Cryptography Discrete-log and elliptic-curve cryptography

Jean-Sébastien Coron

Université du Luxembourg

May 15, 2014

Jean-Sébastien Coron Cryptography

- Discrete-log based group
 - The multiplicative group \mathbb{Z}_p^*
- Discrete-log based cryptosystems
 - ElGamal encryption: security proof
 - Diffie-Hellmann key exchange
 - Schnorr signature scheme
- Elliptic-Curve cryptography

> < 同 > < 回 > <</p>

- Let *p* be a prime integer.
 - The set Z^{*}_p is the set of integers modulo *p* which are invertible modulo *p*.
 - The set Z^{*}_p is a cyclic group of order p − 1 for the operation of multiplication modulo p.
- Generators of \mathbb{Z}_p^* :
 - There exists g ∈ Z^{*}_p such that any h ∈ Z^{*}_p can be uniquely written as h = g^x mod p with 0 ≤ x
 - The integer *x* is called the *discrete logarithm* of *h* to the base *g*, and denoted log_{*g*} *h*.

< ロ > < 同 > < 回 > < 回 > .

Finding a generator of \mathbb{Z}_p^*

- Finding a generator of \mathbb{Z}_p^* for prime *p*.
 - The factorization of p 1 is needed. Otherwise, no efficient algorithm is known.
 - Factoring is hard, but it is possible to generate *p* such that the factorization of *p* − 1 is known.
- Generator of Z^{*}_p
 - g ∈ Z^{*}_p is a generator of Z^{*}_p if and only if g^{(p-1)/q} ≠ 1 mod p for each prime factor q of p − 1.
 - There are $\phi(p-1)$ generators of \mathbb{Z}_p^*

< ロ > < 同 > < 回 > < 回 > .

Generating p and q

- Generate *p* such that $p 1 = 2 \cdot q$ for some prime *q*.
 - Generate a random prime *p*.
 - Test if q = (p 1)/2 is prime. Otherwise, generate another p.
- Finding a generator g for Z^{*}_p
 - Generate a random $g \in \mathbb{Z}_p^*$ with $g \neq \pm 1$
 - Check that $g^q \neq 1 \mod p$. Otherwise, generate another g.

ヘロト 人間 ト イヨト イヨト

- Complexity :
 - There are $\phi(p-1) = q-1$ generators.
 - g is a generator with probability $\simeq 1/2$.

- Discrete logarithm problem :
 - Given g, h such that $h = g^x$ for $x \stackrel{R}{\leftarrow} \mathbb{Z}_{p-1}$, find x.
- Computing discrete logarithms in Z^{*}_p
 - Hard problem: no efficient algorithm is known for large *p*.
 - Brute force: enumerate all possible x. Complexity O(p).
 - Baby step/giant step method: complexity $\mathcal{O}(\sqrt{p})$.

< □ > < 同 > < 回 > <

- We want to work in a prime-order subgroup of \mathbb{Z}_p^*
 - Generate p, q such that $p 1 = 2 \cdot q$ and p, q are prime
 - Find a generator g of Z^{*}_p
 - Then g' = g² mod p is a generator of a subgroup G of Z^{*}_p of prime order q.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

EI-Gamal encryption

- Key generation
 - Let G be a subgroup of Z^{*}_p of prime order q and g a generator of G.
 - Let $x \stackrel{R}{\leftarrow} \mathbb{Z}_q$. Let $h = g^x \mod p$.
 - Public-key : (g, h). Private-key : x
- Encryption of $m \in G$:

• Let
$$r \stackrel{R}{\leftarrow} \mathbb{Z}_{c}$$

- Output $c = (g^r, h^r \cdot m)$
- Decryption of $c = (c_1, c_2)$
 - Output $m = c_2/(c_1^x) \mod p$

< □ > < 同 > < 回 > <

- To recover m from $(g^r, h^r \cdot m)$
 - One must find h^r from $(g, g^r, h = g^x)$
- Computational Diffie-Hellmann problem (CDH) :
 - Given (g, g^a, g^b) , find g^{ab}
 - No efficient algorithm is known.
 - Best algorithm is finding the discrete-log
- However, attacker may already have some information about the plaintext !

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

- Indistinguishability of encryption (IND-CPA)
 - The attacker receives pk
 - The attacker outputs two messages m_0, m_1
 - The attacker receives encryption of m_{β} for random bit β .
 - The attacker outputs a "guess" β' of β
- Adversary's advantage :
 - $Adv = |Pr[\beta' = \beta] \frac{1}{2}|$
 - A scheme is IND-CPA secure if the advantage of any computationally bounded adversary is a negligible function of the security parameter.

< □ > < 同 > < 回 >

Proof of security

- Reductionist proof :
 - If there is an attacker who can break IND-CPA with non-negligible probability,
 - then we can use this attacker to solve DDH with non-negligible probability
- The Decision Diffie-Hellmann problem (DDH) :
 - Given (g, g^a, g^b, z) where $z = g^{ab}$ if $\gamma = 1$ and $z \stackrel{R}{\leftarrow} G$ if $\gamma = 0$, where γ is random bit, find γ .
 - Adv_{DDH} = $|\Pr[\gamma' = \gamma] \frac{1}{2}|$
 - No efficient algorithm known when G is a prime-order subgroup of Z^{*}_p.

< □ > < 同 > < 回 >

• We get (g, g^a, g^b, z) and must determine if $z = g^{ab}$

- We give $pk = (g, h = g^a = g^x)$ to the adversary
- sk = a = x is unknown.
- Adversary sends m₀, m₁
- We send $c = (g^b = g^r, z \cdot m_\beta)$ for random bit β
- Adversary outputs β' and we output γ' = 1 if β' = β and 0 otherwise.

< D > < B > < E > <</p>

э.

Analysis

If γ = 0, then z is random in G
Adversary gets no information about β
Pr[β' = β|γ = 0] = 1/2
Pr[γ' = γ|γ = 0] = 1/2
If γ = 1, then z = g^{ab} = g^{rx} = h^r where h = g^x.
c is a legitimate El-Gamal ciphertext.
Pr[β' = β|γ = 1] = 1/2 + Adv_A
Pr[γ' = γ|γ = 1] = 1/2 + Adv_A

•
$$\Pr[\gamma' = \gamma] = (1/2 + 1/2 + Adv_A)/2 = 1/2 + \frac{Adv_A}{2}$$

• Adv_{DDH} =
$$\frac{Adv}{2}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Security of El-Gamal

• Adv_{DDH} = $\frac{Adv_A}{2}$

- From an adversary running in time t_A with advantage Adv_A, we can construct a DDH solver running in time $t_A + O(k)$ with advantage $\frac{Adv_A}{2}$.
- where *k* is the security parameter.
- El-Gamal is IND-CPA under the DDH assumption
 - Conversely, if no algorithm can solve DDH in time *t* with advantage > ε, no adversary can break El-Gamal in time *t* − O(*k*) with advantage > 2 · ε

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

Chosen-ciphertext attack

• El-Gamal is not chosen-ciphertext secure

- Given $c = (g^r, h^r \cdot m)$ where pk = (g, h)
- Ask for the decryption of $c' = (g^{r+1}, h^{r+1} \cdot m)$ and recover *m*.
- The Cramer-Shoup encryption scheme (1998)
 - Can be seen as extension of El-Gamal.
 - Chosen-ciphertext secure (IND-CCA) without random oracle.

The Cramer-Shoup cryptosystem

Key generation

- Let G a group of prime order q
- Generate random $g_1, g_2 \in G$ and randoms

 $x_1, x_2, y_1, y_2, z \in \mathbb{Z}_q$

- Let $c = g_1^{x_1} g_2^{x_2}, d = g_1^{y_1} g_2^{y_2}, h = g_1^z$
- Let H be a hash function
- $pk = (g_1, g_2, c, d, h, H)$ and $sk = (x_1, x_2, y_1, y_2, z)$
- Encryption of $m \in G$
 - Generate a random $r \in \mathbb{Z}_q$
 - $C = (g_1^r, g_2^r, h^r m, c^r d^{r\alpha})$
 - where $\alpha = H(g_1^r, g_2^r, h^r m)$

э.

The Cramer-Shoup cryptosystem

• Decryption of $C = (u_1, u_2, e, v)$

• Compute $\alpha = H(u_1, u_2, v)$ and test if :

$$u_1^{x_1+y_1\alpha}u_2^{x_2+y_2\alpha}=v$$

- Output "reject" if the condition does not hold.
- Otherwise, output :

$$m = e/(u_1)^{z}$$

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

- INC-CCA security
 - Cramer-Shoup is secure secure against adaptive chosen ciphertext attack
 - without the random oracle model assumption

Diffie-Hellman protocol

- Diffie-Hellman key exchange
 - Enables Alice and Bob to establish a shared secret key
 - without having talked to each other before.
- Key generation
 - Let *p* a prime integer and *G* a subgroup of Z^{*}_p of order *q* and generator *g*.

A B > A B >

 Bob generates a random y ^R G and publishes Y = g^y mod p. He keeps y secret.

Diffie-Hellman protocol

Key establishment

- Alice sends X to Bob. Bob sends Y to Alice.
- Alice computes $K_a = Y^x \mod p$
- Bob computes $K_b = X^y \mod p$

$$K_a = Y^x = (g^y)^x = g^{xy} = (g^x)^y = X^y = K_b$$

- Alice and Bob now share the same key
 - $K = K_a = K_b$
 - *K* can be used as a session key to symmetrically encrypt data.

< ロ > < 同 > < 回 > <

Security of Diffie-Hellman

• Computational Diffie-Hellmann problem (CDH) :

- Given (g, g^a, g^b) , find g^{ab}
- No efficient algorithm is known.
- Best algorithm is finding the discrete-log.
- Man in the middle attack
 - An attacker in the middle can impersonate Alice or Bob and establish a shared key with Alice and Bob.

< □ > < □ > < □ > < □ >

- The parties must be authenticated
 - With a PKI, the parties may sign g^a and g^b

- The MQV protocol
 - Designed by Menezes, Qu and Vanstone in 1995.
 - Efficient authenticated Diffie-Hellman protocol.
 - Requires a PKI.
 - Standardized in the public-key standard IEEE P1363.
- The HMQV protocol (2005)
 - Improvement of MQV with formal security analysis.

< □ > < 同 > < 回 >

The HMQV protocol

- Setup:
 - Alice has public-key g^a and sk a
 - Bob's has public-key g^b and sk b
- The HMQV protocol:
 - Alice and Bob run a basic DH key exchange
 - Alice sends $X = g^x$ to Bob
 - Bob sends $Y = g^{y}$ to Alice
 - Alice computes $\sigma_A = (YB^e)^{x+da}$
 - Bob computes $\sigma_B = (XA^d)^{y+eb}$
 - Alice and Bob set $K = H(\sigma_A) = H(\sigma_B)$
 - where $d = H_2(X, ID_{Bob})$ and $e = H_2(Y, ID_{Alice})$

< ロ > < 同 > < 回 > <

Security properties of HMQV

- HMQV is proven secure in the Canetti-Krawczyk model
 - in the random oracle model
 - under the CDH assumption
- The model covers:
 - Impersonation attacks
 - An attacker impersonates Alice and establishes a session key with Alice and Bob.
 - Known-key attacks
 - If a session key is leaked, this does not affect the security of other session keys.

< ロ > < 同 > < 回 > < 回 > .

The Schnorr signature scheme

Key generation:

- Let G be a group of order q and let g be a generator.
 Generate a private key x ← Z_q
- The public key is $y = g^x \mod p$
- Signature generation of *m*
 - Generate a random k in \mathbb{Z}_q
 - Let $r = g^k$, e = H(m||r) and $s = (k xe) \mod q$
 - Signature is (*s*, *e*).
- Signature verification of (*s*, *e*)
 - Let $r_v = g^s y^e \mod p$ and $e_v = H(M || r_v)$
 - Check that $e_v = e$.

< ロ > < 同 > < 回 > < 回 > .

Security of Schnorr signatures

- Provably secure against existential forgery in a chosen message attack
- in the random oracle model under the discrete-log assumption
- using the "Forking lemma" (Pointcheval and Stern, 1996)

< D > < P > < P > < P >

• Defines a new group different from \mathbb{Z}_p^*

- Different assumption
- Advantage: shorter keys
- Elliptic-curve equation over \mathbb{Z}_p :

•
$$y^2 = x^3 + ax + b$$
 where $a, b \in \mathbb{Z}_p$

- Group structure
 - $\bullet\,$ The set of points together with ${\cal O}$ can define a group structure

< □ > < 同 > < 回 > <

.⊒ . ► . .

EC: addition formula in char \neq 2, 3

• Let $P = (x_1, y_1) \neq \mathcal{O}$ and $Q = (x_2, y_2) \neq \mathcal{O}$. Then $P + Q = (x_3, y_3)$ with:

$$x_3 = \lambda^2 - x_1 - x_2$$

$$y_3 = \lambda(x_1 - x_3) - y_1$$

$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1}, & \text{if } P \neq Q \\ \frac{3x_1^2 + a}{2y_1}, & \text{if } P = Q \end{cases}$$

$$\bullet P = (x_1, y_1) \neq \mathcal{O} \Rightarrow -P = (x_1, -y_1)$$

Computing a multiple of a point

• Double-and-add Algorithm: input P and $d = (d_{\ell-1}, \dots, d_0)$ output Q = dP $Q \leftarrow P$ for *i* from $\ell - 2$ downto 0 do $Q \leftarrow 2Q$

if $d_i = 1$ then $Q \leftarrow Q + P$ output Q

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

Computing the group order

Ordinary elliptic-curves

•
$$y^2 = x^3 + ax + b \mod p$$

- Let *n* be the number of points, including O.
- We must have $n = k \cdot q$ where q is a large prime.
- then work in subgroup of order *q*.
- Computing the group order *n*:
 - Schoof's algorithm.
 - Schoof-Elkies-Atkin algorihm.
 - or use standardized curves.

< □ > < 同 > < 回 > <

EC El-Gamal encryption

Key generation

- Let G be an elliptic curve subgroup of prime order q and G a generator of G.
- Let $\alpha \stackrel{R}{\leftarrow} \mathbb{Z}_q$. Let $H = \alpha G$.
- Public-key : (G, H). Private-key : α
- Encryption of *m* :
 - Let $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$
 - Output c = (rG, (rH)_x ⊕ m) where (rH)_x denotes the x coordinate of rH.
- Decryption of $c = (C_1, c_2)$
 - Output $m = (\alpha C_1) \oplus c_2$