, g^b, z)\) where \(z = g^{ab}\) if \(\gamma = 1\) and \(z \leftarrow \mathcal{R} G\) if \(\gamma = 0\), where \(\gamma\) is random bit, find \(\gamma\).
 - \(\text{Adv}_{DDH} = |\Pr[\gamma' = \gamma] - \frac{1}{2}|\)
 - No efficient algorithm known when \(G\) is a prime-order subgroup of \(\mathbb{Z}_p^*\).
Proof of security

We get \((g, g^a, g^b, z)\) and must determine if \(z = g^{ab}\)

- We give \(pk = (g, h = g^a = g^x)\) to the adversary
- \(sk = a = x\) is unknown.
- Adversary sends \(m_0, m_1\)
- We send \(c = (g^b = g^r, z \cdot m_\beta)\) for random bit \(\beta\)
- Adversary outputs \(\beta'\) and we output \(\gamma' = 1\) if \(\beta' = \beta\) and 0 otherwise.
If $\gamma = 0$, then z is random in G
- Adversary gets no information about β
- $\Pr[\beta' = \beta | \gamma = 0] = 1/2$
- $\Pr[\gamma' = \gamma | \gamma = 0] = 1/2$

If $\gamma = 1$, then $z = g^{ab} = g^{rx} = h^r$ where $h = g^x$.
- c is a legitimate El-Gamal ciphertext.
- $\Pr[\beta' = \beta | \gamma = 1] = 1/2 + \text{Adv}_A$
- $\Pr[\gamma' = \gamma | \gamma = 1] = 1/2 + \text{Adv}_A$

Analysis
- $\Pr[\gamma' = \gamma] = (1/2 + 1/2 + \text{Adv}_A)/2 = 1/2 + \frac{\text{Adv}_A}{2}$
- $\text{Adv}_{DDH} = \frac{\text{Adv}_A}{2}$
Security of El-Gamal

- \(\text{Adv}_{DDH} = \frac{\text{Adv}_A}{2} \)
 - From an adversary running in time \(t_A \) with advantage \(\text{Adv}_A \), we can construct a DDH solver running in time \(t_A + O(k) \) with advantage \(\frac{\text{Adv}_A}{2} \).
 - where \(k \) is the security parameter.

- El-Gamal is IND-CPA under the DDH assumption
 - Conversely, if no algorithm can solve DDH in time \(t \) with advantage \(> \varepsilon \), no adversary can break El-Gamal in time \(t - O(k) \) with advantage \(> 2 \cdot \varepsilon \).
El-Gamal is not chosen-ciphertext secure
- Given $c = (g^r, h^r \cdot m)$ where $pk = (g, h)$
- Ask for the decryption of $c' = (g^{r+1}, h^{r+1} \cdot m)$ and recover m.

The Cramer-Shoup encryption scheme (1998)
- Can be seen as extension of El-Gamal.
- Chosen-ciphertext secure (IND-CCA) without random oracle.
The Cramer-Shoup cryptosystem

- **Key generation**
 - Let G a group of prime order q
 - Generate random $g_1, g_2 \in G$ and randoms $x_1, x_2, y_1, y_2, z \in \mathbb{Z}_q$
 - Let $c = g_1^{x_1} g_2^{x_2}$, $d = g_1^{y_1} g_2^{y_2}$, $h = g_1^z$
 - Let H be a hash function
 - $pk = (g_1, g_2, c, d, h, H)$ and $sk = (x_1, x_2, y_1, y_2, z)$

- **Encryption of $m \in G$**
 - Generate a random $r \in \mathbb{Z}_q$
 - $C = (g_1^r, g_2^r, h^r m, c^r d^r \alpha)$
 - where $\alpha = H(g_1^r, g_2^r, h^r m)$
The Cramer-Shoup cryptosystem

Decryption of $C = (u_1, u_2, e, v)$

- Compute $\alpha = H(u_1, u_2, v)$ and test if:

 $$u_1^{x_1+y_1\alpha} u_2^{x_2+y_2\alpha} = v$$

- Output "reject" if the condition does not hold.
- Otherwise, output:

 $$m = e/(u_1)^z$$

INC-CCA security

- Cramer-Shoup is secure secure against adaptive chosen ciphertext attack
- without the random oracle model assumption
Diffie-Hellman protocol

- Diffie-Hellman key exchange
 - Enables Alice and Bob to establish a shared secret key without having talked to each other before.

- Key generation
 - Let p a prime integer and G a subgroup of \mathbb{Z}_p^* of order q and generator g.
 - Alice generates $x \xleftarrow{\$} G$ and publishes $X = g^x \mod p$. She keeps x secret.
 - Bob generates a random $y \xleftarrow{\$} G$ and publishes $Y = g^y \mod p$. He keeps y secret.
Diffie-Hellman protocol

- **Key establishment**
 - Alice sends X to Bob. Bob sends Y to Alice.
 - Alice computes $K_a = Y^x \mod p$
 - Bob computes $K_b = X^y \mod p$

$$K_a = Y^x = (g^y)^x = g^{xy} = (g^x)^y = X^y = K_b$$

- Alice and Bob now share the same key
 - $K = K_a = K_b$
 - K can be used as a session key to symmetrically encrypt data.
Computational Diffie-Hellmann problem (CDH):
- Given \((g, g^a, g^b)\), find \(g^{ab}\)
- No efficient algorithm is known.
- Best algorithm is finding the discrete-log.

Man in the middle attack
- An attacker in the middle can impersonate Alice or Bob and establish a shared key with Alice and Bob.
- The parties must be authenticated
 - With a PKI, the parties may sign \(g^a\) and \(g^b\)
The MQV protocol

- Designed by Menezes, Qu and Vanstone in 1995.
- Efficient authenticated Diffie-Hellman protocol.
- Requires a PKI.
- Standardized in the public-key standard IEEE P1363.

The HMQV protocol (2005)

- Improvement of MQV with formal security analysis.
The HMQV protocol

Setup:
- Alice has public-key g^a and sk a
- Bob’s has public-key g^b and sk b

The HMQV protocol:
- Alice and Bob run a basic DH key exchange
 - Alice sends $X = g^x$ to Bob
 - Bob sends $Y = g^y$ to Alice
- Alice computes $\sigma_A = (YB^e)^{x+da}$
- Bob computes $\sigma_B = (XA^d)^{y+eb}$
- Alice and Bob set $K = H(\sigma_A) = H(\sigma_B)$
- where $d = H_2(X, ID_{Bob})$ and $e = H_2(Y, ID_{Alice})$
HMQV is proven secure in the Canetti-Krawczyk model
- in the random oracle model
- under the CDH assumption

The model covers:
- Impersonation attacks
 - An attacker impersonates Alice and establishes a session key with Alice and Bob.
- Known-key attacks
 - If a session key is leaked, this does not affect the security of other session keys.
Key generation:
- Let G be a group of order q and let g be a generator.
 - Generate a private key $x \leftarrow \mathbb{Z}_q$
 - The public key is $y = g^x \mod p$

Signature generation of m
- Generate a random k in \mathbb{Z}_q
- Let $r = g^k$, $e = H(m||r)$ and $s = (k - xe) \mod q$
- Signature is (s, e).

Signature verification of (s, e)
- Let $r_v = g^s y^e \mod p$ and $e_v = H(M||r_v)$
- Check that $e_v = e$.
Security of Schnorr signatures

- Provably secure against existential forgery in a chosen message attack
- in the random oracle model under the discrete-log assumption
- using the “Forking lemma” (Pointcheval and Stern, 1996)
Elliptic Curves

- Defines a new group different from \mathbb{Z}_p^*
 - Different assumption
 - Advantage: shorter keys
- Elliptic-curve equation over \mathbb{Z}_p:
 - $y^2 = x^3 + ax + b$ where $a, b \in \mathbb{Z}_p$
- Group structure
 - The set of points together with \mathcal{O} can define a group structure
Let $P = (x_1, y_1) \neq O$ and $Q = (x_2, y_2) \neq O$. Then $P + Q = (x_3, y_3)$ with:

\[
\begin{align*}
 x_3 &= \lambda^2 - x_1 - x_2 \\
 y_3 &= \lambda(x_1 - x_3) - y_1
\end{align*}
\]

\[
\lambda = \begin{cases}
\frac{y_2 - y_1}{x_2 - x_1}, & \text{if } P \neq Q \\
\frac{3x_1^2 + a}{2y_1}, & \text{if } P = Q
\end{cases}
\]

$P = (x_1, y_1) \neq O \Rightarrow -P = (x_1, -y_1)$
Computing a multiple of a point

Double-and-add Algorithm:
input P and $d = (d_{\ell-1}, \ldots, d_0)$
output $Q = dP$

$Q \leftarrow P$
for i from $\ell - 2$ downto 0 do
 $Q \leftarrow 2Q$
 if $d_i = 1$ then $Q \leftarrow Q + P$
output Q
Ordinary elliptic-curves
- \(y^2 = x^3 + ax + b \mod p \)
- Let \(n \) be the number of points, including \(O \).
- We must have \(n = k \cdot q \) where \(q \) is a large prime.
- then work in subgroup of order \(q \).

Computing the group order \(n \):
- Schoof’s algorithm.
- Schoof-Elkies-Atkin algorithm.
- or use standardized curves.
EC El-Gamal encryption

- **Key generation**
 - Let \mathbb{G} be an elliptic curve subgroup of prime order q and G a generator of \mathbb{G}.
 - Let $\alpha \xleftarrow{R} \mathbb{Z}_q$. Let $H = \alpha G$.
 - Public-key : (G, H). Private-key : α

- **Encryption of m**:
 - Let $r \xleftarrow{R} \mathbb{Z}_q$
 - Output $c = (rG, (rH)_x \oplus m)$ where $(rH)_x$ denotes the x coordinate of rH.

- **Decryption of $c = (C_1, c_2)$**
 - Output $m = (\alpha C_1) \oplus c_2$