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Motivation

I Bilinear maps (from pairing in hard-DL groups) are extremely useful in
cryptography

I 3-partite Diffie-Hellman key exchange
I *-BE (IBE, HIBE, ABE, etc.)
I NIZK proofs, Traitor Tracing, broadcast encryption, etc.

I What could we do with multilinear maps?
I 2003 Boneh and Silverberg: N-multipartite Diffie-Hellman and very efficient

broadcast encryption
I Certainly a lot...
I ... but pessimistic about existence of such maps in the realm of algebraic

geometry!
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[GGH13]: First Multilinear Maps Candidate

I Garg, Gentry and Halevi breakthrough in 2012

I First plausible candidate of Multilinear Maps
I Not exactly generalization of bilinear maps
I But introduction of noisy encodings and Graded Encoded Systems
I Based on ideal lattices & ideas similar to NTRU
I Published at Eurocrypt 2013 [GGH13]

I New construction similarly flavored as FHE

I Useful for applications: e.g. description of a N-multipartite Diffie Hellman
key exchange protocol

I Broken by Hu and Jia on March 2015 (ePrint)
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Following [GGH13] Multilinear Map Breakthrough

I Witness Encryption (STOC 2013)

I Full Domain Hash and Identity-Based Aggregate Signatures (CRYPTO
2013)

I Programmable hash functions (CRYPTO 2013)

I ABE for circuits (CRYPTO 2013)

I Obfuscation (CRYPTO 2013 + FOCS 2013 + Eprint)

I GGHLite: more efficient multilinear maps from ideal lattices (Eurocrypt
2014)

I Variant of GGH with much small public parameters.
I Still broken by Hu and Jia’s attack.
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Multilinear Maps over the Integers

I Published at Crypto 2013 by Coron, Lepoint, and Tibouchi (CLT).

I Similar approach as [GGH13] but over the integers instead of ideal lattices.

I as in the DGHV fully homomorphic encryption scheme

I First implementation of a 7-multipartite Diffie-Hellman (80-bit sec.)
I Public parameters (shared): 2.5GB
I Arguably reasonable timings for key agreement: 6 40s/user

I Broken by Cheon et al. at Eurocrypt 2015.

I But: can still be used for obfuscation.
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Recall: Bilinear Maps

I Two groups and a mapping e : G1 × G1 → G2

I Groups written multiplicatively
I Bilinear: e(xa, yb) = e(x , y)ab

I Hard problems
I DL: Given (g , ga), find a
I DH: Given (g , ga, gb), find gab

I BDH: Given (g , ga, gb, g c), compute e(g , g)abc

I Application: non-interactive 3-party Diffie-Hellman (Joux, 2000)

sk = e(g a, gb)c = e(g a, g c)b = e(gb, g c)a
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Extension to multilinear map

I Bilinear pairings: a ∈ Zp 7→ g a is an “encoding” of the scalar a
I easy to encode, hard to decode (DL)
I additively and multiplicatively homomorphic

I from g a, gb, compute g a+b and e(g , g)ab

I It would be interesting to have a κ-linear map

e : G1 × G2 × · · · × Gκ → Gκ+1

I Application: non-interactive Diffie-Hellman key exchange with κ + 1 users.

sk = e(g a1 , . . . , g aκ)aκ+1
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Perspective of [GGH13]

I Perfect multilinear map e : G1 × G2 × · · · × Gk → Gk+1

I Cannot really do that... but slightly analogous:

I The one-way g 7→ ga is replaced by randomized encodings (a ∈ R has many
encodings)

I final multilinear map e(ga1 , . . . , gaκ) has a deterministic part depending on
the ai ’s only

I The multilinear map is essentially a homomorphic multiplication of these
encodings, followed by an operation that deterministically extracts some bits
from the product



Perspective of [GGH13]: Graded Encoding

I Each encoding is associated to a level
I level-0: “plaintext” scalars a ∈ R
I level-1: encoding ga

I level-κ: by combining κ level-1 encoding
I we can multiply any bounded subset of encodings until level κ
I at level κ, special “zero-testing” element which can extract a deterministic

function of ring elements

I Public parameters hide secret information



The CLT2013 encoding scheme

I Parameters: sec. level λ, multilinearity level κ

I Public modulus: x0 = p1 × · · · × pn where pi primes

I Random secret mask: z ∈ (Z/x0Z)×

I Level-k encoding of m = (mi) ∈ R := (Z/g1Z)× · · · × (Z/gnZ):

c ≡ ri · gi + mi

zk
mod pi

I Multiplicative mask z (used for extraction at level κ)



CLT2013: homomorphic properties

I Level-k encoding of m = (mi) ∈ R := (Z/g1Z)× · · · × (Z/gnZ):

c ≡ ri · gi + mi

zk
mod pi

I Additively and Multiplicatively Homomorphic
I After addition: noise r ′ ≈ 2 max ri
I After multiplication: noise r ′ ≈ max gi · r2i



The CLT2013 encoding scheme

I But how can we generate a level-k encoding?

... we should compute a CRT:

c ≡ ri · gi + mi

zk
mod pi

I But we do not know the pi ’s and z ...

I In the protocols we need to generate random encodings

I ⇒ we generate using random subset sum of public encodings and apply the
left-over hash lemma
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Public generation of Level-0 Encoding

I Publish ξi : level-0 encodings of random elements in R .
I Ring Sampler: random subset sum of ξi ⇒ level-0 encoding of random

element in R (uses LHL)

c0 =
∑
i∈S

ξi mod x0

I Publish y : level-1 encoding of 1 = (1, . . . , 1) ∈ R
I Encoding: Transform it into a level-1 encoding by multiplication by y

c1 = (c0 · y) mod x0

I Publish xi : level-1 encodings of 0.
I Re-Randomization: Re-randomize your element c1 with a subset sum of

the xi ’s
c ′1 = c1 +

∑
i∈S ′

xi
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Diffie-Hellman key exchange

I Every user generates a pair (ai , ui)
I ai is a level-0 encoding of a random (unknown) αi ∈ R.
I ui is a level-1 encoding of the same αi ∈ R
I Public: ui . Private: ai .

I Why re-randomization ?
I Without re-rerandomization, one could compute ai = ui/y mod x0.

I Diffie-Hellman key exchange with κ + 1 users. User i can compute:

ci = ai ·
∏
j 6=i

uj mod x0

I ci is a level-κ (randomized) encoding of α =
∏

i αi

I An attacker cannot compute such level-κ encoding
I Each user should be able to extract from ci the same secret-key that

depends only on α.
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Zero-Tester: How to Extract Deterministically?

I Publish a zero-testing element to check that level-κ encodings are encodings
of 0:

pzt =
n∑

i=1

hi · (zκ · g−1i mod pi) ·
∏
i ′ 6=i

pi ′ mod x0

I Compute ω = pzt · c mod x0
I Extract the MSB of ω: if m = 0 then the MSB are 0.
⇒ MSB of two encodings of the same m are the same (e.g. derive common

session key)

Main Idea: what happens if we work with only one p1?

I c ≡ r1·g1+m1

zκ
(mod p1) and pzt ≡ h1·zκ

g1
(mod p1)

⇒ ω ≡ pzt · c ≡ h1r1 + h1
m1

g1
(mod p1)

I When m1 = 0, ω = h1 · r1 � p1 ⇒ all its MSB are equal to 0
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Zero-testing parameter: deterministic extraction

I Level-κ encoding:

c ≡ ri · gi + mi

zk
(mod pi)

I Zero-testing parameter:

pzt =
n∑

i=1

hi · [g−1i · z
κ mod pi ] · (x0/pi) mod x0

I Extraction from ω = pzt · c mod x0:

ω =
n∑

i=1

hi ·
(
ri + mi · (g−1i mod pi)

)
· (x0/pi) mod x0

I The MSB of ω only depends on the mi ’s (for small ri ’s and hi ’s).



The Cheon et al. Attack (Eurocrypt 2015)

I Total break of the CLT2013 scheme: recover in polynomial time all secret
parameters.

I Uses a large number of low-level encodings of 0
I Let x ′j be level-1 encodings of 0 ∈ R with x ′j = r ′ij · gi/z mod pi
I Let xj be level-1 encodings where xj = xij/z mod pi .

I For 1 6 j , k 6 n, compute:

ωjk = (c · xj · x ′k · yκ−2) · pzt mod x0

where c is a level-0 encoding with c = ci mod pi .

ωjk =
n∑

i=1

hi · [(c · xj · x ′k · yκ−2) · zκ · g−1i mod pi ] · (x0/pi)

=
n∑

i=1

xijh
′
ici r

′
ik mod x0 (1)

I Equation (1) actually holds over the integers.



The Cheon et al. Attack

I For all 1 6 j , k 6 n, ωjk is a quadratic form in xij and r ′ik :

ωjk =
n∑

i=1

xijh
′
ici r

′
ik

I In matrix form with Wc = (ωjk)16j ,k6n:

Wc = X× C× R ,

where X = (xij · h′i)16j ,i6n and R = (r ′ik)16i ,k6n and C = Diag(c1, . . . , cn).

I Compute with c = 1 the matrix W1 = X× I× R, which gives:

W = Wc ·W1
−1 = X× C× X−1

I Compute the eigenvalues of W and recover the ci ’s, and eventually the pi ’s.



Extension of Cheon et al. Attack

I [GGHZ14] countermeasure
I Embed CLT encodings into a matrix of encodings
I Eliminate native encodings of 0 to prevent the Cheon et al. attack.

I [BWZ14] countermeasure
I Uses pairs of encodings
I Also eliminate native encodings of 0 to prevent the Cheon et al. attack.

I Both countermeasures can be broken by a simple extension of the Cheon et
al. attack

I Namely in both case ω is still a quadratic form.
I Therefore Cheon et al. attack applies with higher-dimensional matrices.

I “Zeroizing Without Low-level Zeroes: New Attacks on Multilinear Maps and
Their Limitations”, to appear at Crypto 2015


