Cryptography Course no. 10

Jean-Sébastien Coron

University of Luxembourg

May 9, 2014

Jean-Sébastien Coron Cryptography

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Introduction to security proofs

- The RSA signature scheme
- Attacks against RSA signatures
- Security proofs for signature schemes
- The Full Domain Hash scheme
 - Original and improved security proof
- The PSS scheme
 - Original security proof
 - Improved security proof and practical consequences

Security proofs

- What is cryptography ?
 - Cryptography's aim is to contruct schemes that achieve some goal despite the presence of an adversary.
 - Example: encryption, key-exchange, signature, electronic voting...
- Scientific approach:
 - To be rigorous, one must specify what it means to be secure.
 - Then one tries to construct schemes that achieve the desired goal, in a provable way.
 - Plain RSA encryption and signature cannot be used !

The RSA signature scheme

Key generation :

- Public modulus: $N = p \cdot q$ where p and q are large primes.
- Public exponent : e
- Private exponent: *d*, such that $d \cdot e = 1 \mod \phi(N)$
- To sign a message *m*, the signer computes :
 - $s = m^d \mod N$
 - Only the signer can sign the message.
- To verify the signature, one checks that:
 - $m = s^e \mod N$
 - Anybody can verify the signature

Hash-and-sign paradigm

- There are many attacks on basic RSA signatures:
 - Existential forgery: $r^e = m \mod N$
 - Chosen-message attack: $(m_1 \cdot m_2)^d = m_1^d \cdot m_2^d \mod N$
- To prevent from these attacks, one usually uses a hash function. The message is first hashed, then padded.
 - $m \longrightarrow H(m) \longrightarrow 1001...0101 || H(m)$
 - Example: PKCS#1 v1.5:
 - $\mu(m) = 0001 \text{ FF} \dots \text{FF} 00 || c_{SHA} || SHA(m)$
 - ISO 9796-2: $\mu(m) = 6A \| m[1] \| \tilde{H}(m) \| BC$

< ロ > < 同 > < 回 > < 回 > .

Security proofs

- Since the invention of public-key cryptography
 - Many schemes have been proposed...
 - And many of them have been broken.
 - Until recently, a scheme was considered as secure if no one was able to break it.
- How can we justify security rigorously ?
 - Prove that if an adversary can break the scheme, he can solve a hard problem such as:
 - Factoring large integers.
 - RSA problem: given y, compute $y^d \mod N$.
 - This shows that the scheme is secure, assuming that the underlying problem is hard to solve.

< □ > < 同 > < 回 >

Proofs for signature schemes

- Strongest security notion (Goldwasser, Micali and Rivest, 1988):
 - It must be infeasible for an adversary to forge the signature of a message, even if he can obtain the signature of messages of his choice.
- Security proof:
 - Show that from an adversary who is able to forge signature, you can solve a difficult problem, such as inverting RSA.

(日)

- Examples of provably secure signature schemes:
 - Full Domain Hash (FDH)
 - Probabilistic Signature Scheme (PSS)

The FDH scheme

- The FDH signature scheme:
 - was designed in 1993 by Bellare and Rogaway.

$$m \longrightarrow H(m) \longrightarrow s = H(m)^d \mod N$$

- The hash function *H*(*m*) has the same output size as the modulus.
- Security of FDH
 - FDH is provably secure in the random oracle model, assuming that inverting RSA is hard.
 - In the random oracle model, the hash function is replaced by an oracle which outputs a random value for each new query.

< □ > < 同 > < 回 > <

• We want to show that FDH is a secure signature scheme:

- Even if the adversary requests signatures of messages of his choice, he is still unable to produce a forgery.
- Forgery: a couple (*m'*, *s'*) such that *s* is a valid signature of *m* but the signature of *m* was never requested by the adversary.

< D > < P > < P > < P >

Security proof for FDH

- Proof in the random oracle model
 - The adversary cannot compute the hash-function by himself.
 - He must make a request to the random oracle, which answers a random, independantly distributed answer for each new query.
 - Randomly distributed in \mathbb{Z}_N .
- Idealized model of computation
 - A proof in the random oracle model does not imply that the scheme is secure when a concrete hash-function like SHA-1 is used.

< □ > < 同 > < 回 > <

∃ ► -

• Still a good guarantee.

Security proof

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Proof of security

- We assume that there exists a succesfull adversary.
 - This adversary is an algorithm that given the public-key (*N*, *e*), after at most q_{hash} hash queries and q_{sig} signature queries, outputs a forgery (m', s').
- We will use this adversary to solve a RSA challenge: given (N, e, y), output y^d mod N.
 - The adversary's forgery will be used to compute y^d mod N, without knowing d.
 - If solving such RSA challenge is assumed to be hard, then producing a forgery must be hard.

< □ > < 同 > < 回 > <

Security proof for FDH

- Let *q*_{hash} be the number of hash queries and *q*_{sig} be the number of signature queries.
 - Select a random $j \in [1, q_{hash} + q_{sig} + 1]$.
- Answering a hash query for the *i*-th message *m_i*:
 - If $i \neq j$, answer $H(m_i) = r_i^e \mod N$ for random r_i .

• If
$$i = j$$
, answer $H(m_j) = y$.

- Answering a signature query for *m_i*:
 - If $i \neq j$, answer $r_i = H(m_i)^d \mod N$, otherwise (i = j) abort.
 - We can answer all signature queries, except for message *m_j*

< 日 > < 同 > < 回 > < 回 > < □ > <

- Let (m', s') be the forgery
 - We assume that the adversary has already made a hash query for *m*', *i.e.*, *m*' = *m*_i for some *i*.
 - Otherwise we can simulate this query.
 - Then if i = j, then $s' = H(m_j)^d = y^d \mod N$.
 - We return *s*' as the solution to the RSA challenge (*N*, *e*, *y*).

< ロ > < 同 > < 三 > .

Success probability

- Our reduction succeeds if i = j
 - This happens with probability $1/(q_{\textit{hash}}+q_{\textit{sig}}+1)$
- From a forger that breaks FDH with probability ε in time t, we can invert RSA with probability
 ε' = ε/(q_{hash} + q_{sia} + 1)in time t' close to t.
- Conversely, if we assume that it is impossible to invert RSA with probability greater than ε' in time t', it is impossible to break FDH with probability greater than

$$\varepsilon = (q_{hash} + q_{sig} + 1) \cdot \varepsilon'$$

< D > < P > < P > < P >

in time t close to t'.

Improving the security bound

- Instead of letting $H(m_i) = r_i^e \mod N$ for all $i \neq j$ and $H(m_j) = y$, one lets
 - $H(m_i) = r_i^e \mod N$ with probability α
 - $H(m_i) = r_i^e \cdot y \mod N$ with probabiliy 1α
- Idea (published at CRYPTO 2000 by me).
 - When H(m_i) = r_i^e mod N one can answer the signature query but not use a forgery for m_i.
 - When H(m_i) = r^e_i · y mod N one cannot answer the signature query but can use the forgery to compute y^d mod N.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

• Optimize for α .

Improved security proof

- Answering a hash query for the *i*-th message *m_i*:
 - With probability α , answer $H(m_i) = r_i^e \mod N$ for a random r_i . Otherwise answer $H(m_i) = y \cdot r_i^e \mod N$.
- 2 kinds of messages:
 - Messages for which we know the signature, but the forgery can not be used.
 - Messages for which we can use the forgery, but we can not answer the signature query.
- Answering a signature query for *m_i*:

• $H(m_i) = r_i^e \mod N$, answer r_i , otherwise abort.

- Using the forgery (m_i, s_i) :
 - If $H(m_i) = y \cdot r_i^e \mod N$, then $s_i = H(m_i)^d = y^d \cdot r_i \mod N$ and return s_i/r_i .

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Improving the bound

• Probability that all signature queries are answered:

- A signature query is answered with probability α
- At most q_{sig} signature queries $\Rightarrow P \ge \alpha^{q_{sig}}$
- Probability that the forgery (m_i, s') is useful :
 - Useful if $H(m_i) = r_i^e \cdot y \mod N$
 - $s' = H(m_i)^d = r_i \cdot y^d \mod N \Rightarrow y^d = s'/r_i \mod N$

Global success probability :

•
$$f(\alpha) = \alpha^{q_{sig}} \cdot (1 - \alpha)$$

- $f(\alpha)$ is maximum for $\alpha_m = 1 1/(q+1)$
- $f(\alpha_m) \simeq 1/(e \cdot q_{sig})$ for large q_{sig}

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● ●

Success probability

- From a forger that breaks FDH with probability ε in time t, we can invert RSA with probability ε' = ε/(4 ⋅ q_{sig}) in time t' close to t.
- Conversely, if we assume that it is impossible to invert RSA with probability greater than ε' in time t', it is impossible to break FDH with probability greater than ε = 4 · q_{sig} · ε' in time t close to t'.
- Concrete values
 - With $q_{hash} = 2^{60}$ and $q_{sig} = 2^{30}$, we obtain $\varepsilon = 2^{32}\varepsilon'$ instead of $\varepsilon = 2^{60} \cdot \varepsilon'$

(日)

- More secure for a given modulus size *k*.
- A smaller modulus can be used for the same level of security: improved efficiency.

The PSS signature cheme

PSS (Bellare and Rogaway, Eurocrypt'96)

- IEEE P1363a and PKCS#1 v2.1.
- 2 variants: PSS and PSS-R (message recovery)
- Provably secure against chosen-message attacks

PSS-R:

Parameters

- k_0 is the size of r.
- k_1 is the size of ω .

< □ > < 同 > < 回 > <

Original security proof

• If is impossible to invert RSA with probability greater than ε' in time t', it is impossible to break PSS in time $t \simeq t'$ with probability greater than

$$arepsilon = arepsilon' + 3 \cdot \left(q_{sig} + q_{hash}
ight)^2 \cdot \left(2^{-k_0} + 2^{-k_1}
ight)$$

Tight security proof (ε' ≃ ε), provided that k₀ ≥ k_{min} and k₁ ≥ k_{min}, with:

$$k_{\textit{min}} = 2 \cdot \log_2(q_{\textit{hash}} + q_{\textit{sig}}) + \log_2 rac{1}{arepsilon'}$$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

- With $q_{hash} = 2^{60}$, $q_{sig} = 2^{30}$ and $\varepsilon' = 2^{-60}$, k_0 and k_1 must be greater than $k_{min} = 180$ bits.
- The value of k_1 is optimal.

Improved security proof

• If is impossible to invert RSA with probability greater than ε' in time t', it is impossible to break PSS in time $t \simeq t'$ with probability greater than

$$arepsilon = arepsilon' \cdot \left(\mathbf{1} + \mathbf{6} \cdot oldsymbol{q_{sig}} \cdot \mathbf{2}^{-k_0}
ight) + \mathbf{2} \cdot oldsymbol{\left(oldsymbol{q_{hash}} + oldsymbol{q_{sig}}
ight)^2 \cdot \mathbf{2}^{-k_1}$$

• Tight security proof ($\varepsilon' \simeq \varepsilon$), provided that $k_1 \ge k_{min}$ and

$$k_0 \geq \log_2 q_{sig}$$

- With $q_{sig} = 2^{30}$, we can take $k_0 = 30$ bits and using a larger seed does not further improve security.
- When PSS is used with message recovery, with a 1024-bits RSA modulus, 813 bits of message can now be recovered when verifying the signature, instead of 663 bits.

<ロ> (四) (四) (三) (三) (三) (三)

- Probabilistic Full-Domain Hash (PFDH)
 - Similar to FDH except that a random seed *r* of *k*₀ bits is concatenated to *M* before hashing it.

$$m \longrightarrow m \| r \longrightarrow H(m \| r) \longrightarrow s = H(m \| r)^d \mod N$$

- The signature of *m* is (*s*, *r*).
- Security proof very similar to PSS.
 - If is impossible to invert RSA with probability greater than ε' in time t', it is impossible to break PFDH in time t ≃ t' with probability greater than

$$\varepsilon = \varepsilon' \cdot \left(1 + 6 \cdot q_{sig} \cdot 2^{-k_0}\right)$$

< □ > < 同 > < 回 > <

Proof for PFDH: old technique

• Answering a hash query for m || r:

• Answer $H(m||r) = y \cdot x^e \mod N$ for a random x.

- Answering a signature query for *m*:
 - Generate a random r of k_0 bits.
 - If *r* never appeared before, set $H(m||r) = x^e$ and return *x*.
 - Otherwise abort.
- Using the forgery (*m*, *s*, *r*):

• We have $s = H(m||r)^d = y^d \cdot x \mod N$, so return s/x.

- Success probability:
 - A signature query fails with probability lesser than $(q_{hash} + q_{sig}) \cdot 2^{-k_0}$.

$$arepsilon = arepsilon' + q_{sig} \cdot (q_{sig} + q_{hash}) \cdot 2^{-k_0}$$

< 日 > < 同 > < 回 > < 回 > < □ > <

- For each new message m_i, we generate a list L_i of q_{sig} random integers of k₀ bits.
- Answering a hash query for $m_i || r$:
 - If *r* belongs to L_i , answer $H(m_i || r) = x^e \mod N$ for a random *x*.
 - Otherwise answer $H(m_i || r) = y \cdot x^e \mod N$.
- Answering a signature query for *m_i*:
 - Take the next random r in the list L_i .
 - Then $H(m_i || r) = x^e \mod N$ and return x.
- Using the forgery (m_i, s, r) :
 - If *r* does not belong to L_i , then $H(m_i || r) = y \cdot x^e \mod N$.

< 日 > < 同 > < 回 > < 回 > < □ > <

• Then $s = H(m_i || r)^d = y^d \cdot x \mod N$, so return s/x.

Proof for PFDH: new technique

- Success probability:
 - The reduction answers all the signature queries.
 - The probability that r does not belong to L_i is $(1 2^{-k_0})^{q_{sig}}$
 - If $k_0 \ge \log_2 q_{sig}$, this is greater than 1/4.

$$\varepsilon = \mathbf{4} \cdot \varepsilon'$$

- General case:
 - We generate some lists L_i with less than q_{sig} integers.
 - We can fail answering signature queries but we can use the forgery with better probability.

$$\varepsilon = \varepsilon' \cdot \left(\mathbf{1} + \mathbf{6} \cdot \boldsymbol{q}_{sig} \cdot \mathbf{2}^{-k_0} \right)$$

< □ > < 同 > < 回 > <

- What is cryptography ?
 - Cryptography's aim is to contruct schemes that achieve some goal despite the presence of an adversary.
- Scientific approach:
 - To be rigorous, one must specify what it means to be secure.
 - Then one tries to construct schemes that achieve the desired goal, in a provable way.
 - Plain RSA encryption and signature cannot be used !