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» What could we do with multilinear maps?

» 2003 Boneh and Silverberg: N-multipartite Diffie-Hellman and very efficient
broadcast encryption

» Certainly a lot...

» ... but pessimistic about existence of such maps in the realm of algebraic
geometry!



[GGH13]: First Multilinear Maps Candidate

» Garg, Gentry and Halevi breakthrough in 2012

» First of Multilinear Maps

» Not exactly generalization of bilinear maps

» But introduction of noisy encodings and Graded Encoded Systems
» Based on ideal lattices & ideas similar to NTRU

» Published at Eurocrypt 2013 [GGH13]

» New construction similarly flavored as FHE
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» Garg, Gentry and Halevi breakthrough in 2012

» First of Multilinear Maps

» Not exactly generalization of bilinear maps

» But introduction of noisy encodings and Graded Encoded Systems
» Based on ideal lattices & ideas similar to NTRU

» Published at Eurocrypt 2013 [GGH13]

» New construction similarly flavored as FHE

> for applications: e.g. description of a N-multipartite Diffie Hellman
key exchange protocol

> by Hu and Jia on March 2015 (ePrint)
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GGHLite: more efficient multilinear maps from ideal lattices (Eurocrypt
2014)

» Variant of GGH with much small public parameters.

» Still broken by Hu and Jia's attack.
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Multilinear Maps over the Integers

» Published at Crypto 2013 by Coron, Lepoint, and Tibouchi (CLT).
Similar approach as [GGH13] but over the integers instead of ideal lattices.
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as in the DGHYV fully homomorphic encryption scheme

First implementation of a 7-multipartite Diffie-Hellman (80-bit sec.)

» Public parameters (shared): 2.5GB
» Arguably for key agreement:

v

v

by Cheon et al. at Eurocrypt 2015.

> can still be used for obfuscation.
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Recall: Bilinear Maps

» Two groups and a mapping e: G; X G; — G,
» Groups written multiplicatively
» Bilinear: e(x?,y?) = e(x,y)®

» Hard problems
\higs » DL: Given (g,g?), find a
» DH: Given (g,g?, g?), find g

7, » BDH: Given (g,ga,gb,gc). compute e(gag)abc

» Application: non-interactive 3-party Diffie-Hellman (Joux, 2000)

sk = e(ga7gb)c — e(ga’gc)b — e(gb’gc)a
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Extension to multilinear map

» Bilinear pairings: a € Z, — g7 is an “encoding” of the scalar a

» easy to encode, hard to decode (DL)
» additively and multiplicatively homomorphic

» from g2, g?, compute g?*? and e(g, g)?*
» It would be interesting to have a x-linear map
e: G X Gy XX G, = Geyq

» Application: non-interactive Diffie-Hellman key exchange with x + 1 users.

sk =e(g™,...,g™")™""



Perspective of [GGH13]

» Perfect multilinear map e: G; X Gy X - -+ X G — Gpyq
» Cannot really do that... but slightly analogous:

» The one-way g — g? is replaced by randomized encodings (a € R has many

encodings)
» final multilinear map e(g®,...,g%) has a deterministic part depending on
the a;'s only
Q » The multilinear map is essentially a homomorphic multiplication of these

encodings, followed by an operation that deterministically extracts some bits
from the product



Perspective of [GGH13|: Graded Encoding

» Each encoding is associated to a level

> level-0: “plaintext” scalars a € R

> level-1: encoding g?

> level-k: by combining « level-1 encoding
» we can multiply any bounded subset of encodings until level x

» at level k, special “zero-testing” element which can extract a deterministic

function of ring elements

» Public parameters hide secret information



The CLT2013 encoding scheme

» Parameters: sec. level A\, multilinearity level

v

Public modulus: xg = p; X - -+ X p, where p; primes
Random secret mask: z € (Z/xZ)*

v

> Level-k encoding of m = (m;) € R == (Z/giZ) x - -- x (Z/gnZ):
BT
z

v

Multiplicative mask z (used for extraction at level )



CLT2013: homomorphic properties
» Level-k encoding of m = (m;) € R == (Z/g1Z) x - -- x (Z/gnZ):

ri- i+ m;

C
Zk

mod p;

» Additively and Multiplicatively Homomorphic
» After addition: noise r' ~ 2maxr;
2

» After multiplication: noise r' &~ maxg;j - ri



The CLT2013 encoding scheme

» But how can we generate a level-k encoding?

ri - & + mj
c=—"—— mod p;
z
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The CLT2013 encoding scheme

» But how can we generate a level-k encoding? ... we should compute a CRT:

rn-g+m rn'gn+mn)

Zk 9000 Zk

c=CRT, . pn <

» But we do not know the p;'s and z...

» In the protocols we need to generate encodings

» = we generate using random subset sum of public encodings and apply the
left-over hash lemma



Public generation of Level-0 Encoding

» Publish &;: level-0 encodings of random elements in R.
» Ring Sampler: random subset sum of &; = level-0 encoding of random
element in R (uses LHL)

Co = Zf, mod X0

ieS
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Public generation of Level-0 Encoding

» Publish &;: level-0 encodings of random elements in R.
» Ring Sampler: random subset sum of £; = level-0 encoding of random
element in R (uses LHL)

Co = Zf, mod X0
ies
» Publish y: level-1 encoding of 1 = (1,...,1) € R
» Encoding: Transform it into a level-1 encoding by multiplication by y
c1 = (co-y) mod xg

» Publish x;: level-1 encodings of 0.
» Re-Randomization: Re-randomize your element ¢; with a subset sum of

the x;'s
C{ =+ ZX;

ieS’



Diffie-Hellman key exchange

» Every user generates a pair (a;, u;)
» a; is a level-0 encoding of a random (unknown) «a; € R.
» u; is a level-1 encoding of the same «; € R
» Public: uj. Private: a;.
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Diffie-Hellman key exchange

» Every user generates a pair (a;, u;)

» a; is a level-0 encoding of a random (unknown) «a; € R.

» u; is a level-1 encoding of the same «; € R

» Public: uj. Private: a;.
» Why re-randomization ?

» Without re-rerandomization, one could compute a; = uj/y mod xp.
» Diffie-Hellman key exchange with x + 1 users. User i can compute:

c,-:a,--Huj mod X0
J#

» ¢ is a level-x (randomized) encoding of o = [[; v

» An attacker cannot compute such level-x encoding

» Each user should be able to extract from ¢; the same secret-key that
depends only on a.
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Zero-Tester: How to Extract Deterministically?

» Publish a zero-testing element to check that level-x encodings are encodings
of 0:

pee =Y _hi- (2" g mod p;)- ] p mod x
i=1 it £i
» Compute w = p,r - ¢ mod X
» Extract the MSB of w: if m = 0 then the MSB are 0.

= MSB of two encodings of the same m are the same (e.g. derive common
session key)

— hy-z®

> ¢ = LELEM (mod py) and Pzt = (mod pr)

gl
= WEpzt-CEhlrl-i-hl% (mod py)

» When m;y =0, w — h - r;, < p; = all its MSB are equal to 0




Zero-testing parameter: deterministic extraction

» Level-x encoding:
ri - &+ mj

7k (mOd pi)

o
Il

» Zero-testing parameter:

Pzt = Z hi - [g; " - 2" mod p;] - (xo/pi) mod x

» Extraction from w = p,; - ¢ mod xo:
W_Zh ri+m;j- 8 - mod P:)) '(XO/pi) mod X0

» The MSB of w only depends on the m;'s (for small r;'s and h;’s).



The Cheon et al. Attack (Eurocrypt 2015)

» Total break of the CLT2013 scheme: recover in polynomial time all secret
parameters.
» Uses a large number of low-level encodings of 0
> Let x; be level-1 encodings of 0 € R with x/ = r;; - g;/z mod p;
» Let x; be level-1 encodings where x; = x;;/z mod p;.
» For 1 < j, k < n, compute:

_ / K—2
wik = (¢ Xj - X, -y ) - px mod xg

where c is a level-0 encoding with ¢ = ¢; mod p;.

Wik = Z hi - [(c-x - x 'yﬁ_z) -zt g,-_l mod p;] - (xo/pi)
i=1

n
= E x;ihicirl, mod X (1)
i=1

» Equation (1) actually holds over the integers.



The Cheon et al. Attack

» Forall 1 <, k < n, wi is a quadratic form in x; and r},:

n
f— . / . /
Wik = E xijhiciry
i=1

» In matrix form with W, = (wjk)1<j k<n:
W,.=XxCxR,

where X = (X,'j . h;)nggn and R = (r,-’k)1<;7k<,, and C = Diag(cl, ey Cn)-
» Compute with ¢ = 1 the matrix W; = X x | x R, which gives:

W=W, W; 1=XxCxX!

» Compute the eigenvalues of W and recover the ¢;'s, and eventually the p;'s.



Extension of Cheon et al. Attack

» [GGHZ14] countermeasure
» Embed CLT encodings into a matrix of encodings
» Eliminate native encodings of 0 to prevent the Cheon et al. attack.
» [BWZ14] countermeasure
» Uses pairs of encodings
» Also eliminate native encodings of 0 to prevent the Cheon et al. attack.
» Both countermeasures can be broken by a simple extension of the Cheon et
al. attack
» Namely in both case w is still a quadratic form.
» Therefore Cheon et al. attack applies with higher-dimensional matrices.
» “Zeroizing Without Low-level Zeroes: New Attacks on Multilinear Maps and
Their Limitations”, to appear at Crypto 2015



